Browse Source

пытаемся покрутить

kpmy 5 years ago
parent
commit
de6f590f46
1 changed files with 18 additions and 16 deletions
  1. 18 16
      ne.py

+ 18 - 16
ne.py

@@ -1,9 +1,17 @@
+import matplotlib.pyplot as plt
 import tensorflow as tf
 
 mnist = tf.keras.datasets.mnist
 
-(x_train, y_train), (x_test, y_test) = mnist.load_data()
-x_train, x_test = x_train / 255.0, x_test / 255.0
+(images_train, labels_train), (images_test, labels_test) = mnist.load_data()
+
+plt.figure()
+plt.imshow(images_train[0])
+plt.colorbar()
+plt.grid(False)
+plt.show()
+
+images_train, images_test = images_train / 255.0, images_test / 255.0
 
 model = tf.keras.models.Sequential([
     tf.keras.layers.Flatten(input_shape=(28, 28)),
@@ -12,21 +20,15 @@ model = tf.keras.models.Sequential([
     tf.keras.layers.Dense(10)
 ])
 
-predictions = model(x_train[:1]).numpy()
-print(predictions)
-
-predictions_softmax = tf.nn.softmax(predictions).numpy()
-print(predictions_softmax)
-
-loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
-loss = loss_fn(y_train[:1], predictions).numpy()
-print(loss)
+model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
+              metrics=['accuracy'])
+model.fit(images_train, labels_train, epochs=5, verbose=0, use_multiprocessing=True)
+model.evaluate(images_test, labels_test, verbose=1)
 
-model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy'])
-model.fit(x_train, y_train, epochs=25)
-model.evaluate(x_test, y_test, verbose=2)
 probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()])
-test0 = probability_model(x_test[:5])
-print(test0)
+for i, n in enumerate(labels_test[0:10]):
+    p: tf.Tensor = probability_model(images_test[i: i + 1])
+    pv = p.numpy().flatten().tolist()
+    print(pv.index(max(pv)), n)
 
 print("doen")