1234567891011121314151617181920212223242526272829303132 |
- import tensorflow as tf
- mnist = tf.keras.datasets.mnist
- (x_train, y_train), (x_test, y_test) = mnist.load_data()
- x_train, x_test = x_train / 255.0, x_test / 255.0
- model = tf.keras.models.Sequential([
- tf.keras.layers.Flatten(input_shape=(28, 28)),
- tf.keras.layers.Dense(128, activation='relu'),
- tf.keras.layers.Dropout(0.2),
- tf.keras.layers.Dense(10)
- ])
- predictions = model(x_train[:1]).numpy()
- print(predictions)
- predictions_softmax = tf.nn.softmax(predictions).numpy()
- print(predictions_softmax)
- loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
- loss = loss_fn(y_train[:1], predictions).numpy()
- print(loss)
- model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy'])
- model.fit(x_train, y_train, epochs=25)
- model.evaluate(x_test, y_test, verbose=2)
- probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()])
- test0 = probability_model(x_test[:5])
- print(test0)
- print("doen")
|