|
@@ -1,9 +1,17 @@
|
|
|
+import matplotlib.pyplot as plt
|
|
|
import tensorflow as tf
|
|
|
|
|
|
mnist = tf.keras.datasets.mnist
|
|
|
|
|
|
-(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
|
|
-x_train, x_test = x_train / 255.0, x_test / 255.0
|
|
|
+(images_train, labels_train), (images_test, labels_test) = mnist.load_data()
|
|
|
+
|
|
|
+plt.figure()
|
|
|
+plt.imshow(images_train[0])
|
|
|
+plt.colorbar()
|
|
|
+plt.grid(False)
|
|
|
+plt.show()
|
|
|
+
|
|
|
+images_train, images_test = images_train / 255.0, images_test / 255.0
|
|
|
|
|
|
model = tf.keras.models.Sequential([
|
|
|
tf.keras.layers.Flatten(input_shape=(28, 28)),
|
|
@@ -12,21 +20,15 @@ model = tf.keras.models.Sequential([
|
|
|
tf.keras.layers.Dense(10)
|
|
|
])
|
|
|
|
|
|
-predictions = model(x_train[:1]).numpy()
|
|
|
-print(predictions)
|
|
|
-
|
|
|
-predictions_softmax = tf.nn.softmax(predictions).numpy()
|
|
|
-print(predictions_softmax)
|
|
|
-
|
|
|
-loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
|
|
-loss = loss_fn(y_train[:1], predictions).numpy()
|
|
|
-print(loss)
|
|
|
+model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
|
|
+ metrics=['accuracy'])
|
|
|
+model.fit(images_train, labels_train, epochs=5, verbose=0, use_multiprocessing=True)
|
|
|
+model.evaluate(images_test, labels_test, verbose=1)
|
|
|
|
|
|
-model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy'])
|
|
|
-model.fit(x_train, y_train, epochs=25)
|
|
|
-model.evaluate(x_test, y_test, verbose=2)
|
|
|
probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()])
|
|
|
-test0 = probability_model(x_test[:5])
|
|
|
-print(test0)
|
|
|
+for i, n in enumerate(labels_test[0:10]):
|
|
|
+ p: tf.Tensor = probability_model(images_test[i: i + 1])
|
|
|
+ pv = p.numpy().flatten().tolist()
|
|
|
+ print(pv.index(max(pv)), n)
|
|
|
|
|
|
print("doen")
|