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1 Introduction

PERWAPI is a component for reading and writing .NET PE-files. The name is a com-
pound acronym for Program Executable — Reader/Writer — Application Programming
Interface. The code was written by one of us (Diane Corney) with some contributions
from some of the early users of the tool.

PERWAPI is a managed component, written entirely in safe C#. The design of
the writer part of the component is loosely based on Diane Corney’s previous PEAPI
component. It is open source software, and is released under a “FreeBSD-like” license.
The source may be downloaded from “http://perwapi.codeplex.com/”

As of the date of this document the code has facilities for reading and writing PE-
files compatible with the V2 or later frameworks.

1.1 Using PERWAPI

The PERWAPI interface provides a number of calls that construct objects correspond-
ing to meaningful entities in a .NET program. As will be seen later, there are object
types corresponding to types, fields, methods and instructions, to name just some of
the members of the object menagerie.

Writing PE Files

When the PERWAPI component is used to write a PE-file, the process begins by creat-
ing an object that will represent the PE-file itself. Objects are created corresponding to
the various classes and other types that the file will declare, and these are linked to the
PE-file object. Other objects will be created corresponding to the methods of each of
these types. These method objects will be linked to the class objects that declare them.
Instruction objects are defined and linked to the method objects, defining the code of
the method. Finally, when all of the objects have been created and logically linked
together a single method call, “PeFile.WritePEFile (bool writePDB)”, writes out
the PE-file, and optionally a pdb debugging file as well. This step is often called “bak-
ing” the file (after the ingredients have been added one by one and mixed together).

Internally PERWAPI takes the abstract representation of the program embodied in
the structure of linked objects, encodes this into the tables of the PE-file format, and
writes the tables to the output stream. The output stream does not necessarily need to
be a file in the file system, but may be a memory stream ready to be loaded, as in the
case of dynamic code generation.

Reading PE Files

When the PERWAPI component is used to read a PE-file, one of three static method
calls is used, depending on the application.

The method “PeFile.ReadPEFile (filename)”, reads the specified file and
produces an abstract representation of the assembly as a PERWAPI. PEFile object. This
representation is isomorphic to the data structure from which the PE-file was originally
baked. This is the call that would be used in an application that wished to read in a PE-
file, do some processing, then write out a new PE-file.

The method “PeFile.ReadPublicClasses (filename)”, reads the specified
file and produces an abstract representation of the assembly as a PERWAPI. PEFile
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object. This representation only includes those type and member objects that corre-
spond to public (or at least visible) entities of the target PE-file. This is the method
that would be used to browse the interface to a PE-file. However, this is not the ideal
method for a compiler to use to link to an external PE-file. When a compiler needs to
reference a class that is defined in another PE-file, it needs to create a ClassRef object
to do this. The structure created by ReadPublicClasses will instead contain ClassDef
objects corresponding to the classes that are defined in the PE-file that it reads.

The method “PeFile.ReadExportedInterface (filename)”, reads the spec-
ified file and produces an abstract representation of the assembly as a PERWAPI.-
ResolutionScope object. This representation only includes those type and member ob-
jects that correspond to public (or at least visible) entities of the target PE-file. The
result of this call differs from the result of a call to the previous method in that the
objects that are created are reference objects corresponding to the definitions in the
PE-file that was read. This method is thus the one that is most useful to a compiler
wishing to construct references to the facilities of other PE-files.

How gpcp uses PERWAPI

The Gardens Point Component Pascal (gpcp) compiler uses both the reading and
writing facilities of PERWAPI.

The gpcp compiler has an option to write PE-files directly, rather than emitting
textual assembly language and invoking the /L-assembler. Early versions of gpcp
used PEAPI for this purpose, but current versions use PERWAPI. The compiler
is written in Component Pascal, and recompiles itself via PERWAPI as a test of
correctness. The direct-to-PE-file option is rather faster than compiling via textual
intermediate language.

Whenever gpcp compiles a program it emits a metadata “symbol file” which spec-
ifies the public interface of the compiled module. When a module is compiled that
uses the facilities of some separate module, the compiler reads the metadata of
the imported module so as to ensure type correctness. It follows that in order for
Component Pascal programs to access the facilities of any .NET base library it is
necessary to produce a symbol file corresponding to the public interface of that li-
brary. One of the gpcp tools, “PeToCps”, performs this conversion. The program
uses the reader part of PERWAPI to read PE-files. The program builds a Compo-
nent Pascal abstract syntax representation corresponding to the exported types of
the library. The standard symbol file emitter of gpcp then emits the symbol file.

Of course PERWAPI, being written in C#, is itself a foreign language library so
far as gpcp is concerned. Thus, in a conventional bootstrap maneuver, PeToCps
needed to be run over PERWAPI.d11 to produce a corresponding symbol file so
that gpcp could compile PeToCps.

1.2 Data Structure Overview

The data structures defined by PERWAPI correspond to the various entities of the . NET
Common Type System (CTS). Although there are about 100 public classes defined
by the component, understanding the overall structure of the representation requires
familiarity with a rather smaller number.

First, however, it should be noted that some of the classes of the component are
artifacts of the particular way in which PE-files represent metadata. The representation
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is based on up to 44 tables, very much in the style of a data-base. These tables reference
each other, and also hold indexes into a “blob-heap” for unstructured data and a “string-
heap” for string data. Users of PERWAPI never have to deal with either the tables or
the heaps, they only deal with the object types that correspond to the entries in the
tables. The best policy for a user is to note that almost all the interesting object types
derive, directly or indirectly, from an abstract class called MetaDataElement, which in
turn derives from TableRow. Having made this mental note, you may relax, since you
only have to deal with the concrete objects that inherit from these types.

Of the 19 public classes that derive from MetaDataElement the most important and
interesting are —

x ResolutionScope. This derives all of the objects that specify the outer level scope
within which names are qualified. These objects correspond to all the things that
appear within the square brackets at the start of fully qualified /L names such
as [mscorlib]System.Exception. The derived types include Assembly, Module,
AssemblyRef and so on.

+ Type. This derives all of the objects that specify types in the CTS. The derived
types include reference classes (“class” in C#), value classes (“struct” in
C#), arrays, primitive types, generic formal types, and so on. Separate object
types are used to represent classes that are defined in the assembly being con-
structed, and classes that are defined in external assemblies and referenced by
the assembly under construction.

+ Member. This derives all of the object types that define and make reference to
the fields and methods of CTS classes.

+ Feature. This derives all of the object types that represent properties and events.

The details of these type hierarchies will be considered in Section [2]

1.3 Performance

Compilers using PERWAPI to write their output are fast. As a rough rule of thumb,
gpcp can write out a PE-file using PERWAPI in the same time as it writes out a textual-
IL file. Compared to the conventional approach, this implies a time saving equal to the
entire time spent in creating a new process for i 1asm, reading the /L text and creating
the output file.

Figure 1: Time in seconds to run CPMake /all on gpcp source

Writing textual IL files 2.9
Writing IL, then invoking ilasm 7.0
Writing PE files using PERWAPI 3.0

Figure [T] lists the time taken to compile the roughly 50k lines of Component Pas-
cal in the 46 files of the gpcp source. The time in seconds is for a single processor
2004-vintage AMD Athlon 1800 machine with 256k of memory. The final row thus
corresponds to a compilation speed about one million lines per minute.

Figure 2|lists the compilation times for the three of the largest modules of gpcp. In
each case the compilation time of each module compiled on it own is about 800mSec.
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Most of this time is the JIT penalty. The times quoted in the Figure are the result of
a multi module compilation, with the measured module being third on the argument
list. In this way the module named in the first argument suffers the penalty, and the
measured module finds the code already JIT-ed.

Figure 2: Time to compile each of three large modules, milli-seconds

Output Mod-1 | Mod-2 | Mod-3
Writing textual IL files 125 109 109
Writing IL, then invoking i lasm 313 328 235
Writing PE-files using PERWAPI 157 125 109

1.4 Limitations

The current release PERWAPI optionally emits program debug (PDB) files. The sep-
arate open-source component SymbolRW, packaged with the PERWAPI distribution,
provides a managed interface to the Microsoft unmanaged code API for pdb file cre-
ation. This feature of PERWAPI relies on COM-interop, and will thus be unavailable
if the program is used on non-Microsoft platforms.

Another caution that bears prominence is that the interface to PERWAPI is intended
to conform to the Common Language Specification (CLS). This is done so that tools
written in any language that is a CLS consumer can access the API. However there
is a small paradox involved, since it is necessary to deal with (for example) methods
that return unsigned values that are not part of the CLS. This means that there is some
awkwardness in places. Consider, for example, the class UlntConst, which constructs
and reads unsigned whole-number constants. As expected, there is a method to extract
the value that the constant represents. Here is the signature of the method: it returns
the unsigned value that the constant descriptor represents, but as a signed long —

public long GetULongAsLong ()

The signature is CLS compliant, but requires the user to attach special semantics to any
return value that appears to be a negative INT64.

2 Data Structure Details

The containment hierarchy of entities in an assembly is roughly thus —
+ Each PE-file contains exactly one Module
+ PE-files that declare an Assembly contain an assembly manifest
* Modules define zero or more ClassDef's
+ ClassDef's contain FieldDef's and MethodDef s
* MethodDefs contain a CILInstructions buffer
+ CILInstructions reference MethodDef's and MethodRefs
+ CILInstructions reference FieldDefs and FieldRefs



2 DATA STRUCTURE DETAILS 8

* MethodRefs and FieldRefs are contained in ClassRef's
* ClassRef's belong to AssemblyRef's and ModuleRef's

It is the task of PERWAPI to allow for the definition of each of these kinds of entity,
and their association with their enclosing container.

2.1 Resolution Scope

Resolution scopes are used to define the context within which class names are bound. It
is useful to remember that within the . NET framework class names are “dotted names”.
Many languages treat the final identifier of the dotted name, the simple class identifier,
and the prefix, the name-space name, as separate entities. However, within the frame-
work the name is the whole, qualified name. This complete name is resolved within a
particular resolution scope corresponding to an assembly or a module of the program.

ResolutionScope is an abstract class of PERWAPI, which derives two other abstract
classes: DefiningScope and ReferenceScope. The DefiningScope type derives the As-
sembly and Module classes, with the very important class PEFile being derived from
Module. A PEFile object is the root of every representation of a PE-file.

The ReferenceScope type derives the AssemblyRef and ModuleRef classes. Objects
of these classes are used to represent imported assemblies and modules that need to be
referenced by the module under construction.

The complete class hierarchy for these classes is shown in Figure 3] In all of these
class hierarchy diagrams black rectangles denote abstract classes. Extensible classes
are shown unshaded, while sealed classes are shown lightly shaded.

Figure 3: Class hierarchy for the resolution scope descriptors

Assembly

AssemblyRefi

Defining—

ModuleRef

All resolution scopes contain a string name, and a list of classes belonging to that
scope. There are public methods for adding and deleting classes from the scope, and for
accessing the name. The Assembly class is used for defining assemblies, and contains
a significant amount of additional information. The four-part version number, public
key, culture and hash algorithm may be specified at object creation time, or added later
with the method AddAssemblylnfo. Declarative security information is also stored in
Assembly objects.
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PEFile Objects

When a PEFile object is created, one of two constructors may be called. The first of
these specifies only the filename, and constructs a PEFile object with no associated
Assembly object. The second constructor takes two string arguments. The first is the
filename; the second is the assembly name. This constructor creates a PEFile object
with an optional Assembly object. This object is accessed by the GetAssembly method.

public PEFile (string fileName)

public PEFile (string fileName, string assemblyName)
Many compilers by default use the same string for both filename prefix and assembly
name. Note that specifying a “filename” does not constrain the PE-file to be emitted to
the file system, as both the output stream and the destination directory may be changed
with methods of the class. For both constructors the default value of the “isDLL” flag
is set depending on whether or not the filename argument ends in “.dll”. If the flag is
false an “exe” file will be created.

There are a large number of methods to access the data of the object, to add and

delete classes and to change the “isDLL” flag. There are also the three static methods
used for reading PE-files, mentioned in Section

public static PEFile ReadPEFile (string fileName)
public static PEFile ReadPublicClasses (string fileName)
public static ResolutionScope ReadExportedInterface

(string £ileName)

An important attribute of a PE-file is set by the SetSubSystem method of PEFile.
The enumeration value in the argument to the call specifies whether the PE-file (pre-
sumed to be an “exe” file) will be a console or GUI application on various platforms.
The default value is for a Windows, console application.

Assembly and Module Refs

AssemblyRef and ModuleRef objects derive from ReferenceScope. Objects of these
types are automatically created when the static ReadExportedinterface method is called.
Alternatively, if there is an accessible Assembly or Module object, a corresponding
reference object may be created by a call to the appropriate MakeExternAssembly or
MakeExternModule method.

2.2 Type Descriptors

All CTS types in PERWAPI are represented in the tree by objects that derive from
the abstract class Type. The rich hierarchy of derived classes is shown in Figure ]
There are two concrete classes that directly derive from Type. These are GenericParam
and CustomModifiedType. GenericParam objects represent the type-formal parameters
in generic types and methods. The ways in which PERWAPI accesses the generic
facilities of the V2 and later releases are discussed in Section 2.6]

Most of the objects derived from Type appear in the type hierarchy under the two
abstract subclasses: Class and TypeSpec.

The Class Subtree

Class is another abstract type, denoting any kind of class in the type system. In particu-
lar this base class has a field holding an array of generic parameter types. Conventional



2 DATA STRUCTURE DETAILS 10

Figure 4: Class hierarchy for the PERWAPI Type descriptors

ClassSpec

Nested—
ClasDef |<= ClassDef

ClassDesc

Nested—
ClassRef  |<— ClassRef

TypeSpec
ManagedPtr
Method-
PtrType
Unmanaged-
Ptr
GenericPar—
=7 TypeSpec
ZeroBased-
Array
<—{ PrimitiveType
BoundArray

ArrayType

classes will leave this array empty, while generic classes will have one or more array el-
ements. Abstract class Class has three directly derived extensions. The first extension,
ClassDesc, is a abstract “convenience” class that acts as the base class for the ClassDef
and ClassRef classes that define and reference classes, respectively. ClassDesc adds
no data, but holds the accessor methods for setting and getting the generic parameters
of the classes.

ClassSpec objects denote instantiations of generic classes. They contain two rel-
evant pieces of information. The genClass field holds a reference to the (necessarily
generic) class that the object denotes an instantiation of. Thus, an object denoting, say,
Stack<int> would hold a reference to a class Stack<T> where T is a type formal.
The fields that ClassSpec inherits from Class contain information about the instance
itself. In particular, the generic parameter array holds an array of actual types that are
substituted for the generic parameter types listed in the referent of the genClass field.
The class defines public methods to fetch the generic class, and to fetch the generic
(actual) arguments.

ClassDef and ClassRef

ClassDef's are always associated with the current PEFile object or, in the case of a
NestedClassDef, with another ClassDef within which that class is nested. ClassRef's
are associated with an AssemblyRef or with a ModuleRef. In the case of a NestedClass-
Ref the object parent is another ClassRef.

Class refs and defs each contain lists of methods and fields, but the information
known for a ClassDef is necessarily greater. For a ClassDef there is a reference to the
super-class, a list of interfaces that the class implements, a list of security demands,
field layout declarations, and a methodImpl list. None of this information is needed, or
included in a ClassRef. For example, it is necessary for a ClassDef to declare if the
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field layout of the class is to be different from the default arrangement. However for
the user of a class, the fields are always referred to by name, so the layout strategy is
neither needed nor available.

Both types of descriptors contain a list of generic parameters, usually empty, that
is inherited from the Class descriptor parent.

The TypeSpec Subtree

The TypeSpec descriptors denote all of the types that are not simple classes. The type
has three concrete subtypes, and two abstract subtypes.

Array is an abstract class, with two concrete subtypes. Zero-based arrays are the
array types that are built-in to the framework, while bound arrays are managed by the
System.Array facilities of mscorlib. When array descriptor objects are created, the type
descriptor object for the element type is specified.

PtrType is an abstract class, with two concrete subtypes. ManagedPointers are the
pointers that occur transiently on the evaluation stack of the .NET abstract machine.
They are pointers to locations that may be data under the control of the garbage collec-
tor. Managed pointers are reported to the JIT so that if a memory datum is moved while
such a value is live the pointer value can be adjusted to point to the moved location.
Managed pointer objects are the type descriptors that are associated with parameter
values that are passed by reference.

UnmanagedPointers represent address values that are not reported to the garbage
collector. Class fields may be declared to be of such a type, but the resulting code will
always be unverifiable when that is done. Such types are most usually needed when
managed code processes addresses of data allocated in unmanaged (native) code.

The three concrete classes that directly derive from TypeSpec are PrimitiveType,
MethPtrType and GenericParTypeSpec. Primitive types correspond to the types such as
int, double, string and object that are built-in to the Common Language Infrastructure
(CLI). These types have built-in type descriptors that are created by PERWAPI, with
each built-in type corresponding to a named static constant value of the type.

MethPtrType is a type that corresponds to “function pointers” in ANSI C. Such
values are used in programs that access native code. Objects of these types are most
usually needed when code performs “platform-invoke” calls to native code on the exe-
cution platform. In general the use of such types makes the resulting code unverifiable.

2.3 Members and Features

Class objects have Member and Feature objects associated with them. The class hierar-
chy for the various descriptor classes is shown in Figure[5] Members include methods
and fields. MethodDef objects are associated with class definitions, and in the case of
managed CIL methods, will have instruction buffers added to them after their creation.
MethodRef objects are associated with class references and have various associated
attributes, but no code. FieldDef and FieldRef objects are associated with class defini-
tions and class references respectively.

There are two kinds of Feature, both of which are associated with class definitions
only. ClassDef's may have event or property objects added to them. These features
associate particular specified methods with the semantics of the feature. In the case of
Event features, the conventional methods are the add_» and remove_+ methods. For
Property features, the methods include the optional “getter”” and ““setter” methods.
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Figure 5: Class hierarchy for the Members and Features of classes

MethodSpec
/| Methodoe
/ \ MethodRef
Member
FieldDef
FieldRef

/ Property
\

Event

Method Structure

Methods have a variety of attributes associated with them. In a PE-file reader appli-
cation PERWAPI will produce the method descriptors fully attributed. However, in
a PE-file writer application, the application code will invoke one of the constructors.
The attributes may be attached at the time of object creation, or may be attached to the
method descriptors after the descriptor has been created.

The relevant attributes are —

% CallConv attributes, such as Instance and Vararg
* ImplAttr attributes, such as /L and Synchroniseaﬂ

* MethAttr attributes, including the accessibility attributes such as Private and
Public, and other semantic markers such as Static, Virtual and Final

All Method objects have associated call conventions. However the implementation
attributes and method attributes only apply to MethodDef's.

When a Method object is created and added to a Class, a minimum of three ar-
guments need to be supplied to the constructor call. These are the method name, the
return type descriptor, and formal argument information. In the case of MethodRef's the
formal argument information is simply an array of Type descriptors. For MethodDef's,
by contrast, an array of objects of Param class is passed. Each element of the formal
parameter descriptor array specifies the argument type, as is the case for MethodRef
creation. However, in the MethodDef case the name of the formal argument, and some
parameter attribute information needs to be included as well.

! As a kindness to speakers of American English, the enumeration member “Synchronized” has the same
value.
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In the V2 and later versions of the CLR methods may be generic, and all method
descriptors have an array of generic parameters. For non-generic methods this array
will be empty. Instantiations of generic methods are represented by MethodSpec ob-
jects. As seen in Figure[5|MethodSpec derives from Method. Each such object contains
an array of the type arguments of the instantiation, as discussed further in Section[2.6]

2.4 MethodDefs and Code Buffers

If a MethodDef has the IL attribute in its implementation attributes, and does not have
the Abstract attribute in its method attributes, then it requires a code buffer into which
instructions may be placed. The code buffer is of the type CILInstructions. Instruc-
tions, labels and other markers are added to this buffer in sequence. The type that
represents instructions internally in the buffer is not exposed to the API.

The details of the use of the code buffers are given in the following Section [3]
2.5 Constants of Various Kinds
There are 14 different classes that represent constants in PE-files. These are —

* BoolConst : BlobConstant — true or false values

* CharConst : BlobConstant — a unicode character value

* NullRefConst : BlobConstant — the “null” value

* ClassTypeConst : BlobConstant — a runtime type descriptor

* BoxedSimpleConst : BlobConstant — a boxed SimpleConst

* AddressConstant : DataConstant — an address constant

* ByteArrConst : DataConstant — an array of constant bytes

* RepeatedConst : DataConstant — a repeated DataConstant

x StringConst : DataConstant — a string value

x IntConst : SimpleConst — a signed integer value

x UlntConst : SimpleConst — an unsigned integer value

* FloatConst : SimpleConst — a float value

+ DoubleConst : SimpleConst — a double value

All of these have the expected constructors and value-access methods. BoolConst
objects can be created with only two different values, while for NullRefConst no value
is specified in the constructor since there is only one way of being “nul1”.

RepeatedConst is interesting, since it provides a compact way of specifying multi-
ple occurrences of the same constant. Watch out however for usages of StringConst. It
is possible to construct an object of this type by specifying either a CLI string, or an
array of bytes. If it is unknown which form a particular constant contains, then user
code may need to check so as to know whether to call GetString or GetStringBytes.
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2.6 Representation of Generics

All type descriptors in PERWAPI that are derived from Class are able to be declared
as generic. The super-type Class declares an ArrayList of generic parameters. This
means that both nested and non-nested ClassDef and ClassRef types may be generic.
In the CTS “classes” are a broader category than “class” in C#. Reference classes,
value classes and delegates are all “classes” in the CL/, and all may be declared to be
generic.

Similarly, all method descriptors are able to be declared as generic. The super-type
Method declares an ArrayList of generic parameters. Both MethodDef and MethodRef
objects may be generic.

The most obvious application of generics involves the use of generic classes. How-
ever, the use of generic delegates also provides a useful mechanism. For example, a
number of methods in namespace System. Collections.Generic take arguments that are
delegate values of type —

delegate bool Predicate<T> (T elem);

from the System namespace. Predicate<T> is thus a generic delegate type. For a par-
ticular instantiation of the generic delegate, Predicate<Foo> say, a delegate object in-
stance may be created encapsulating any method taking a Foo and returning a Boolean.

Generics at the IL-Level

There are a few aspects of generic representation in /L that need to be understood. First,
internally all generic classes have their simple names “mangled” so that the names are
unique, even in the presence of overloading on arity. A class, known to the C# program-
mer as “IComparable<T>" will have the /L-name “IComparable ‘1<T>". The num-
ber at the end of the identifier, after the “back-tick™ character encodes the generic arity.
Thus the internal names of generic classes are not overloaded, and “IComparable”
and “IComparable ‘1” are immediately distinguished.

It is a matter of choice for each compiler writer whether the mangled names or the
simple names are used in the internal representation of that compiler. If the simple
names are used, then resolution of overloading on arity must be implemented, and the
names will need to be mangled when the PERWAPI objects are constructed. If the
mangled names are used internally, then the names need to be “de-mangled” when
generating human-readable messages.

The other significant aspect of IL representation is that references to type formals
use a positional notation. Thus references to the n-th generic formal type of the enclos-
ing class will use the notation ! N where N is the index of the formal.

Code may occur inside a generic method that is nested inside a generic class. Thus
it is necessary to distinguish between the n-th class formal type and the n-th method
formal type. For method formal types, the n-th generic formal type of the enclosing
method uses the notation “! ! N”” where N is the index of the formal.

When generic nested classes are defined, the generic parameters of the enclosing
class are accessible. In this case the parameter indices of the nested class sequentially
follow those of the enclosing class. Here is an example —

class Foo<a, B> {
class Bar<C,D> {
/I code from here will translate to IL with ...
/A, B, C, D denoted !0, '1,!2, ! 3 respectively
}
}
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The GenericParam Class

The generic parameters of methods and classes are represented by GenericParam ob-
jects. Generic parameters derive from Type, as seen in Figure ] Each generic parame-
ter contains an index (a positional marker in the list), a set of constraint flags, and a list
of constraining types. For the generation of code, as noted above, the positional index
is the critical attribute. There is a subtle trap involved in carelessly trying to bind these
indices back to the parameter names, see the sidebox on page[I4]

The list of constraining types specifies the contracts that every instantiation of
the class or method must fulfill. This provides an important technique when writing
generic code. The only operations that may be applied to variables of the parametric
types are those that must be available for every possible instantiation. Thus, constrain-
ing a generic parameter makes all of the operations of the constraining type applicable
to variables of the parametric type. Very often the constraining types are interface types
that every instantiation must implement.

Concrete constraints on the constraint-list will always be classes. However it is
also possible that a constraint might be another of the formal parameters. Thus the
methods for setting and getting elements from the constraint list deal with Type rather
than Class, since Type is the closest ancestor of ClassDef, ClassRef and GenericParam.

There are also non-class constraints on generic parameters that are specified in the
constraint flag value. This value is may specify one or more of NonVariant, Covariant,
Contravariant, ReferenceType, ValueType, RequireDefaultCtor. Only one of the first
three may be specified, and in C# all generic parameters are non-variant. The final flag
specifies that every instantiation of the type must have a public no-arg constructor. All
value classes automatically have such a constructor, so if the ValueType flag is set, so
will be the RequireDefaultCtor flag.

Watch out for this trap!

When PERWAPI reads a PE-file most references to generic parameter types will
be already resolved to the parameter definition. In such cases both the name and
the index of the parameter will be available. In other cases the reference will only
know the parameter index.

References to generic parameters always occur in some known context. Thus,
when an application meets a reference in the “! N form it can always use the con-
text to bind the reference to some named GenericParam object. However, if this is
done carelessly then there is a subtle trap.

ClassSpec objects denote instantiations of generic types, and may contain used
occurrences of generic parameters as the instantiating type. Further, in some
PE-files references to such ClassSpec objects may be shared between occur-
rences in different contexts. For example, a reference to an instantiation /Collec-
tion<! 0> may occur in the “implements” list of two classes Ilist<T> and Dictio-
nary$KeyCollection<K, V>. In one context ! 0” binds to “T”, in the other to “K”.

It follows that for those (rare) applications in which the index-form of the generic
parameter needs to be bound to a named generic parameter object, it cannot be pre-
sumed that every reference to the ClassSpec object will occur in the same context.
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3 Code Buffers

3.1 The Abstract Instruction Type

Every concrete MethodDef has a code buffer which is an instance of the CILInstruc-
tions class. Instructions and various other kinds of markers are added to this object as
required. When the assembly is “baked” by a call to the WritePEFile method the buffer
contents are processed to produce the CIL and other output information.

The entries in the code buffer belong to an abstract CILInstruction type. These
may be thought of as a generalization, or abstraction of the notion of a CIL instruction.
In principle the entries in the buffer are instructions and other markers that logically
belong to a particular position in the instruction sequence.

In this section we consider, in turn —

+ The “real” instruction sub-types.

*

Label markers and the branches that reference them.

*

Pseudo-instructions indicating block and debug structure.

*

Structured Exception Handling blocks.

*

Generating PDB files.

None of the instruction types has a public constructor, instead there are public util-
ity methods that create the instruction object and then append the instruction into the
code buffer. Typical such utility methods take one or more operands: these are the
op-code value, taken from one of the instruction enumerations, and then any other
arguments that the instruction logically requires. The AP/ methods that insert these
abstract instructions into the buffers are considered in the next Section

The Instruction Enumerations

Instructions are separated into a small number of categories, according to the argu-
ment types that the insertion method requires. Each instruction category defines an
enumeration for the permitted instruction codes.

Instructions without argument take their operands from the abstract machine eval-
uation stack. The instructions are defined by the Op enumeration. This includes by far
the largest number of instruction op-codes.

Instructions that take a label as argument take an operation code from the BranchOp
enumeration, and include all of the branch operations. The label argument is supplied
as an object of the class CILLabel. Example instructions are “beq”, “brfalse” and
“leave”.

Instructions that load and store fields and field addresses take an operation code
from the FieldOp enumeration. They take a second argument that is an object of Field
class. Referring to Figure |5} it may be seen that this object may be either a FieldDef or
a FieldRef.

Instructions that take an integer argument take an operation code from the IntOp
enumeration. These instructions include constant loading, and the loading and storing
of formal arguments and locals. Example instructions are “1dc.i4”, “ldarg” and
“stloc”.
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Instructions that take a Method object as operand take their operation code from the
MethodOp enumeration. The operand may be either a method reference or definition.
These instructions include the “call”, “1dftn” and “newob;” instructions.

Instructions that take a Type object as argument take an opcode from the TypeOp
enumeration. Examples of such instructions include “castclass”, and “newarr”.

Finally, there are three special cases that do not fit into any of the previous cate-
gories. These are the instructions that load constants of long, float and double type.

The instructions are “1dc.i8”, “ldc.r4” and “1dc.r8”. Each takes an argument of
the specified type.

Labels and Branches

Labels in the code buffer are represented by objects of the CILLabel class. The creation
of these labels, and the placing of the labels in the buffer are separate operations. In
the case of a forward branch the label object must be constructed first, and then passed
as the argument of a BranchOp instruction. At some later stage the label will be added
to the buffer to mark the target position.

For backward jumps the order is reversed. The newly constructed label object will
be placed in the buffer immediately following construction. The branch instructions
that reference the label will be added to the buffer at some later point.

In the CLR all branch instructions appear in two versions. One, with a short
displacement, may be used for branch offsets that fit in a single byte. The long-
displacement version takes up more space in the file. When textual-CIL is emitted,
it is not easily possible to determine whether the short or long version is required.
PERWAPI solves this problem by defining only the long-displacement versions in the
enumeration. In the implementation it is always the short-displacement version that is
initially added to the buffer. During semantic processing PERWAPI computes the ac-
tual displacements. If a displacement is too large to fit in a single byte the short branch
instruction is replaced by the corresponding long version, and all displacements are
recomputed.

Note that the labels in the code buffers are an abstraction that is meaningful to
the program creating the PE-file, but have no concrete existence in the PE-file itself.
During the creation of the metadata tables, the label positions are transformed into
displacements (forward or backward) from the locations of the branch instructions that
reference them.

3.2 Debug and Structural Markers

There are five different debug markers that are used in the code buffer. During the
baking of the assembly, these markers are turned into information for the pdb file.

The Line Marker

Line markers place sequence points into the pdb file. The line marker pseudo-instruction
declares the source file and text-span of the sequence point. Roughly speaking the se-
quence points are the places where a debugger may place a break point, and the text-
span is the range of the text that is highlighted in debuggers like Visual Studio.

The public insertion methods associated with line markers have a variety of sim-
plified forms. For single line programs a default source file is declared and the line



3 CODE BUFFERS 18

marker insertion methods need only be given location information. There are methods
that take a line number only, a line number and start column, or a full text span.

The Open Scope Marker

The open scope pseudo-instruction is used to mark the point in the code buffer that
opens a new lexical scope. In C-like languages this would correspond to the position
of the opening brace of a compound statement.

The public method of CILInstructions that inserts an open scope marker allocates a
new Scope object, pushes it on the compile-time scope stack and creates and inserts the
marker in the code buffer. Once the scope is created, later bind calls associate variables
with the newly opened scope.

The Close Scope Marker

The close scope pseudo-instruction is used to mark the point in the code buffer that
opens a new lexical scope. In C-like languages this would correspond to the position
of the closing brace of a compound statement.

The public method CILInstructions.CloseScope creates and inserts a close scope
instruction in the code buffer. The method also pops the current scope, making the
enclosing scope the new current scope.

The Local Binding Marker

The local binding marker is used to declare that a particular local variable has a scope
that extends to the limits of the currently open scope.

The public method CILInstructions.AddLocalBinding creates a marker instruction
and inserts it into the code buffer at the current position. Note however, that this call
is passed the name and local variable index of the variable being bound. The call does
not allocate an index for a new local variable, but takes an already declared variable
and assigns it to a particular lexical scope.

A typical situation is one in which a local variable is required for the extent of
some particular statement. The compiler should allocate a suitably typed local variable
index to the temporary, and pass this index (possibly with a compiler-generated dummy
name) to AddLocalBinding.

The Constant Binding Marker

The constant binding marker is used to declare that a particular local constant has a
scope that extends to the limits of the currently open scope.

3.3 Structured exception blocks

There are two mechanisms within PERWAPI to define structured exception handling
blocks. The start and end of the blocks may be marked in the instruction buffers. This
is probably the simpler mechanism to use, and corresponds to the preferred method of
marking such blocks in textual-CIL. The alternative mechanism is to mark the begin-
ning and ending of each block with ordinary labels, and declare the boundaries to each
region by passing the boundary labels as arguments to the block constructors.

Because try and catch blocks may be nested, PERWAPI keeps a stack of blocks
that have been opened but not yet closed. When the end of a block is marked, the limits



4 THE CALL INTERFACE 19

of the block’s extent are finally known, and the block is popped from the stack. If the
completed block is declared to be a try block a reference to the popped block is returned
to the caller, so that later exception handling blocks may be logically associated with
the code region contained within the block.

3.4 Debugging Information

If debug markers such as line pseudo-instructions have been placed in the code buffer,
then this information may optionally be sent to a pdb file. The decision is made at the
time that the WritePEFile call is made. An Boolean argument to the call determines
whether a debug file is created.

The transformation of the debug instructions in the code buffer into data in the pdb
file can only be performed after the containing code buffer has been fully processed.
The debug file writer interface deals in code offsets within a method body with a known
relative virtual address. Once the code buffer processing is complete for a method body
the offset of each instruction is completely known and the debug file may be written.

4 The Call Interface

This Section discusses the call interface of PERWAPI. Many of the key methods of
the API are discussed here, but coverage is not complete. In order to use the inter-
face additional documentation is needed. This additional information may be found
in the source of the component, or from the XML files that Visual Studio uses for its
intellisense feature.

4.1 Reading PE-files

Used as a file-reader, the component begins by invoking one or other of the static
methods whose signatures were shown on page [§] One or other of these methods is
invoked, the choice depending on whether all metadata is needed or just information
about the public metadata.

Having obtained a representation of the file, the methods of the AP/ may be used
to navigate the tree rooted in the PEFile object. For example, every PE-file has a list
of classes that it defines. A corresponding array of ClassDef objects may be obtained
by a call to the instance method —

public ClassDef[] GetClasses ()
or the ClassDef object with a particular name is returned by the instance method —
public ClassDef GetClass (string c1sNam)

In actual fact both of these methods are inherited from the Module class.
Similarly, given a ClassDef object all of the methods that it defines may be accessed
using methods such as —

public MethodDef [] GetMethods ()
or to access all of the methods with a particular simple name —
public MethodDef [] GetMethods (string mt hNam)

If it is known that there is only a single method with a particular name, that is, there is
no overloading of method names, then the simple method selector —

public MethodDef GetMethod (string mthNam)
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may be used. There is yet another variant that takes both the name of the method and
the array of parameter types. All of these are instance methods that are dispatched on
the PEFile object.

Other methods of the ClassDef type return the fields of the class, the events, the
super-type, the implemented interfaces, and so on. Similar methods of the MethodDef
type return the attributes of the method, including the instruction lists.

4.2 Writing PE-files

PERWAPI defines a public interface that allows objects of the various classes to be
created and associated with each other. For the most part the object creation methods
return references to the newly created objects. This facilitates a style of use where the
client of the API takes responsibility for retaining some state information. An example
may make the pattern clearer.

When a MethodDef has an instruction buffer added, it is sensible for the client to re-
tain a reference to the buffer. There is a method to create the buffer (of CILInstructions
class) and attach it to the specified MethodDef. However, it would be tedious and
inefficient to repeatedly call GetCodeBuffer on the MethodDef to regenerate a refer-
ence to the buffer. In practice clients hold a reference to the buffer, and dispatch their
instruction-insertion methods on this reference.

Creating a Root Object

The root object of the tree that PERWAPI builds is of PEFile class. As noted on page[§]
there are separate constructor methods that create these objects with or without an
associated assembly manifest and Assembly object —

public PEFile (string £ileName)
public PEFile (string fileName, string assemblyName)

The operations that add children to the root object are dispatched directly on the PEFile
object. In the event that the file defines an Assembly object, this may be retrieved by
the call —

public Assembly GetThisAssembly ()
Declaring Resolution Scopes

The creation of a PEFile object implicitly creates a Module resolution scope, and per-
haps an Assembly resolution scope as well. These are defining scopes. Other resolution
scopes need to be created in order to be able to refer to external modules or assemblies.
These will be reference scopes.

External assemblies are attached to the root object by calls to the following instance
method —

public AssemblyRef MakeExternAssembly (string asmName)

The argument specifies the name of the external assembly. PERWAPI always creates an
assembly reference for the system assembly “mscor1ib”. The MakeExternAssembly
method checks for this particular string, so that explicit calls to get the “mscorlib”
assembly do not create duplicate descriptors.

External modules are attached to the root object by calls to the following instance
method —

public ModuleRef MakeExternModule (string modName)
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The argument specifies the name of the external module.

If a module defines an assembly, and adds one or more external modules, then
there is the possibility of “exporting” any public classes that are defined in the external
modules. The AddExternClass method called on a ModuleRef object adds a class, and
adds the new ClassRef to the export table of the current assembly.

Creating ClassDef and ClassRef Objects
Creating Class Definitions

New class descriptors are created by the AddClass methods. Calls that are dispatched
on the root object, or on other class definition objects create ClassDef objects.

The most frequently used methods to create ClassDef's are called on the root ob-
ject. These create class definition descriptors that are attached to the current resolution
scope. There are four such methods —

public ClassDef AddClass (TypeAttr at, string ns, string nm)

The arguments to this method specify the type attributes, the namespace name and the
class name. Classes defined by this method will implicitly derive from System.Object.

The second of the methods has the signature —

public ClassDef AddValueClass
(TypeAttr at, string ns, string nm)

The arguments to this method specify the type attributes, the namespace name and
the class name. In this case the constructed method will implicitly derive from Sys-
tem.ValueType.

The third method for creating an un-nested class definition takes a fourth argument
of Class type. The actual argument is the explicit ClassRef or ClassDef that will be
the super-type of the class being defined —

public ClassDef AddClass
(TypeAttr at, string ns, string nm, Class sp)

Finally, there is a method that adds an existing ClassDef object to the current defining
scope.

The type-attribute value is a enumerated type that is partly exclusive values and
partly bit-values that may be combined by addition. The attributes declare the visibilty
of the class. They also declare whether the class is abstract, sealed, and so on, and the
layout kind.

If the AddNestedClass class creation methods are called on existing ClassDef ob-
jects then nested classes are defined. The semantics of these methods otherwise mirror
those that are called on the root object.

All of the methods that create ClassDef's provide for an initial value for the type
attributes to be specified. There are a number of other methods that allow additional
information to be added to an existing ClassDef object. Methods allow the attributes
to be modified, or for layout information to be supplied in the case of explicit layout
being specified.

It will be noticed that a single super-type is able to be nominated at the time that a
ClassDef object is created. If such a class implements interfaces, then these need to be
added later, using the following method —

public void AddImplementedInterface (Class iClass)
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The argument specifies the interface that the ClassDef is to implement. The actual
parameter may be either a ClassRef or a ClassDef, but for semantic correctness must
correspond to an interface class.
Class definitions have any generic formal types added or fetched by calls to the

following methods —

public void SetGenericParams (GenericParam|[] genPars)

public GenericParam[] GetGenericParams ()

public GenericParam GetGenericParam (int index)
These methods are all defined on the class ClassDesc, and thus apply both the ClassDef
and ClassRef descriptors.

Creating Class References

Class references may be attached to AssemblyRef and ModuleRef objects. The meth-
ods to create these ClassRef objects are similar to those that create ClassDef objects,
except that neither type attribute nor a super-type may be specified.

If a class reference from another module is exported from a module that defines
an assembly, then it is possible to export nested classes as well. An exported class
reference is created by a call of the AddExternClass method dispatched on an external
ModuleRef.

cRef = modRef.AddExternClass (att,nsp, "Outer", fil, false);

A subsequent call of AddNestedClass will declare a nested class from the same module,
and add it to the export table of the current assembly.

nRef = cRef.AddNestedClass (att, "Inner");
Creating Descriptors for Value Classes

In order to create descriptors for value classes it is usual to call one of the AddValue-
Class methods, rather than AddClass. This is because the super-type is set at the time
of descriptor creation. However, it is also possible to use the AddClass method that
takes an explicit super class, and pass in the descriptor for System.ValueType. Finally
the supertype value is a property that is accessible via the usual get and set operations.

Creating Descriptors for Other Types

As well as the types that are declared as CTS classes, there are a number of other types
that need descriptors. Figure ] on page[9]represents the various possibilties.

Firstly, if the descriptor of a primitive type is needed no method call is necessary.
All of the primitive types have their descriptors exposed as static constants of the Prim-
itiveType class.

Managed and unmanaged pointer types are created by calls to the relevant construc-
tor method. In the managed case the constructor has the following signature —

public ManagedPointer (Type baseType)

Where baseType is the bound type of the pointer.

This constructor is frequently called, even when emitting verifiable code. For ex-
ample, the CTS type of a reference-mode formal parameter of type arg7p will be “man-
aged pointer to type argTp”, often denoted as “argTp&”. The type descriptor of this
type would need to be constructed as part of the generation of formal argument type-
arrays. If this is the type of the n-th argument of a method signature, then the formal
argument type descriptor would be constructed by a call such as —
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arg([n] = new ManagedPointer (argTD) ;

where argTD is the type descriptor of the type argTp.

Array type descriptors are constructed by calls to the appropriate constructor. For
example, the descriptor for a zero-based array of the int type would be returned by the
call —

new ZeroBasedArray (PrimitiveType.Int32)

Bound arrays are, as expected, more complicated. If all of the lower array bounds of a
multi-dimensional array are zero the following constructor method may be used —

public BoundArray (Type elTp, intdims, int[] size)

where elTp is the type descriptor of the (ultimate) element type, dims is the number of
dimensions, and size is the array of lengths of each dimension. Note that not all sizes
need be specified, in the event that an array is desired that is “ragged” in one or more
final dimensions. For example, an array declared in C# as —

newint[4, 3,2]
would require a call to the BoundArray constructor with arguments —
new BoundArray (PrimitiveType.Int32, 3, lenAh)

where lenA is the array int[] = {4, 3,2}. The bound array descriptor defines a three
dimensional array of size 4 x 3 x 2. On the other hand, the array declared in C# as —

newint[4, 3, ]
would require a call to the BoundArray constructor with arguments —
new BoundArray (PrimitiveType.Int32, 3, lenh)

where lenA is the array int[] = {4, 3}. In this case the bound array descriptor defines
a two dimensional array of size 4 x 3 with elements of type int[]. This is a “ragged”
array, since the lengths in the final dimension may be different for each of the twelve
rank-2 elements.

There is a corresponding constructor that takes two integer arrays, specifying lower
and upper bounds in each dimension rather than size —

public BoundArray
(Type elTp, intdims, int[] loIx, int[] hiIx)

Adding Fields

Fields are declared by means of a number of AddField methods. Fields are normally
added to classes, but may also be declared outside of classes, as static fields of modules.

Fields are declared associated with a particular structure by calling an AddField
method on the containing object. Calls on ClassDef or PEFile objects create FieldDef
objects. Calls on ClassRef or ModuleRef objects create FieldRef objects.

Calls that create FieldDef objects may either supply a string with the name of the
field and the type descriptor, or may supply a field attribute value from the FieldAttr
enumeration as well. FieldDef objects may have their initial attribute values modified
by use of the AddFieldAttr method.

Calls that create FieldRef objects need only supply the name and type of the field.
A typical method, that creates a new FieldRef and adds it to an existing ClassRef has
the signature —

public FieldRef AddField (string name, Type fdTp)
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Figure 6: Defining an event in textual-CIL (left) and PERWAPI (right)

ClassDhef cD;
FieldDef fD;
MethodDef aD,
Event eD;

cD = peFl.AddClass("","Cls");

rD;
.class public C1s {
fD =

field private class Et ’ £’ cD.AddField ("£f",EtD);

/I define arg array for add/remove

Param[] arr = new Param[1l];
arr[0] = new Param(0,"",EtD);
string as = "add._f";

.method public void
add_f (class Et) {

} /I end method

.method public void
remove,f(dassEt){

} /I end method

.eventEt £’ {
.addon instance void
cls::add_f (class Et)
.removeon instance void

Il create ‘add’ MethodDef in ClassDef
aD = clsD.AddMethod(as,V,arr);

string rS = "remove_f";
Il create ‘remove’ MethodDef in Class
rD = clsD.AddMethod(rS,V,arr);

/Il create Event property

eD = cD.AddEvent ("f",EtD);

/] attach AddOn method to Event
eD.AddMethod (aD, MethodType .AddOn) ;
/I attach RemoveOn method to Event

cls::remove_f (class Et)
} /] end event
Y/l end class

eD.AddMethod (rD, MethodType.RemoveOn) ;

Adding Features to ClassDef's

ClassDef's may have Features associated with them. There are two concrete subclasses
of the abstract feature class: Event and Property.

Figure [6] shows the correspondence between the definition of an event in textual-
CIL and the PERWAPI calls that are made to generate the same effect using PERWAPI.
In this figure peFl is the root object of the compilation, and Et is the name of the
event class, assumed to be defined elsewhere. On the right-hand-side EtD is the type
descriptor for the Ef type, and V is the type descriptor PrimitiveType.Void. The details
of the code for the add and remove methods have been elided on both sides of the
Figure.

On the right of the figure, there are a number of local variables that hold refer-
ences to the various PERWAPI objects between their definitions and uses. Thus fD is
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the FieldDef of the private backing field f, aD and rD are the MethodDef descriptors
of the add and remove methods, and so on. In the interests of simplicity (and col-
umn width) it has been assumed that the class definition in the Figure is not within a
.namespace declaration. This is the origin of the empty string as the first argument
in the AddClass call. The calls of AddMethod dispatched on the event descriptor ob-
ject in the right column of the figure take their second argument from the MethodType
enumeration. This type enumerates the fixed roles that feature methods have, such as
AddOn, RemoveOn, Getter, Setter and so on.

The definition of Property features is similar, with PERWAPI methods that add the
“getter”, “setter” and “other” methods to the property, analogous to the way that the
AddOn method is added to an Event.

Creating MethodDefs and MethodRefs
Method Definitions

MethodDefs are created by invoking AddMethod on an object of ClassDef type, or
directly on the root PEFile object. In the first case the method is defined as belonging
to the specified class, while in the second case the method will belong to the current
module, but be outside of any class definition.

There is an option to either specify method attributes at the time of creation, or
to add them later. Creating a method with the default attributes requires only three
arguments —

public MethodDef AddMethod
(string name, Type retType, Param[] pars)

The version with attributes allows the method attributes, belonging to the MethAttr
enumeration, and implementation attributes, belonging to the ImplAttr enumeration, to
be specified.

As noted earlier, Param objects specify the name type and mode of the parameters.
These are usually created by use of the constructor —

public Param (ParamAttr mode, string parName, Type parType)

The parameter attribute enumeration specifies Default, In, Out, Opt, where any combi-
nation of the last three may be specified.

Method References

MethodRefs are created by invoking AddMethod on an object of ClassRef type, or on
an object of ModuleRef class. In the first case the method is defined as belonging to
the specified class, while in the second case the method will belong to the specified
module, but be outside of any class definition.

The signature of the AddMethod method is the same in each case —

public MethodRef AddMethod
(string name, Type retType, Typel] pars)
Note carefully that in this case only the parameter types are specified, so the names and
attributes of the parameters are unspecified.

For all methods, the calling conventions may be specified by a call to a method
AddCallConv. However, in the case of “vararg” methods this is only part of the story.
As well as specifying that the method has the Vararg call convention it is necessary to
specify which arguments are optional. In the case of MethodDefs, this is specified by
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the Opt value in the parameter mode declaration. However, for MethodRef's there is no
mode information associated with the parameters, so other means are required. In this
case a separate method is required, in which the types of the mandatory and optional
formal parameters are separately listed —
public MethodRef AddvarArgMethod
(string name, Type retTp, Typel] pars, Typel[] optPars)
Setting Attributes

Attributes of methods may be added after the Method object has been created. There
are three classes of attributes for methods, defined by separate enumerations in the
interface.

Method attributes, belonging to the MethAttr enumeration specify the accessibility
of the method, that is whether the method is private, public, family and so on. This
attribute also specifies if the method is static, final or abstract, the overriding behaviour
of the method, and whether the method name has special significance to the runtime.
The MethAttr attributes may only be added to MethodDefs.

Implementation attributes, belonging to the ImplAttr enumeration specify whether
the code is managed or unmanged, and if the method is synchronised. It is also possible
to mark a method as not available for inlining. The ImplAttr attributes may only be
added to MethodDef s.

Call convention attributes, take values defined in the CallConv enumeration. The
attribute value can specify any of a wide variety of native call conventions, as well
as the Vararg case discussed earlier. This attribute is also used to specify that the
method is an Instance method (and hence expects to be passed a this reference), or is an
explicit instance method in which the this reference appears as “arg0” of a conventional
argument list. CallConvy attributes may be added to any Method.

Adding code to MethodDef's

Code is added to MethodDef's by attaching a code-buffer to the descriptor. This is done
by the calling the following method —

public CILInstructions CreateCodeBuffer ()
on a MethodDef object.

As noted previously, the method returns a reference to the code buffer, so that the
reference may be the receiver of the various calls that add instructions. The buffer is
implemented as an expansible array, so that the buffer length will adjust as required to
hold additional instructions.

Instructions are added by the various methods discussed in the Section “The in-
struction enumerations” on page[I5] Except for the branch instructions the instruction
opcode specifed in the method call will be precisely the instruction placed in the buffer.
In the case of the integer instructions, for example, the short or long form of the instruc-
tion must be precisely specified. In the case of the branch instructions, the short-branch
form of the instruction is always placed in the buffer initially, and is changed to the
long-branch form later, if necessary.

Saying What You Mean

In the case of the integer instructions there is an alternative interface that off-loads
some processing from the caller. Some users may find these facilities convenient. All
of the following methods dispatch on an object of CILInstructions type.

The method —
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public void PushInt (int i)
loads the specified integer onto the evaluation stack. The method will choose whichever
legal instruction is shortest, whether it be one of the single-byte “1dc.i4. " opcodes,
the two-byte “1dc.i4.s”, or the five-byte “1dc.i4” instruction.
Similar methods that automatically choose the best integer instruction are LoadLo-
cal, LoadLocalAdr, StoreLocal, LoadArg, LoadArgAdr, and StoreArg.

Branches and Labels

Label objects, of class CILLabel are allocated by a call to the method —
public CILLabel NewLabel ()
This method returns a reference to the unique label, so that may be used in subsequent
branch instructions. The label is placed into the code buffer by a call to the method —
public void CodeLabel (CILLabel lab)
The label appears in the code buffer as a marker only, and does not take up any code
space in the subsequent PE-file.

In the event that a label needs to be allocated and then immediately placed in the
buffer at the current position, the two calls of NewLabel and CodeLabel may be com-
bined into a single call of the method —

public CILLabel NewCodedLabel ()
Branch instructions are inserted into the table by means of the following method —
public void Branch (BranchOp inst, CILLabel lab)
As mentioned above, the declaration of the BranchOp enumeration in PERWAPI only
defines the names of the long-displacement branch instructions. Internally, the com-
ponent always places the corresponding short-displacement instruction in the PE-file,
unless the displacement is computed as being outside the single-byte range.

Switch Statements

The implementation of switch statements require an array of label objects to be allo-
cated, one for each separate branch of the switch, including a separate label for the
default branch. The “switch” of CIL takes an array of label objects as argument, in a
call to the method —

public void Switch (CILLabel[] labs)

The labs array has one element per case in the switch. Thus, in general, the labels of
the allocated array may appear in multiple positions in the labs array.

Consider the sample switch statement in Figure Encoding this statement will
require allocation of an array of four labels for the four branches, plus another label to
be used as the destination of the break statements. The array of labels that is passed to
the switch instruction, on the other hand, will have nine elements. This follows from
the fact that the ordinal of the smallest case is three, and of the largest case is eleven.
It is the responsibility of the PERWAPI client to construct this array, presumably by
traversing the AST structure representing the switch statement.

Figure[§|shows the textual-CIL on the left, and the corresponding PERWAPI method
calls on the right. In the Figure it has been assumed that the array of four labels is
named lab, and the index-zero element is used as the default label. It is also assumed
that the table of labels is computed into the array table. Note in both cases that the table
dispatch indexes from zero, so the case value of the first case, three in the example, is
subtracted from the selector expression exp before the dispatch.
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Figure 7: Example switch statement

switch (exp) {
case 3: case
case 4: case
case 5: case
default :

6: case
7: case
8: case
Bzz ();

9: Foo(); break;
10: Bar(); break;
11: Fzz(); break;

Figure 8: Example switch statement in textual-CIL and PERWAPI calls

1dloc.1 // exp value
1ldc.id4.3// offset
sub
switch (
1b01,
1b01, 1b02, 1bO03,
1b01, 1b02, 1b03)
br 1b04 // goto default
1b01:
call Cls::Foo ()
br 1b05 // break
1b02:
call Cls::Bar ()
br 1b05 // break
1b03:
call Cls::Fzz ()
br 1b05 // break
1b04: // default
call Cls::Bzz ()
1b05: // exit label

1b02, 1b03,

buf.
buf.
buf.
buf.

buf.

buf

buf.
buf.

buf

buf.

buf
buf

buf.
buf.

buf
buf

LoadLocal (1) ;
PushInt (3);

Instr (Op.Sub);
Switch (table);

CodeLabel (lab[1l]);

.MethInstr (MethOp.Call, fooD);
Branch (BranchOp.Br, xLab);
CodeLabel (lab[2]);

.MethInstr (MethOp.Call, barD);
Branch (BranchOp.Br, xLab);
.Codelabel (1lab[3]);

.MethInstr (MethOp.Call, fzzD);
Branch (BranchOp.Br, xLab);
CodeLabel (1ab[0]);

.MethInstr (MethOp.Call, bzzD);

.CodelLabel (xLab) ;

4.3 Structured Exception Handling

28

Since structured exception handling blocks may be textually nested, PERWAPI main-
tains a stack of currently open exception handling blocks. At the time that a block is
entered it is not necessary to specify what kind of block it is to become. Markers for
the start of blocks are pushed on the stack by a call to a method —

public void StartBlock ()

The receiver for this call is the current code buffer object.
When the end of a block is reached in the code buffer, the current position is marked
by one of the End Block calls. At this stage it is necessary to specify what kind of block
is to be created. The methods to mark the block-ends are named End«Block. These
methods take different arguments, depending on the block type.
The end of a try block is marked by a call to the method —
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public TryBlock EndTryBlock ()

This method returns a reference to the try-block object associated with the created
handler-block object. This return value must be retained, as it will be sent as an argu-
ment for the creation of all the associated handler blocks.

The end of a catch block is marked by a call to the method —

public void EndCatchBlock (Class exc, TryBlock blk)

The first argument is the class descriptor for the type that the block is intended to catch.
It may be either a ClassRef or a ClassDef. Of course the descriptor will normally repre-
sent a sub-type of System.Exception. The second argument is the try-block with which
this catch is to be associated. This reference will have been returned by a previous call
to EndTryBlock. Fault blocks have similar behaviour to catch blocks, except that no
filtering on exception type is performed. In this case only the associated try-block is
specified —

public void EndFaultBlock (TryBlock blk)
The end of a finally block is marked by a call to the method —

public void EndFinallyBlock (TryBlock blk)

In this case the only argument is the try-block with which the finally is to be associated.
The end of a filter block is marked by a call to the method —

public void EndFilterBlock (CILLabel flt, TryBlock blk)

The code label fIt is the starting label of the predicate code that controls entry to the
handler block. As usual, the associated try-block needs to be specified. The predicate
code that starts at label fIr is responsible for popping the exception object from the
evaluation stack, and computing the Boolean value. The predicate code must always
end with the “endfilter” instruction, with the evaluation stack empty except for the
Boolean filter result value. Of course, as usual, the filter block itself must end with a
“leave” instruction.

Try — Catch — Finally Encoding

The encoding of the standard try — catch — finally structure is not completely self-
evident. In languages such as C# the three keywords are thought of as being at the
same nesting level. However in CIL the finally block is logically associated with a
synthetic try block that encloses the explicit try block and all of its catch handler
blocks.

Figure [9] shows a typical pattern with the C# skeleton on the left, and the corre-
sponding sequence of PERWAPI method invocations on the right. Note that there are
two blocks placed on the stack at the beginning. The first block will become the syn-
thetic try block that encloses the explicit try block and its catch handler. The second
block will become the try block that implements the try block in the C# code.

At the end of the explicit block EndTryBlock is called. This method returns a
reference to the try-block descriptor. This reference is saved in the local variable tBlk2.

The next StartBlock call creates the block that will become the catch handler block.
At the end of this block EndCatchBlock is called. There are two arguments to this call.
The first is the type descriptor for the exception type that is to be caught. This type is
not named in the figure. The second argument logically links this catch handler to the
inner try block the reference to which is held in local variable tBlk2.

At the end of all of the catch blocks (only one in the example in the figure) the
synthetic, outer try block is ended and a reference to the block held in the local variable
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Figure 9: Example try-catch-finally structure with C#, and PERWAPI method calls.

try { buff.StartBlock (); // Try #1
buff.StartBlock (); // Try #2

} TryBlock tBlk2 = buff.EndTryBlock(); // #2

catch (...){ buff.StartBlock (); // Catch
} buff.EndCatchBlock (..., tBlk2);
TryBlock tBlkl = buff.EndTryBlock (); // #I
finally { buff.StartBlock () ; // Finally
} buff.EndFinallyBlock (tB1lk1l) ;

tBlkI. At the end of the finally block, when EndFinallyBlock is called, the finally is
associated with the synthetic try block held in the local.

For the case of a try-catch structure without a finally block no grouping of the try
and catch blocks is required. Each catch block is associated with the same explicit
TryBlock descriptor. No action is required to encode the order in which multiple catch
blocks are searched for the applicable handler. The search order is taken from the
textual order in the CIL, just as it is in the C# source.

5 Linking PERWAPI to a Compiler

The most important design decision, when using PERWAPI as a component in a com-
piler, is the relationship between the Abstract Syntax Tree (AST) representation of the
compiler and PERWAPI classes.

If the compiler will only ever use PERWAPI to emit PE-files, then the design of
the AST nodes might provide attribute fields holding corresponding PERWAPI object
references. If this is the case, then the AST nodes might also be designed to correspond
as closely as possible to the PERWAPI types.

None of this is possible if the AST design is already fixed, as would be the case if an
existing compiler was being modified to use PERWAPI. It is also a little more difficult
in the case that the compiler is intended to use several different output engines.

The first compiler to use the original PEAPI component was Gardens Point Com-
ponent Pascal (gpcp). This compiler used PERWAPI in all later releases. Some of the
experience of using PERWAPI in this application is discussed in the next section. The
section concentrates particularly on the lessons that seem generally applicable.

5.1 GPCP’s PeUtil Tree-walker

There are, in effect, four backends for gpcp. The compiler can produce either textual
CIL or PE-files for the .NET platform. It can also produce either textual Jasmin assem-
bler or directly create class files for the JVM platform. The choice of output format is
determined from command-line options.
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The functionality of output file creation is factored between the Tree-walker mod-
ules and the File-utility modules. The compiler driver code creates a target-specific
tree-walker object depending on the command line options, and calls Emiz() on this
object. The target-specific tree-walker then creates a output format specific file-emitter
object depending on other command line options. The output behaviour is thus spe-
cialized by dispatching virtual methods on the target emitter object, which in turn dis-
patches virtual methods on the file format object. Figure [I0]shows the class hierarchy
for the tree-walker modules.

Figure 10: Class hierarchy for the Tree-walker classes

MsilBase. MsilMaker.
ClassEmitter MsilEmitter

.NET target
ClassMaker. S
ClassEmitter §
JVM target
JavaMaker.
/JavaWorinst
JavaBase. JavaMaker.

ClassEmitter /JavaModEmit
NEVEWVEUCIN
JavaEmitter

vasm \ JavaMaker.

JavaRecEmit

In these class hierarchy diagrams, abstract classes are shown in black, while the
shaded boxes correspond to sealed classes.

The tree-walker for the .NET target is of class MsilMaker.MsilEmitter. Only one
object of this class is created for each run of the compiler. The situation with the JVM
target is rather more complicated. An object of the class JavaMaker.JavaWorklist is
created for each run of the compiler, once the target is known. However, separate
objects of class JavaMaker.JavaModEmitter or JavaMaker.JavaRecEmitter are created
for each of the multiple output files arising from each input source file. Our concern in
this appendix is only with the .NET platform, of course.

The same tree-walker (in file Msi1Maker.cp) traverses the AST to produce either
CIL or a PE-file as output. All actual file /0 is performed by one of two utility modules
llasmUtil and PeUtil. The module MsilUtil defines an abstract class MsilFile with
a large number of abstract methods. The abstract class has two concrete extensions
llasmFile (in module llasmUtil) and PeFile (in module PeUtil). The compiler creates
a file-emitter object of one or other concrete class, depending on the command line
options. All of the calls to the abstract methods of the MsilFile class are thus dispatched
to the code that emits the appropriate output file. Figure[TT|shows this class hierarchy.

The methods of class llasmFile emit textual CIL to a file. The corresponding meth-
ods of class PeFile call methods of PERWAPI.

A consequence of using the same tree-walker for both CIL and PE-files is that the
order in which nodes are visited is necessarily the same for each case. Since the CIL
emitter writes to the output file “on the fly” as the methods are called, this is the more
constrained version. The order in which objects are created by calls to PERWAPI is
less constrained, since no output is actually produced until the WritePEFile method of
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Figure 11: Class hierarchy for the File-emitter classes

IlasmUtil.
/ llasmFile
MsilUtil.
MsilFile
\ PeUtil.
PeFile

class PEFile is called.

There are a small number of other types that mirror the relationship between the
various *File types. For example, there is an abstract Label class that is sometimes
held in objects of the program AST. In module PeUtil a concrete extension PeLab is
defined. This new class holds a single field of type CILLabel. In the module llasmU'til
the corresponding concrete type ILabel has a single field of integer type. This integer
determines the numeric suffix of the textual CIL labels — “1bNNN".

5.2 PeFile Emitter State

The emitter object carries state information about the traversal.

Some nodes of the program AST need to hold references to PERWAPI objects.
For example, when the first reference to an imported class is made, a call to one of
the AddClass methods of PERWAPI creates a class descriptor, and associates it with
the appropriate AssemblyRef object. The AddClass method returns a reference to the
newly created ClassRef object. Other references to the same class must use the same
reference, either as the this of a call, or as an argument. It is therefore necessary to
associate the returned PERWAPI ClassRef reference with the gpcp’s Type descriptor
object in the AST.

The mechanism for associating PERWAPI object references with gpcp’s AST de-
scriptors is as follows. Every Idnt descriptor object and every Type descriptor object
contains a target extension field “tgxtn”. These fields will be of different types, for
different target platforms, and will have different types for different concrete subtypes
of the abstract Idnt and Type types. The extension field is declared to be of Object type
so every use of the field must use a narrowing cast. This design feature is necessary in
order to separate the specifics of each target from the shared type declarations of the
front-end AST.

The target extension fields of AST nodes hold almost all the state that is needed
to call the PERWAPI methods. However, there are a small number of PE-file entities
that have no corresponding AST descriptor. References to runtime system (RTS) helper
routines are of this kind. There are also some shared descriptors that are used so univer-
sally that it makes sense to hold them locally, rather than having to repeatedly navigate
through the AST objects.

The state information held in the emitter object has fields that are inherited from
the abstract MsilFile parent class, and other fields that are specific to the PeFile class.
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Inherited Fields

Inherited fields hold the name of the module under compilation, and the name of the
output file. There is also a field of Proclnfo class that holds information about the
current method being emitted.

The Procinfo class contains method state that is used in both textual CIL and PE-file
formats. It is here that the current stack depth is tracked, and the state of the temporary
variable allocator is maintaine

PE-specific Fields

The PE-file-specific fields of the emitter state, and their purpose is shown in Figure[12]
As described earlier, the elements of the state exist for two main purposes. There are

Figure 12: Components of the PeFile state

Field Type Purpose

peFl PERWAPI PEFile Structure holds file information, and the
AssemblyDef for this assembly.

clsS PERWAPI.ClassDef Dummy static class for this assembly.
clsD  PERWAPI.ClassDef Descriptor of class currently being emitted.

pePI  PeUtil. PProclnfo PE-file-specific state for the method cur-
rently being emitted.
nmSp  System.String Name-string for current namespace.

rts  PERWAPIL AssemblyRef | Reference to the Component Pascal run-
time system assembly [RTS].

cprts  PERWAPI. ClassRef Reference to the Component Pascal run-
time helper class [RTS]CP_rts.
progArgs PERWAPI.ClassRef Reference to the Component Pascal pro-

gram argument class [RTS]ProgArgs.

fields that reference PERWAPI objects corresponding to runtime system classes that
have no corresponding AST objects. Secondly, there are objects that refer to PERWAPI
descriptors that are used repeatedly. One example is the field clsD that holds the Class-
Def object for the output class currently being emitted. Another is the field that holds a
reference to the “dummy static class” to which the static procedures of the Component
Pascal module are bound. This dummy static class has no concrete representation in
the AST. The existence of this dummy class in the PE-file is an artifact of the mapping
from Component Pascal to the CLR.

The PeUtil. PProcInfo object holds state information for the method definition cur-
rently being emitted. Of course, this field will be nil throughout the AST traversal
except while a method definition is being emitted.

The information that needs to be persisted while a method definition is being emit-
ted is shown in Figure The field mthD holds a reference to the current MethodDef
descriptor. The field code holds a reference to the instruction buffer of the definition.

2 Recall that all uses of a particular local variable in the CLR must be of the same type. The utility that
allocates temporary local variables therefore needs to track the currently allocated and free local variables,
and the CLR data-types to which they have been bound.
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Figure 13: Components of the PProclnfo state

Field Type Purpose

mthD ~ PERWAPI. MethodDef The current method definition.
code  PERWAPI.CILInstructions | Instruction buffer of mthD.
tryB PERWAPILTryBlock Current try block (or nil).

Note that there is no way of extracting the buffer reference from the ClassDef refer-
ence, so it is necessary to hold this reference in the client.

The final field, rryB, holds a reference to the current TryBlock, if the code emission
sequence is currently in a structured exception handling catch block. These blocks are
held on a stack within PERWAPI, to account for the possibility of nested blocks.

5.3 Creating Descriptors

Descriptors must be generated by calls to PERWAPI methods for all of the assemblies,
classes and methods that need to appear in the PE-file. It is legal to create descriptors
for entities that are not referenced in the file. However, it is bad policy to do so, since
this practice needlessly expands the file size and slows down loading and JIT-ing.

Most compilers will have many descriptors in their AST representation that are un-
referenced. This is almost inevitable, given the usual mechanisms for loading metadata
from symbol or header files. There are at least two ways to avoid passing on any such
unnecessary metadata to the PE-file. Firstly, it is possible to mark the used AST meta-
data during the semantic analysis phase of the compilation. Another possibility is to
create the PERWAPI descriptors in a demand-driven manner. gpcp adopts the second
approach.

Example — Creating Descriptors for RTS Routines

gpcp emits calls to about 30 different runtime helper routines known to the compiler
(as opposed to being explicitly imported by the source code). These include runtime
routines that convert between the CLR string type and Component Pascal’s array of
CHAR type. There are four separate routines that concatenate the various combinations
of String and character arrays. There are also routines that generate runtime exception
messages for failed case (“switch”) and with (“type-case”) statements.

It would be possible to generate MethodRef descriptors for all of these methods
at initialization time’} but this would insert unneeded metadata in the PE-file. Thus a
demand driven approach is used. The various runtime helpers are accessed by means
of an index value known to the front-end. A call to the method getMethod is passed the
index of the required method, and returns the corresponding MethodRef descriptor.

Generation of a case statement trarﬂ in textual CIL is shown in Figure The call
to the runtime system helper method “[RTS]CP_rts: :caseMesg” is the instruction
of interest here. The tree-walker will make a dispatched call to the abstract method
MsilFile.StaticCall with the index of caseMesg as argument. In the llasmFile override

3 For an explanation of why it is necessary to repeat this initialization for every new output file, see the
sidebox on page

4 In Component Pascal it is a runtime error if no case of a case statement is selected, and there is no
explicit default case defined.
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Figure 14: Textual CIL for case trap generation

ldloc.1 /I Push index of erroneous case

call string [RTS]CP_rts::caseMesqg(int32)

newobj instance void
[mscorlib]System.Exception::.ctor (string)

throw /I Throw the exception object

of this abstract method the index will select the text string shown in the second line of
the code fragment. The PeFile override of the abstract method is shown in Figure
The routine simply fetches the required method descriptor by calling getMethod. 1t

Figure 15: The PeFile version of StaticCall

PROCEDURE (os : PeFile)StaticCall(s : INTEGER);
VAR mth : PERWAPI.Method;

BEGIN
mth := os.getMethod(s);
os.pePI.code.MethInst (opc_call, mth);

END StaticCall;

then passes the descriptor to the PERWAPI method Methlnst. This method appends a
new MethodOp instruction to the current code buffer. The demand driven magic is all
in the getMethod routine.

The procedure getMethod is backed by an array of method descriptors. The array
initially holds nil at each index value. The procedure begins with a simple fetch of
the selected array element. If the fetched array element is nil a case statement selects
code that creates the required method descriptor, and stores it in the array. For all
subsequent references to the same array element the stored value is returned with no
further computation required.

The relevant branch of the case statement for our example is shown in Figure
In this case the needed routine has a single argument, so it is necessary to create an
array of PERWAPI. Type of length one. The descriptor for the runtime system class is
fetched from the PeFile state, as described in Figure[I2] The new method descriptor is
added to this class with the AddMethod call. The first argument is the string holding
the method name. The second argument is the descriptor of the method return type,
System.String in this case. The final argument is the array of parameter types.

The other branches of the case statement in getMethod are similar. As might be
expected, in the real code the creation and initialization of the parameter arrays is
abstracted away into another method, rather than being inline as shown in Figure[T6]

Finally, it should be noted that references to system routines, such as the construc-
tors for System.Exception should be created on demand in a similar way.

5.4 ClassDefs and ClassRefs

Types that are explicitly referenced in the source code of the file being compiled are
represented by nodes in the program AST. In this case the nodes themselves are able to
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Figure 16: Demand creation of RTS method descriptor

PROCEDURE (os : PeFile)getMethod(ix : INTEGER) : MethodRef;
(*x “os” is the named this *)
VAR tArr : POINTER TO ARRAY OF PERWAPI.Type;

mth := rHelper[ix]; (* look up descriptor array *)

IF mth = NIL THEN (* must create new MethodRef )
CASE ix OF
| caseMesg :
NEW (tArr, 1); (* allocate length-one array )
tArr[0] := int32D; (* int32D is TypeRef for int32 *)
mth := os.cprts.AddMethod ("caseMesg", strgD, tArr)

... (* strgD is TypeRef for String )
END; (* case *)
END; (x if *)
RETURN mth;
END getMethod;

Avoid this Nasty Gotcha!

When the first version of the PEAPI-based emitter for gpcp was written the code
fell into a plausible but nasty trap. gpcp accepts any number of source file names
on the command line, compiling each in turn. It seemed a plausible design decision
to persist references to the runtime system method and class descriptors between
files. The idea was to not have to repeatedly call AddClass and AddMethod for
the same classes and methods for each source file compilation. Unfortunately this
plausible strategy does not work. Worse still, it leads to extremely non-intuitive
error behaviour.

The problem is that within the PE-file every reference is implemented by a table
index. Whenever a new output file descriptor is allocated the table index allocation
sequence is reset. It follows that descriptors that are persisted between files will
have indices that refer to their ordinal position in the previous file. The resulting
PE-files will almost certainly have totally nonsensical references.

hold references to the PERWAPI descriptor objects using their generic target extension
“tgxtn” fields.

As before, these type descriptors are best generated on demand. In the case of
gpcp the importation of metadata from the symbol files of imported modules clutters
the AST symbol tables with unreferenced descriptors. Only the used types need have
target extension objects allocated to them by calls to PERWAPI methods.

There are two functions that do all of the work. A method #yp(¢), where ¢ is an AST
Type descriptor, returns the PERWAPI type descriptor of its argument. If necessary it
creates that descriptor. This method may be called on any AST type. The other method,
cls(t), returns the PERWAPI class descriptor of its argument. In this case ¢ must be an
AST record type.
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Target Extensions for AST Type Descriptors

The “tgxtn” target extension fields for primitive types, arrays, pointers and enumer-
ations simply hold the PERWAPI Type reference. The state for record and procedure
types is more complicated, as multiple descriptors need to be created for each AST
type.

AST record types correspond to PERWAPI Class types. These are represented by
a structure with the fields shown in Figure In this case, as well as the ClassDef or

Figure 17: Fields of the RecXtn structure for records

Field Type Purpose

clsD  PERWAPI.Class CLR class representing this record.

newD  PERWAPI.Method | No-arg constructor for this class.

cpyD  PERWAPI.Method | Deep copy method for this class.

boxD PERWAPI.Class Corresponding boxed class (value class only).
vDIlr  PERWAPI Field Singleton field of boxed class (value class only).

ClassRef it is necessary to hold references to the no-arg constructor, and to the field-
by-field copy method. These last two fields are nil in the event that the semantics of
the type forbid these operations. Note that all other methods of these types are explicit
in the source code, and thus have their own AST descriptors to hold their own target
extensions. In Component Pascal the no-arg constructor and the value-copy operations
are implicit, and do not have concrete representation in the AST.

Procedure types in the AST correspond to CLR delegate types. Delegates are PER-
WAPI Class types, and have two runtime managed methods. The state for these types is
represented by a structure with the fields shown in Figure[I8] The first of the methods

Figure 18: Fields of the DelXtn structure for procedure types

Field Type Purpose

clsD  PERWAPI.Class CLR class representing this delegate type.
newD  PERWAPI.Method | Constructor for this class.

invD  PERWAPIL.Method | Invoke method for this delegate.

is the constructor method, which takes an Object as its first argument. As its second
argument the constructor takes the native int returned by the immediately preceeding
“ldftn” instruction. The second method is named Invoke, and has a signature that
matches that of the procedure values that the delegate encapsulates.

Creating the Descriptors

As described above, type descriptors are created on demand, as a side-effect of calling
the 7yp() and cls() functions. The code of the zyp method is shown in Figure[T9] In this
code, if the target extension field is nil the MkTyXtn method is invoked. This allocates
a type descriptor of whatever PERWAPI type corresponds to the particular AST type.
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Figure 19: Demand creation of type descriptors

PROCEDURE (pf : PeFile)typ (tTy : Api.Type) : PERWAPI.Type;
(* Returns (and maybe creates) the PERWAPI. Type for the AST type tTy *)
VAR xtn : ANYPTR; (* aka System.Object *)
BEGIN
IF tTy.tgXtn = NIL THEN (* create new descriptor x)
pf.MkTyXtn (tTy) END; (* MkTyXtn selects on AST type *)
xtn := tTy.tgXtn; (* fetch extension field *)
WITH xtn : PERWAPI.Type DO (% Type-case statement... x)
RETURN xtn; (* Base, Array, Pointer, Enum *)
| xtn : RecXtn DO (* “elsif xtn is RecXtn do ...” *)
RETURN xtn.clsD; ( Ty is an AST Record type *)
| xtn : DelXtn DO (* “elsif xtn is DelXtn do ...” *)
RETURN xtn.clsD; ( tTy is an AST Procedure type *)
END;
END typ;

Finally, a type-case statement returns the target extension field or the appropriate class
of the target extension object.

The code inside MkTyXtn is specialized according to the AST type. Type descriptors
of Base type correspond to primitive types of the CLR. The target extension fields are
assigned by accessing the built-in type descriptors of PERWAPI. For example the field
for the AST base descriptor for the CHAR type is assigned by —

t.tgXtn := PERWAPI.PrimitiveType.Char;

The other base types are similar.
AST type descriptors of Array type create PERWAPI types by calls to the PERWAPI
ZeroBasedArray constructor. In the C# syntax the call would be —

t.tgXtn = new PERWAPI.ZeroBasedArray (this.typ(t.elemTp));

where the constructor argument is the type descriptor of the element type. Note the
recursive call of the typ method here.

The creation of the type descriptors for pointer types is slightly more complicated,
since it depends on certain artifacts of the Component Pascal to CLR mapping. It may
be helpful to review Chapter 4 of Compiling for the .NET Common Language Runtime
in this context.

If the bound type of the pointer type is an array type, then the target extension field
of the pointer type is simply copied from the target extension field of the bound typeﬂ

If the bound type is a record type, then two different cases arise. If the bound type
is implemented by a reference surrogate, that is, by a reference class in the CLR, then
the record and pointer type share the same runtime representation. In that case, the
target extension field of the pointer type is copied from the clsD field of the RecXtn
reference of the record type. On the other hand, if the bound type is represented in the
CLR by a value class then the pointer type is represented by the corresponding named,
boxed type. The target extension field of the pointer type is therefore copied from the
boxD field of the RecXtn reference of the record type.

5 In verifiable code array of T is implemented by a reference surrogate, and uses the same CLR type as
pointer to array of 7.
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The last of the type kinds with scalar target extension field, is the enumerations. If
an enumeration is defined in a different assembly a TypeRef must be created. In order
to do this it is first necessary to fetch the corresponding AssemblyRef descriptor. This is
done by another method, asm, which returns the AssemblyRef reference held in the AST
module descriptor. In keeping with our demand-driven strategy, the function creates the
AssemblyRef if necessary, by a call to AddExternAssembly. The target extension field
is finally created thus —

t.tgXtn := this.asm(mod) .AddValueClass (nsNm, tyNm);

In this assignment mod is the AST module descriptor, and nsNm, tyNm are strings
respectively holding the namespace and typename of the enumeration type. If it is a
TypeDef that is being created, rather than a TypeRef, a different AddValueClass method
is dispatched, this time on the PEFile object. Note carefully that enumerations are value
classes, so it is convenient to use one of the AddValueClass methods, rather than the
usual calls to AddClass.

5.5 MethodDefs and MethodRefs

As code is generated for methods of a module, method references and method defi-
nitions need to be generated. With gpcp, even in the case of method definitions it is
possible that a used occurrence of the MethodDef object might occur before the defi-
nition of the method. Therefore, as before, a demand-driven approach is used for the
creation of Method descriptors.

During AST traversal definitions are emitted for every method defined in the source
of the module. If no MethodDef object has been created for the AST procedure descrip-
tor, then a MethodDef object is allocated and stored in the target extension field of the
AST object. In any case, once the MethodDef object has been retrieved the MethAttr
and ImplAttr attributes are added, and a code buffer allocated. Subsequent traveral of
the AST for the procedure body adds instructions to this buffer.

As instructions are added to the code buffer for the current method, references to
other methods are used as arguments to MethodOp instructions. The PERWAPI method
descriptor for the target method is extracted from the AST descriptor by a call to another
utility method mzh.

For PE-files the Method descriptor objects are created in a demand-driven way.
In the case of textual-CIL output the text-strings that hold the signature information
of methods are created in a similar demand-driven way. A procedure MkCallAttr in
the MsilUtil module is called from the tree-walker. This procedure calls the abstract
procedure NumberParams. In module IlasmUtil the overriding procedure numbers the
formal parameters of the called method, and computes the signature string of the called
method. In module PeUtil the overriding procedure numbers the formal parameters of
the called method, and creates a MethodDef or MethodRef object, as appropriate.

PeUtil. NumberParams retrieves the Class object with which the called procedure
is associated. A type-case statement dispatches the appropriate factory procedure —

with c1sD : PERWAPI.ClassDef do

methD := MkMethDef (...);
| c¢clsD : PERWAPI.ClassRef do

methD := MkMethRef (...);
end;

If the target procedure is an instance method or a constructor, then the appropriate call
convention marker must be added —
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if ... then
methD.AddCallConv (PERWAPI.CallConv.Instance)
end;

Within the MkMthDef and MkMthRef procedures the formal parameter arrays are
created. These will be arrays of Param or Type objects respectively. In the case of
formal parameters that are passed by reference, it is at this point that the managed
pointer descriptor Type objects are created from the type descriptors of the formal types
in the AST, as described on page

6 Round-trip Example

PERWAPI is distributed with a single, simple example. This is a program that reads,
modifies and writes a PE-file.

When PERWAPI reads a PE-file, it represents the data of the file as a tree of objects
rooted in a PEFile object. When PERWAPI is used as a file writer a tree is constructed
by the application program using exactly the same object types used by the reader.

It is thus possible to read a PE-file using the ReadPEFile method, perform some
kind of transformation on the resulting data structure, then write the tree out using the
WritePEFile method. This sequence is called “round-tripping the PE-file”.

The distribution includes a simple round-trip example. It does not do anything
useful, but includes example of many of the most useful method calls of the API.
Furthermore, running the example inside a debugger allows the structure of an arbitrary
PE-file to be examined in terms of the PERWAPI data types.

When a file is round-tripped through PERWAPI, the meaning of the program should
be the same. However the bytes of the file may not be identical since the output file will
always have optimized branch instructions. PE-files that are assembled using ilasm,
by constrast, will always contain the branch instructions specified in the input text.
Since it is difficult for a writer of textual /L to compute the offset distances, IL files
generally use the long form for all branch instructions. PERWAPI, on the other hand,
treats branch instructions as logical branches, computes the offset in the code buffer,
and emits the shortest legal branch instruction into the output ﬁleﬂ

Messing With Hello World

The example, named RoundTripPE, has its important code shown in Figure The
only code missing from the figure is the entry point method, Main, and a couple of
small utilities. The main method validates its incoming arguments and calls Process,
the method at line-1 of the figure.

Note that a “using alias” has been declared for the namespace QUT.PERWAPI in
the interests of conciseness. No particular effort has been made in this example to
perform any kind of error recovery. All processing takes place within a try block, and
if an exception is caught the program terminates after printing the exception objects’s
message property.

Process asks PERWAPI to create a fully populated PEFile object by reading the
PE-file whose name is given by the incoming string argument. If the debug flag has
been set by the main method the pdb file is read also at line-6. The ReadPDB method

%You may wonder how the reader side of PERWAPI deals with branch instructions, since the PE-file does
not contain labels. During creation of the code buffers all branch destinations are flagged and a CILLabel is
inserted at each such position in the buffer.
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Figure 20: Round trip example code-snippet

using Api = QUT.PERWAPI;

static void Process(string fileName) { /1
try { /12
Message ("Reading "+ fileName); /13
Api.PEFile peFl = Api.PEFile.ReadPEFile (fileName); /14
if (debug) //S)
peFl.ReadPDB() ; /16
Message ("Processing "+ fileName) ; 117
MangleHello (peF1l) ; // Substitute your own mutator here /18
peFl.SetFileName ("Mangle-"+Path.GetFileName (fileName)); //9
peFl.WritePEFile (debug) ; 1/ 10
Message ("Completing normally"); /11

}
catch (Exception ex) { /113
FailMessage (ex.Message) ; /I 14

}

}

static void MangleHello (Api.PEFile peFl) { 1118
Api.ClassDef[] clss = peFl.GetClasses|(); /119
foreach (Api.ClassDef clsIx in clss) { /1 20
Api.MethodDef[] mths = clsIx.GetMethods(); 1121
foreach (Api.MethodDef mthIx in mths) { /122

Api.CILInstruction[] list =
mthIx.GetCodeBuffer () .GetInstructions(); //23

if (buffer != null) {ﬂ Not abstract or interface method /1 24
foreach (Api.CILInstruction inst in list) { /125
Api.StringInstr code = inst as Api.Stringlnstr; /126

if (code !'= null) { /127
string str = code.GetString(); /1 28

code.SetString(str.Replace ("Hello", "Goodbye")); //29

of the PEFile class merges the information from the debug file with the information
previously read from the PE-file.

At line-8 the Process method passes the PEFile object to the mutator method Man-
gleHello. The Process method is a template for any kind of PE-file mutator, but in this
example the called method performs a breathtakingly meaningless feat — it changes
all occurrences of the substring “Hello” in 1dst r instructions to “Goodbye”.

The MangleHello method extracts an array of ClassDef from the PEFile object at
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line-19. An iteration over the classes array extracts an array of MethodDef for each
ClassDef at line-21. For each MethodDef the array of CILInstruction is extracted at
line-23.

The final nested iteration is over each instruction in the instruction array, at line-25.
In the event that the instruction is a StringInstr object the associated string is fetched at
line-28 and mutated at line-29.

MangleHello finally returns, and the modified PEFile object is baked back at line-10
of Process. The output file is written to modified filename, so the original file is not
overwritten.

This example performs a very simple modification to the code buffer of the methods
that it mutates. However, PERWAPI has a range of public methods which allow general
editting of the buffer. One or more instructions may be removed from the buffer, and
one or more instructions may be replaced in the buffer.

In the case of a replace command, the buffer is placed into insert mode with the
insertion point at the position of the replaced instruction(s). Subsequent insertions are
accumulated in a temporary buffer. When EndlInsert is called insertion mode is left,
and the new instructions are merged into the buffer at the designated insertion point.

7 Installing and Building PERWAPI

The PERWAPI distribution consists of a zip-file containing four directories, Binaries,
Documentation, RoundTripExample, VS-Project.

The Binaries Subdirectory

This directory holds the two PE-files: QUT.PERWAPLdIl and QUT.SymbolRW.dII.
Both of these are strongly named assemblies and may be copied into the fusion cache
on Windows based systems. These assemblies have been built with the debug flag on,
and the corresponding PDB and XML files are included also.

The Documentation Subdirectory

This directory holds a copy of this document.

The RoundTripExample Subdirectory

This directory holds the Visual Studio 9 project for the example in Section [f] The
project file includes references to the binaries in the Binaries directory.

The VS-Project Subdirectory

This directory holds the Visual Studio 9 project for PERWAPI and SymbolRW. However
there are two important cautions here: The preferred place to get the current version of
the project is the repository on CodePlex, accessible from the PERWAPI home page.
The second caution is that if you rebuild PERWAPI then the new binaries will not be
strongly named.

Under the terms of the PERWAPI copyright you are free to use or modify the code
of PERWAPI in a relatively unconstrained way. However, if your client application is
linked to the strongly named assemblies in the distribution then you will have to rebuild
your application to link to the unsigned and/or modified version.



8 NOTES 43

8 Notes

Details on the structure and format of PE-files may be found in Partition IT of the ECMA
standard for the CLI. Serge Lidin’s excellent book The ILASM Assembler, Microsoft
Press, 2002, is another invaluable resource.

Html documentation is supplied as part of the distribution of PERWAPI. As well,
for those needing to access the component from Component Pascal, the gpcp-format
symbol file is included in the current gpcp distribution. This symbol file is named
“QUT_PERWAPI_.cps”. The symbol file was created by running the PeToCps tool over
the “QUT.PERWAPI.d11” file. A browsable html rendering of this symbol file has been
created using the gpcp standard Browse tool.
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