BIOS.AMD64.Machine.Mod 120 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942
  1. MODULE Machine; (** AUTHOR "pjm"; PURPOSE "Bootstrapping, configuration and machine interface"; *)
  2. (* The code of this module body must be the first in the statically linked boot file. *)
  3. IMPORT SYSTEM, Trace;
  4. CONST
  5. Version = "A2 Revision 2958 (26.02.2010)";
  6. MaxCPU* = 8; (** maximum number of processors (up to 16) *)
  7. DefaultObjectFileExtension* = ".Abx";
  8. (** bits in features variable *)
  9. MTTR* = 12; MMX* = 23; HTT* = 28;
  10. MaxDisks = 2; (* maximum number of disks with BIOS parameters *)
  11. HeapAdr = 100000H;
  12. MaxMemTop = 4000000H * 4000000H; (* maximal 52bit wide physical address (architectural limit) *)
  13. DefaultDMASize = 20; (* default size of ISA DMA area in KB *)
  14. IsCooperative*= FALSE;
  15. CONST
  16. StrongChecks = FALSE; (* perform strong checks *)
  17. Stats* = FALSE; (* acquire statistics *)
  18. TimeCount = 0 (* 100000 *); (* number of lock tries before checking timeout - 0 to disable *)
  19. (** standard lock levels (in order) *) (* also refer to Traps.Show *)
  20. TraceOutput* = 0; (* Trace output *)
  21. Memory* = 1; (* Virtual memory management, stack and page allocation *)
  22. Heaps* = 2; (* Storage allocation and Garbage collection *)
  23. Interrupts* = 3 ; (* Interrupt handling. *)
  24. Modules* = 4; (* Module list *)
  25. Objects* = 5; (* Ready queue *)
  26. Processors* = 6; (* Interprocessor interrupts *)
  27. KernelLog* = 7; (* Atomic output *)
  28. (** highest level is all object locks *)
  29. Preemption* = 31; (** flag for BreakAll *)
  30. MaxLocks = 8; (* { <= 32 } *)
  31. LowestLock = 0; HighestLock = MaxLocks-1;
  32. CONST
  33. TraceVerbose = FALSE; (* write out verbose trace info *)
  34. AddressSize = SIZEOF(ADDRESS);
  35. SetSize = MAX (SET) + 1;
  36. (** error codes *)
  37. Ok* = 0;
  38. (* standard multipliers *)
  39. K = 1024; M = 100000H; (* 1K, 1M *)
  40. (* paging sizes *)
  41. PS = 4096; (* page size in bytes *)
  42. PSlog2 = 12; (* ASH(1, PSlog2) = PS *)
  43. TPS = 4096; (* translation page size *)
  44. PTEs = TPS DIV AddressSize; (* number of entries per translation page table *)
  45. RS = PTEs * PS; (* region covered by a page table in bytes *)
  46. ReservedPages = 8; (* pages reserved on page heap (not for normal heap use) *)
  47. NilAdr* = -1; (** nil value for addresses (not same as pointer NIL value) *)
  48. (* free page stack page node layout *)
  49. NodeSP = 0;
  50. NodeNext = AddressSize;
  51. NodePrev = AddressSize*2;
  52. MinSP = AddressSize*3; MaxSP = PS;
  53. (*
  54. 0 sp
  55. AddressSize nextAdr
  56. AddressSize*2 prevAdr
  57. AddressSize*3 first entry
  58. 4092 last entry
  59. *)
  60. (* virtual memory layout. no area will cross the 2G boundary, to avoid LONGINT sign problems. *)
  61. MapAreaAdr = (80000000H); (* dynamic mappings: bottom part of 2G..4G *)
  62. MapAreaSize = 64*M;
  63. IntelAreaAdr = (0FEE00000H); (* reserved by Intel for APIC: 4G-18M..4G-18M+4K *)
  64. IntelAreaSize = 00001000H;
  65. StackAreaAdr = MapAreaAdr+MapAreaSize; (* stacks: middle part of 2G..4G *)
  66. StackAreaSize = IntelAreaAdr-StackAreaAdr;
  67. (* stack sizes *)
  68. KernelStackSize = 2*PS; (* multiple of PS *)
  69. MaxUserStackSize = 128*K; (* multiple of PS *)
  70. InitUserStackSize = PS; (* must be PS (or change NewStack) *)
  71. UserStackGuardSize = PS; (* multiple of PS left unallocated at bottom of stack virtual area *)
  72. MaxUserStacks = StackAreaSize DIV MaxUserStackSize;
  73. (* physical memory layout *)
  74. LowAdr = PS; (* lowest physical address used *)
  75. LinkAdr = M; (* address where kernel is linked, also address where heap begins *)
  76. StaticBlockSize = 32; (* static heap block size *)
  77. BlockHeaderSize = 2 * AddressSize;
  78. RecordDescSize = 3 * AddressSize; (* needs to be adapted in case Heaps.RecordDesc is changed *)
  79. (* gdt indices *)
  80. TSSOfs = 8; (* offset in GDT of TSSs *)
  81. StackOfs = TSSOfs + MaxCPU; (* offset in GDT of stacks *)
  82. GDTSize = TSSOfs + MaxCPU * 2; (* TSS descriptors need 16 bytes each *)
  83. (* gdt selectors *)
  84. Kernel32CodeSel = 1*8; (* selector 1 in gdt, RPL 0 *)
  85. Kernel64CodeSel = 2*8; (* selector 2 in gdt, RPL 0 *)
  86. User32CodeSel = 3*8 + 3; (* selector 3 in gdt, RPL 3 *)
  87. User64CodeSel = 4*8 + 3; (* selector 4 in gdt, RPL 3 *)
  88. KernelStackSel = 5*8; (* selector 5 in gdt, RPL 0 *)
  89. UserStackSel = 6*8 + 3; (* selector 6 in gdt, RPL 3 *)
  90. DataSel = 7*8; (* selector 7 in gdt, RPL 0 *)
  91. KernelTR = TSSOfs*8; (* selector in gdt, RPL 0 *)
  92. (* paging flags *)
  93. PageNotPresent = 0; (* not present page *)
  94. KernelPage = 3; (* supervisor, present, r/w *)
  95. UserPage = 7; (* user, present, r/w *)
  96. HeapMin = 50; (* "minimum" heap size as percentage of total memory size (used for heap expansion in scope of GC ) *)
  97. HeapMax = 95; (* "maximum" heap size as percentage of total memory size (used for heap expansion in scope of GC) *)
  98. ExpandRate = 1; (* always extend heap with at least this percentage of total memory size *)
  99. Threshold = 10; (* periodic GC initiated when this percentage of total memory size bytes has "passed through" NewBlock *)
  100. InitialHeapIncrement = 4096;
  101. HeaderSize = 40H; (* cf. Linker0 *)
  102. EndBlockOfs = 38H; (* cf. Linker0 *)
  103. MemoryBlockOfs = BlockHeaderSize + RecordDescSize + BlockHeaderSize; (* memory block (including header) starts at offset HeaderSize *)
  104. CONST
  105. (** pre-defined interrupts 0-31, used with InstallHandler *)
  106. DE* = 0; DB* = 1; NMI* = 2; BP* = 3; OVF* = 4; BR* = 5; UD* = 6; NM* = 7;
  107. DF* = 8; TS* = 10; NP* = 11; SSF* = 12; GP* = 13; PF* = 14; MF*= 16; AC*= 17; MC* = 18;
  108. IRQ0* = 32; (* {IRQ0 MOD 8 = 0} *)
  109. IRQ2 = IRQ0 + 2;
  110. IRQ7 = IRQ0 + 7;
  111. IRQ8 = IRQ0 + 8;
  112. IRQ15 = 47;
  113. MaxIRQ* = IRQ15; (** hardware interrupt numbers *)
  114. MPKC* = 49; (** SMP: kernel call *)
  115. SoftInt* = 58; (** temporary software interrupt *)
  116. MPIPCLocal* = 59; (** SMP: local interprocessor interrupt *)
  117. MPTMR* = 60; (** SMP: timer interrupt *)
  118. MPIPC* = 61; (** SMP: interprocessor interrupt *)
  119. MPERR* = 62; (** SMP: error interrupt *)
  120. MPSPU* = 63; (** SMP: spurious interrupt {MOD 16 = 15} *)
  121. IDTSize = 64;
  122. MaxNumHandlers = 16;
  123. TraceSpurious = FALSE; (* no message on spurious hardware interrupts *)
  124. HandleSpurious = TRUE OR TraceSpurious; (* do not trap on spurious interrupts *)
  125. IntA0 = 020H; IntA1 = 021H; (* Interrupt Controller 1 *)
  126. IntB0 = 0A0H; IntB1 = 0A1H; (* Interrupt Controller 2 *)
  127. (** RFLAGS bits *)
  128. IFBit* = 9; VMBit* = 17;
  129. KernelLevel* = 0; UserLevel* = 3; (** CS MOD 4 *)
  130. Second* = 1000; (* frequency of ticks increments in Hz *)
  131. CONST
  132. Self* = 0; FrontBarrier* = 1; BackBarrier* = 2; (** Broadcast flags. *)
  133. TraceApic = FALSE;
  134. TraceProcessor = FALSE; (* remove this hack! *)
  135. ClockRateDelay = 50; (* ms - delay when timing bus clock rate *)
  136. TimerClock = 1193180; (* timer clock is 1.19318 MHz *)
  137. CONST
  138. (* low level tracing *)
  139. TraceV24 = 2; TraceScreen = 0;
  140. TraceWidth = 80; TraceHeight = 25;
  141. TraceLen = TraceWidth * SIZEOF (INTEGER);
  142. TraceSize = TraceLen * TraceHeight;
  143. TYPE
  144. Vendor* = ARRAY 13 OF CHAR;
  145. IDMap* = ARRAY 16 OF SHORTINT;
  146. TYPE
  147. Stack* = RECORD (** values are read-only *)
  148. low: ADDRESS; (* lowest virtual address that may be allocated for stack *)
  149. adr*: ADDRESS; (* lowest address on allocated stack *) (* exported for Objects only *)
  150. high*: ADDRESS; (* next virtual address after stack *) (* exported for Objects only *)
  151. END;
  152. (* task state segment *)
  153. TSSDesc = RECORD (* 1, p. 485 and p. 612 for required fields *)
  154. Reserved1: LONGINT;
  155. RSP0 {ALIGNED(4)}, RSP1{ALIGNED(4)}, RSP2{ALIGNED(4)}: HUGEINT;
  156. Reserved2, Reserved3: LONGINT;
  157. IST1 {ALIGNED(4)}, IST2 {ALIGNED(4)}, IST3 {ALIGNED(4)}, IST4{ALIGNED(4)}, IST5{ALIGNED(4)}, IST6{ALIGNED(4)}, IST7{ALIGNED(4)}: HUGEINT;
  158. Reserved4, Reserved5: LONGINT;
  159. Reserved6, IOMapBaseAddress: INTEGER;
  160. (* Implicit: IOBitmap: ARRAY 8192 DIV 4 OF SET *)
  161. END;
  162. Startup* = PROCEDURE; (** can not be a method *)
  163. (* global descriptor table *)
  164. SegDesc = RECORD
  165. low, high: LONGINT
  166. END;
  167. GDT = ARRAY GDTSize OF SegDesc;
  168. Range* = RECORD
  169. adr*: ADDRESS; size*: SIZE;
  170. END;
  171. TYPE
  172. (** processor state, ordering of record fields is predefined! *)
  173. State* = RECORD (* offsets used in FieldInterrupt, FieldIRQ and Objects.RestoreState *)
  174. R15*, R14*, R13*, R12*, R11*, R10*, R9*, R8*: HUGEINT;
  175. RDI*, RSI*, ERR*, RSP0*, RBX*, RDX*, RCX*, RAX*: HUGEINT; (** RSP0 = ADR(s.INT) *)
  176. INT*, BP*, PC*, CS*: HUGEINT; (* RBP and ERR are exchanged by glue code, for procedure link *)
  177. FLAGS*: SET;
  178. SP*, SS*: HUGEINT;
  179. END;
  180. (** exception state, ordering of record fields is predefined! *)
  181. ExceptionState* = RECORD
  182. halt*: SIZE; (** halt code *)
  183. pf*: ADDRESS; (** page fault address *)
  184. locks*: SET; (** active locks *)
  185. SP*: ADDRESS; (** actual RSP value at time of interrupt *)
  186. CR*: ARRAY 16 OF HUGEINT; (** control registers *)
  187. DR*: ARRAY 16 OF HUGEINT; (** debug registers *)
  188. FPU*: ARRAY 7 OF SET (** floating-point state *)
  189. END;
  190. Handler* = PROCEDURE {DELEGATE} (VAR state: State);
  191. HandlerRec = RECORD
  192. valid: BOOLEAN; (* offset 0 *)
  193. handler {ALIGNED(4)}: Handler (* offset 4 *)
  194. END;
  195. GateDescriptor = RECORD
  196. offsetBits0to15: INTEGER;
  197. selector: INTEGER;
  198. gateType: INTEGER;
  199. offsetBits16to31: INTEGER;
  200. offsetBits32to63: LONGINT;
  201. reserved: LONGINT;
  202. END;
  203. IDT = ARRAY IDTSize OF GateDescriptor;
  204. SSEState* = ARRAY (512+16) OF CHAR;
  205. TYPE
  206. MemoryBlock* = POINTER TO MemoryBlockDesc;
  207. MemoryBlockDesc* = RECORD
  208. next- {UNTRACED}: MemoryBlock;
  209. startAdr-: ADDRESS; (* unused field for I386 *)
  210. size-: SIZE; (* unused field for I386 *)
  211. beginBlockAdr-, endBlockAdr-: ADDRESS
  212. END;
  213. TYPE
  214. EventHandler = PROCEDURE (id: LONGINT; CONST state: State);
  215. Message* = POINTER TO RECORD END; (** Broadcast message. *)
  216. BroadcastHandler = PROCEDURE (id: LONGINT; CONST state: State; msg: Message);
  217. TimeArray = ARRAY MaxCPU OF HUGEINT;
  218. Address32* = LONGINT;
  219. VAR
  220. lowTop*: ADDRESS; (** top of low memory *)
  221. memTop*: ADDRESS; (** top of memory *)
  222. dmaSize*: SIZE; (** size of ISA dma area, above lowTop (for use in Aos.Diskettes) *)
  223. configMP: ADDRESS; (** MP spec config table physical address (outside reported RAM) *)
  224. revMP: CHAR; (** MP spec revision *)
  225. featureMP: ARRAY 5 OF CHAR; (** MP spec feature bytes 1-5 *)
  226. version-: ARRAY 64 OF CHAR; (** Aos version *)
  227. SSESupport-: BOOLEAN;
  228. SSE2Support-: BOOLEAN;
  229. features-, features2-: SET; (** processor features *)
  230. fcr*: SET; (** default floating-point control register value (default rounding mode is towards -infinity, for ENTIER) *)
  231. mhz*: HUGEINT; (** clock rate of GetTimer in MHz, or 0 if not known *)
  232. chs: ARRAY MaxDisks OF RECORD cyls, hds, spt: LONGINT END;
  233. initRegs0, initRegs1: HUGEINT;
  234. initRegs: ARRAY 2 OF HUGEINT; (* kernel parameters *)
  235. config: ARRAY 2048 OF CHAR; (* config strings *)
  236. bootFlag: ADDRESS;
  237. idAdr: ADDRESS; (* address of processor ID register *)
  238. map: IDMap;
  239. bootID: LONGINT; (* ID of boot processor (0) *)
  240. numberOfProcessors: LONGINT; (* number of processors installed during start up *)
  241. coresPerProcessor : LONGINT; (* number of cores per physical package *)
  242. threadsPerCore : LONGINT; (* number of threads per core *)
  243. CONST
  244. CacheLineSize = 128;
  245. TYPE
  246. (* Synchronization variables should reside in own cache line. This data structure should be aligned to CacheLineSize. *)
  247. Lock = RECORD
  248. locked : BOOLEAN;
  249. filler : ARRAY CacheLineSize - 1 OF CHAR;
  250. END;
  251. VAR
  252. lock: ARRAY MaxLocks OF Lock; (** all locks *)
  253. (*
  254. Every element in the proc array belongs to one processor. It is therefore sufficient to disable interrupts to protect the consistency of these elements. Race conditions with interrupts handled on the same processor are avoided by disabling interrupts for the entire time that a lock is held (using locksHeld & state). The data structures are padded to CacheLineSize to separate the locks out on cache lines of their own, to avoid false sharing.
  255. *)
  256. proc-, trapState-: ARRAY MaxCPU OF RECORD
  257. locksHeld-: SET; (** locks held by a processor *)
  258. state-: SET; (** processor flags (interrupt state) at entry to its first lock *)
  259. preemptCount-: LONGINT; (** if 0, preemption is allowed *)
  260. padding : ARRAY CacheLineSize - 20 OF CHAR;
  261. END;
  262. (* the data structures above should be aligned to CacheLineSize *)
  263. padding : ARRAY 92 OF CHAR;
  264. trapLocksBusy-: SET;
  265. maxTime: HUGEINT;
  266. VAR
  267. gdt: GDT; (* global descriptor table *)
  268. procm: ARRAY MaxCPU OF RECORD (* indexed by ID () *)
  269. tss: TSSDesc;
  270. sp: ADDRESS; (* snapshot for GC *)
  271. stack: Stack
  272. END;
  273. kernelPML4: ADDRESS; (* physical address of page directory *)
  274. freeLowPage: ADDRESS; (* free low page stack pointer (link at offset 0 in page). All addresses physical. NIL = -1 *)
  275. freeLowPages, freeHighPages, totalPages: HUGEINT; (* number of free pages and total number of pages *)
  276. mapTop: ADDRESS; (* virtual address of end of memory mapping area *)
  277. heapEndAdr: ADDRESS; (* virtual address of end of heap (page aligned) *)
  278. topPageNum: HUGEINT; (* page containing byte memTop-1 *)
  279. pageHeapAdr: ADDRESS; (* address (physical and virtual) of bottom of page heap area *)
  280. pageStackAdr: ADDRESS; (* virtual address of top page of free page stack *)
  281. freeStack: ARRAY (MaxUserStacks+SetSize-1) DIV SetSize OF SET; (* free stack bitmap *)
  282. freeStackIndex: HUGEINT; (* current position in bitmap (rotates) *)
  283. Nbigskips-: LONGINT; (* number of times a stack was extended leaving a hole *)
  284. Nfilled-: LONGINT; (* number of times a "hole" in a stack was filled *)
  285. NnewStacks-, NnewStackLoops-, NnewStackInnerLoops-, NdisposeStacks-,
  286. NlostPages-, NreservePagesUsed-, NmaxUserStacks-: HUGEINT;
  287. VAR
  288. idt: IDT; (* interrupt descriptor table *)
  289. glue: ARRAY IDTSize OF ARRAY 15 OF CHAR; (* code *)
  290. intHandler: ARRAY IDTSize, MaxNumHandlers OF HandlerRec; (* array of handlers for interrupts, the table is only filled up to MaxNumHandlers - 1, the last element in each row acts as a sentinel *)
  291. stateTag: ADDRESS;
  292. default: HandlerRec;
  293. i, j, ticks*: LONGINT; (** timer ticks. Use Kernel.GetTicks() to read, don't write *)
  294. VAR
  295. ipcBusy, ipcFlags, ipcFrontBarrier, ipcBackBarrier: SET;
  296. ipcHandler: BroadcastHandler;
  297. ipcMessage: Message;
  298. numProcessors-: LONGINT; (* number of processors we attempted to boot (some may have failed) *)
  299. maxProcessors: LONGINT; (* max number of processors we are allowed to boot (-1 for uni) *)
  300. allProcessors-: SET; (* IDs of all successfully booted processors *)
  301. localAPIC: ADDRESS; (* address of local APIC, 0 if not present *)
  302. apicVer: ARRAY MaxCPU OF LONGINT; (* APIC version *)
  303. started: ARRAY MaxCPU OF BOOLEAN; (* CPU started successfully / CPU halted *)
  304. busHz0, busHz1: ARRAY MaxCPU OF LONGINT; (* unrounded and rounded bus speed in Hz *)
  305. timer: EventHandler;
  306. timerRate: LONGINT; (* Hz - rate at which CPU timers run - for timeslicing and profiling *)
  307. stopped: BOOLEAN; (* StopAll was called *)
  308. idMap: IDMap;
  309. revIDmap: ARRAY MaxCPU OF SHORTINT;
  310. time: TimeArray;
  311. eventCount, eventMax: LONGINT;
  312. event: Handler;
  313. expandMin, heapMinKB, heapMaxKB : SIZE;
  314. gcThreshold-: SIZE;
  315. memBlockHead-{UNTRACED}, memBlockTail-{UNTRACED}: MemoryBlock; (* refer to the same memory block for I386, not traced by GC *)
  316. initialMemBlock: MemoryBlockDesc;
  317. traceProcessorProc*: EventHandler; (** temp tracing *)
  318. traceProcessor: BOOLEAN;
  319. Timeslice*: Handler;
  320. start*: PROCEDURE;
  321. VAR
  322. traceMode: SET; (* tracing mode: Screen or V24 *)
  323. traceBase: ADDRESS; (* screen buffer base address *)
  324. tracePos: SIZE; (* current screen cursor *)
  325. tracePort: LONGINT; (* serial base port *)
  326. traceColor: SHORTINT; (* current screen tracing color *)
  327. (** -- Processor identification -- *)
  328. (** Return current processor ID (0 to MaxNum-1). *)
  329. PROCEDURE ID* (): LONGINT;
  330. CODE {SYSTEM.AMD64}
  331. ; todo: use MOV instead of LEA as soon as assembler returns address for global variables
  332. LEA RAX, idAdr ; get address of idAdr
  333. MOV RAX, [RAX] ; get value of idAdr
  334. MOV EAX, [RAX] ; dereference idAdr
  335. LEA RBX, map ; address of map
  336. SHR EAX, 24
  337. AND EAX, 15
  338. MOV AL, [RBX + RAX]
  339. END ID;
  340. (** -- Miscellaneous -- *)
  341. (** This procedure should be called in all spin loops as a hint to the processor (e.g. Pentium 4). *)
  342. PROCEDURE -SpinHint*;
  343. CODE {SYSTEM.AMD64}
  344. PAUSE
  345. END SpinHint;
  346. (** Fill "size" bytes at "destAdr" with "filler". "size" must be multiple of 4. *)
  347. PROCEDURE Fill32* (destAdr: ADDRESS; size: SIZE; filler: LONGINT);
  348. CODE {SYSTEM.AMD64}
  349. MOV RDI, [RBP + destAdr]
  350. MOV RCX, [RBP + size]
  351. MOV EAX, [RBP + filler]
  352. TEST RCX, 3
  353. JZ ok
  354. PUSH 8 ; ASSERT failure
  355. INT 3
  356. ok:
  357. SHR RCX, 2
  358. CLD
  359. REP STOSD
  360. END Fill32;
  361. (** Return timer value of the current processor, or 0 if not available. *)
  362. (* e.g. ARM does not have a fine-grained timer *)
  363. PROCEDURE -GetTimer* (): HUGEINT;
  364. CODE {SYSTEM.AMD64}
  365. XOR RAX, RAX
  366. RDTSC ; set EDX:EAX
  367. SHL RDX, 32
  368. OR RAX, RDX
  369. END GetTimer;
  370. (** Disable interrupts and return old interrupt state. *)
  371. PROCEDURE -DisableInterrupts* (): SET;
  372. CODE {SYSTEM.AMD64}
  373. PUSHFQ
  374. CLI
  375. POP RAX
  376. END DisableInterrupts;
  377. (** Restore interrupt state. Parameter s must be return value of earlier DisableInterrupts call on same processor. *)
  378. PROCEDURE -RestoreInterrupts* (s: SET);
  379. CODE {SYSTEM.AMD64}
  380. POPFQ
  381. END RestoreInterrupts;
  382. (** Return TRUE iff interrupts are enabled on the current processor. *)
  383. PROCEDURE -InterruptsEnabled* (): BOOLEAN;
  384. CODE {SYSTEM.AMD64}
  385. PUSHFQ
  386. POP RAX
  387. SHR RAX, 9
  388. AND AL, 1
  389. END InterruptsEnabled;
  390. (** -- Processor initialization -- *)
  391. PROCEDURE -SetFCR (s: SET);
  392. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  393. FLDCW WORD [RSP] ; parameter s
  394. POP RAX
  395. END SetFCR;
  396. PROCEDURE -FCR (): SET;
  397. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  398. PUSH 0
  399. FNSTCW WORD [RSP]
  400. FWAIT
  401. POP RAX
  402. END FCR;
  403. PROCEDURE -InitFPU;
  404. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  405. FNINIT
  406. END InitFPU;
  407. (** Setup FPU control word of current processor. *)
  408. PROCEDURE SetupFPU*;
  409. BEGIN
  410. InitFPU; SetFCR(fcr)
  411. END SetupFPU;
  412. (* Set up flags (3, p. 20)
  413. Bit
  414. 1,3,5,15,19..31 - no change
  415. 0,2,4,6..7,11 - CF,PF,AF,ZF,SF,OF off
  416. 8 - TF off
  417. 9 - IF off (no interrupts)
  418. 10 - DF off
  419. 12..13 - IOPL = 3
  420. 14 - NT off (no Windows)
  421. 16 - RF off (no Interference)
  422. 17- VM off (no virtual 8086 mode)
  423. 18 - AC off (no 486 alignment checks) *)
  424. PROCEDURE -SetupFlags;
  425. CODE {SYSTEM.AMD64}
  426. PUSHFD
  427. AND DWORD [RSP], 0FFF8802AH
  428. OR DWORD [RSP], 3000H
  429. POPFD
  430. END SetupFlags;
  431. (* Set up various 486-specific flags (3, p. 23)
  432. 1. Enable exception 16 on math errors.
  433. 2. Disable supervisor mode faults on write to read-only pages
  434. (386-compatible for stack checking).
  435. 3. Enable the Alignment Check field in RFLAGS *)
  436. PROCEDURE -Setup486Flags;
  437. CODE {SYSTEM.486, SYSTEM.Privileged}
  438. MOV EAX, CR0
  439. OR EAX, 00040020H
  440. AND EAX, 0FFFEFFFFH
  441. MOV CR0, EAX
  442. END Setup486Flags;
  443. (* Set up 586-specific things *)
  444. PROCEDURE -Setup586Flags;
  445. CODE {SYSTEM.586, SYSTEM.Privileged}
  446. MOV EAX, CR4
  447. BTR EAX, 2 ; clear TSD
  448. MOV CR4, EAX
  449. END Setup586Flags;
  450. (* Disable exceptions caused by math in new task. (1, p. 479) *)
  451. PROCEDURE -DisableMathTaskEx;
  452. CODE {SYSTEM.386, SYSTEM.Privileged}
  453. MOV EAX,CR0
  454. AND AL, 0F5H
  455. MOV CR0, EAX
  456. END DisableMathTaskEx;
  457. (* Disable math emulation (1, p. 479) , bit 2 of CR0 *)
  458. PROCEDURE -DisableEmulation;
  459. CODE {SYSTEM.386, SYSTEM.Privileged}
  460. MOV EAX, CR0
  461. AND AL, 0FBH
  462. MOV CR0, EAX
  463. END DisableEmulation;
  464. (** CPU identification *)
  465. PROCEDURE CPUID*(function : LONGINT; VAR eax, ebx, ecx, edx : SET);
  466. CODE {SYSTEM.AMD64}
  467. MOV EAX, [RBP+function] ; CPUID function parameter
  468. MOV RSI, [RBP+ecx] ; copy ecx into ECX (sometimes used as input parameter)
  469. MOV ECX, [RSI]
  470. CPUID ; execute CPUID
  471. MOV RSI, [RBP+eax] ; copy EAX into eax;
  472. MOV [RSI], EAX
  473. MOV RSI, [RBP+ebx] ; copy EBX into ebx
  474. MOV [RSI], EBX
  475. MOV RSI, [RBP+ecx] ; copy ECX into ecx
  476. MOV [RSI], ECX
  477. MOV RSI, [RBP+edx] ; copy EDX into edx
  478. MOV [RSI], EDX
  479. END CPUID;
  480. (* If the CPUID instruction is supported, the ID flag (bit 21) of the EFLAGS register is r/w *)
  481. PROCEDURE CpuIdSupported*() : BOOLEAN;
  482. CODE {SYSTEM.AMD64}
  483. PUSHFQ ; save RFLAGS
  484. POP RAX ; store RFLAGS in RAX
  485. MOV EBX, EAX ; save EBX for later testing
  486. XOR EAX, 00200000H ; toggle bit 21
  487. PUSH RAX ; push to stack
  488. POPFQ ; save changed RAX to RFLAGS
  489. PUSHFQ ; push RFLAGS to TOS
  490. POP RAX ; store RFLAGS in RAX
  491. CMP EAX, EBX ; see if bit 21 has changed
  492. SETNE AL; ; return TRUE if bit 21 has changed, FALSE otherwise
  493. END CpuIdSupported;
  494. (** Initialise current processor. Must be called by every processor. *)
  495. PROCEDURE InitProcessor*;
  496. BEGIN
  497. SetupFlags;
  498. Setup486Flags;
  499. Setup586Flags;
  500. DisableMathTaskEx;
  501. DisableEmulation;
  502. SetupFPU;
  503. END InitProcessor;
  504. (** Initialize APIC ID address. *)
  505. PROCEDURE InitAPICIDAdr* (adr: ADDRESS; CONST m: IDMap);
  506. VAR s: SET;
  507. BEGIN
  508. s := DisableInterrupts ();
  509. idAdr := adr; map := m;
  510. RestoreInterrupts (s)
  511. END InitAPICIDAdr;
  512. PROCEDURE InitBoot;
  513. VAR
  514. largestFunction, i: LONGINT;
  515. eax, ebx, ecx, edx : SET;
  516. logicalProcessorCount : LONGINT;
  517. u: ARRAY 8 OF CHAR; vendor : Vendor;
  518. PROCEDURE GetString(VAR string : ARRAY OF CHAR; offset : LONGINT; register : SET);
  519. BEGIN
  520. string[offset] :=CHR(SYSTEM.VAL(LONGINT, register * {0..7}));
  521. string[offset+1] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {8..15}, -8)));
  522. string[offset+2] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {16..23}, -16)));
  523. string[offset+3] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {24..31}, -24)));
  524. END GetString;
  525. BEGIN
  526. vendor := "Unknown"; features := {}; features2 := {};
  527. coresPerProcessor := 1; threadsPerCore := 1;
  528. IF CpuIdSupported() THEN
  529. (* Assume that all processors are the same *)
  530. (* CPUID standard function 0 returns: eax: largest CPUID standard function supported, ebx, edx, ecx: vendor string *)
  531. CPUID(0, eax, ebx, ecx, edx);
  532. largestFunction := SYSTEM.VAL(LONGINT, eax);
  533. ASSERT(LEN(vendor) >= 13);
  534. GetString(vendor, 0, ebx); GetString(vendor, 4, edx); GetString(vendor, 8, ecx); vendor[12] := 0X;
  535. IF (largestFunction >= 1) THEN
  536. (* CPUID standard function 1 returns: CPU features in ecx & edx *)
  537. CPUID(1, eax, ebx, ecx, edx);
  538. features := SYSTEM.VAL(SET, edx);
  539. features2 := SYSTEM.VAL(SET, ecx);
  540. (* The code below is used to determine the number of threads per processor core (hyperthreading). This is required
  541. since processors supporting hyperthreading are listed only once in the MP tables, so we need to know the
  542. exact number of threads per processor to start the processor correctly *)
  543. IF (HTT IN features) THEN (* multithreading supported by CPU *)
  544. (* logical processor count = number of cores * number of threads per core = total number of threads supported *)
  545. logicalProcessorCount := SYSTEM.VAL(LONGINT, LSH(ebx * {16..23}, -16));
  546. IF (vendor = "GenuineIntel") THEN
  547. IF (largestFunction >= 4) THEN
  548. (* CPUID standard function 4 returns: number of processor cores -1 on this die eax[26.31] *)
  549. ecx := SYSTEM.VAL(SET, 0); (* input parameter - must be set to 0 *)
  550. CPUID(4, eax, ebx, ecx, edx);
  551. coresPerProcessor := SYSTEM.VAL(LONGINT, LSH(eax * {26..31}, -26)) + 1;
  552. threadsPerCore := logicalProcessorCount DIV coresPerProcessor;
  553. ELSE
  554. threadsPerCore := logicalProcessorCount;
  555. END;
  556. ELSIF (vendor = "AuthenticAMD") THEN
  557. (* CPUID extended function 1 returns: largest extended function *)
  558. CPUID(LONGINT (80000000H), eax, ebx, ecx, edx);
  559. largestFunction := SYSTEM.VAL(LONGINT, eax - {31}); (* remove sign *)
  560. IF (largestFunction >= 8) THEN
  561. (* CPUID extended function 8 returns: *)
  562. CPUID(LONGINT (80000008H), eax, ebx, ecx, edx);
  563. coresPerProcessor := SYSTEM.VAL(LONGINT, ecx * {0..7}) + 1;
  564. threadsPerCore := logicalProcessorCount DIV coresPerProcessor;
  565. ELSIF (largestFunction >= 1) THEN
  566. (* CPUID extended function 1 returns CmpLegacy bit in ecx *)
  567. CPUID(LONGINT (80000001H), eax, ebx, ecx, edx);
  568. IF 1 IN ecx THEN (* CmpLegacy bit set -> no hyperthreading *)
  569. coresPerProcessor := logicalProcessorCount;
  570. threadsPerCore := 1;
  571. END;
  572. ELSE
  573. (* single-core, single-thread *)
  574. END;
  575. ELSE
  576. Trace.String("Machine: "); Trace.Yellow; Trace.String("Warning: Cannot detect hyperthreading, unknown CPU vendor ");
  577. Trace.String(vendor); Trace.Ln; Trace.Default;
  578. END;
  579. END;
  580. END;
  581. END;
  582. Trace.String("Machine: "); Trace.Int(coresPerProcessor, 0); Trace.String(" cores per physical package, ");
  583. Trace.Int(threadsPerCore, 0); Trace.String(" threads per core.");
  584. Trace.Ln;
  585. InitFPU;
  586. fcr := (FCR () - {0, 2, 3, 10, 11}) + {0 .. 5, 8, 9}; (* default FCR RC=00B *)
  587. bootID := 0; map[0] := 0;
  588. idAdr := ADDRESSOF (bootID);
  589. (* allow user to specify GetTimer rate, for tracing purposes *)
  590. GetConfig ("MHz", u);
  591. i := 0; mhz := StrToInt (i, u);
  592. END InitBoot;
  593. (** -- Configuration and bootstrapping -- *)
  594. (** Return the value of the configuration string specified by parameter name in parameter val. Returns val = "" if the string was not found, or has an empty value. *)
  595. PROCEDURE GetConfig* (CONST name: ARRAY OF CHAR; VAR val: ARRAY OF CHAR);
  596. VAR i, src: LONGINT; ch: CHAR;
  597. BEGIN
  598. ASSERT (name[0] # "="); (* no longer supported, use GetInit instead *)
  599. src := 0;
  600. LOOP
  601. ch := config[src];
  602. IF ch = 0X THEN EXIT END;
  603. i := 0;
  604. LOOP
  605. ch := config[src];
  606. IF (ch # name[i]) OR (name[i] = 0X) THEN EXIT END;
  607. INC (i); INC (src)
  608. END;
  609. IF (ch = 0X) & (name[i] = 0X) THEN (* found: (src^ = 0X) & (name[i] = 0X) *)
  610. i := 0;
  611. REPEAT
  612. INC (src); ch := config[src]; val[i] := ch; INC (i);
  613. IF i = LEN(val) THEN val[i - 1] := 0X; RETURN END (* val too short *)
  614. UNTIL ch = 0X;
  615. val[i] := 0X; RETURN
  616. ELSE
  617. WHILE ch # 0X DO (* skip to end of name *)
  618. INC (src); ch := config[src]
  619. END;
  620. INC (src);
  621. REPEAT (* skip to end of value *)
  622. ch := config[src]; INC (src)
  623. UNTIL ch = 0X
  624. END
  625. END;
  626. val[0] := 0X
  627. END GetConfig;
  628. (** Get CHS parameters of first two BIOS-supported hard disks. *)
  629. PROCEDURE GetDiskCHS* (d: LONGINT; VAR cyls, hds, spt: LONGINT);
  630. BEGIN
  631. cyls := chs[d].cyls; hds := chs[d].hds; spt := chs[d].spt
  632. END GetDiskCHS;
  633. (** Get parameter values from Init string. If n = 0, return val = ASH(bx, 16) + ax, and if n = 1, return val = ASH(dx, 16) + cx, where ax, bx, cx, dx are the register values after the OBL boot loader or noboot.exe have executed the 16-bit x86 code in the Init string. *)
  634. PROCEDURE GetInit* (n: LONGINT; VAR val: HUGEINT);
  635. BEGIN
  636. val := initRegs[n]
  637. END GetInit;
  638. (** Convert a string to an integer. Parameter i specifies where in the string scanning should begin (usually 0 in the first call). Scanning stops at the first non-valid character, and i returns the updated position. Parameter s is the string to be scanned. The value is returned as result, or 0 if not valid. Syntax: number = ["-"] digit {digit} ["H" | "h"] . digit = "0" | ... "9" | "A" .. "F" | "a" .. "f" . If the number contains any hexdecimal letter, or if it ends in "H" or "h", it is interpreted as hexadecimal. *)
  639. PROCEDURE StrToInt* (VAR i: LONGINT; CONST s: ARRAY OF CHAR): LONGINT;
  640. VAR vd, vh, sgn, d: LONGINT; hex: BOOLEAN;
  641. BEGIN
  642. vd := 0; vh := 0; hex := FALSE;
  643. IF s[i] = "-" THEN sgn := -1; INC (i) ELSE sgn := 1 END;
  644. LOOP
  645. IF (s[i] >= "0") & (s[i] <= "9") THEN d := ORD (s[i])-ORD ("0")
  646. ELSIF (CAP (s[i]) >= "A") & (CAP (s[i]) <= "F") THEN d := ORD (CAP (s[i]))-ORD ("A") + 10; hex := TRUE
  647. ELSE EXIT
  648. END;
  649. vd := 10*vd + d; vh := 16*vh + d;
  650. INC (i)
  651. END;
  652. IF CAP (s[i]) = "H" THEN hex := TRUE; INC (i) END; (* optional H *)
  653. IF hex THEN vd := vh END;
  654. RETURN sgn * vd
  655. END StrToInt;
  656. (* Delay for IO *)
  657. PROCEDURE -Wait*;
  658. CODE {SYSTEM.AMD64}
  659. JMP N1
  660. N1: JMP N2
  661. N2: JMP N3
  662. N3:
  663. END Wait;
  664. (* Reset processor by causing a double fault. *)
  665. PROCEDURE Reboot;
  666. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  667. PUSH DWORD 0
  668. PUSH DWORD 0
  669. LIDT [RSP]
  670. INT 3
  671. END Reboot;
  672. (** Shut down the system. If parameter reboot is set, attempt to reboot the system. *)
  673. PROCEDURE Shutdown* (reboot: BOOLEAN);
  674. VAR i: LONGINT;
  675. BEGIN
  676. Cli;
  677. IF reboot THEN (* attempt reboot *)
  678. Portout8 (70H, 8FX); (* Reset type: p. 5-37 AT Tech. Ref. *)
  679. Wait; Portout8 (71H, 0X); (* Note: soft boot flag was set in InitMemory *)
  680. Wait; Portout8 (70H, 0DX);
  681. Wait; Portout8 (64H, 0FEX); (* reset CPU *)
  682. FOR i := 1 TO 10000 DO END;
  683. Reboot
  684. END;
  685. LOOP END
  686. END Shutdown;
  687. (* Get hard disk parameters. *)
  688. PROCEDURE GetPar (p: ADDRESS; ofs: LONGINT): LONGINT;
  689. VAR ch: CHAR;
  690. BEGIN
  691. SYSTEM.GET (p + 12 + ofs, ch);
  692. RETURN ORD (ch)
  693. END GetPar;
  694. (* Read boot table. *)
  695. PROCEDURE ReadBootTable (bt: ADDRESS);
  696. VAR i, p: ADDRESS; j, d, type, addr, size, heapSize: LONGINT; ch: CHAR;
  697. BEGIN
  698. heapSize := 0; lowTop := 0;
  699. p := bt; d := 0;
  700. LOOP
  701. SYSTEM.GET (p, type);
  702. IF type = -1 THEN
  703. EXIT (* end *)
  704. ELSIF type = 3 THEN (* boot memory/top of low memory *)
  705. SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size);
  706. lowTop := addr + size
  707. ELSIF type = 4 THEN (* free memory/extended memory size *)
  708. SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size);
  709. IF addr = HeapAdr THEN heapSize := size END
  710. ELSIF type = 5 THEN (* HD config *)
  711. IF d < MaxDisks THEN
  712. chs[d].cyls := GetPar (p, 0) + 100H * GetPar (p, 1);
  713. chs[d].hds := GetPar (p, 2); chs[d].spt := GetPar (p, 14);
  714. INC (d)
  715. END
  716. ELSIF type = 8 THEN (* config strings *)
  717. i := p + 8; j := 0; (* copy the config strings over *)
  718. LOOP
  719. SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j);
  720. IF ch = 0X THEN EXIT END;
  721. REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X; (* end of name *)
  722. REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X (* end of value *)
  723. END
  724. END;
  725. SYSTEM.GET (p + 4, size); INC (p, size)
  726. END;
  727. ASSERT((heapSize # 0) & (lowTop # 0));
  728. memTop := HeapAdr + heapSize
  729. END ReadBootTable;
  730. (** Read a byte from the non-volatile setup memory. *)
  731. PROCEDURE GetNVByte* (ofs: LONGINT): CHAR;
  732. VAR c: CHAR;
  733. BEGIN
  734. Portout8 (70H, CHR(ofs)); Wait; Portin8(71H, c);
  735. RETURN c
  736. END GetNVByte;
  737. (** Write a byte to the non-volatile setup memory. *)
  738. PROCEDURE PutNVByte* (ofs: LONGINT; val: CHAR);
  739. BEGIN
  740. Portout8 (70H, CHR(ofs)); Wait; Portout8 (71H, val)
  741. END PutNVByte;
  742. (** Compute a checksum for the Intel SMP spec floating pointer structure. *)
  743. PROCEDURE ChecksumMP* (adr: ADDRESS; size: SIZE): LONGINT;
  744. VAR sum: LONGINT; x: ADDRESS; ch: CHAR;
  745. BEGIN
  746. sum := 0;
  747. FOR x := adr TO adr + size-1 DO
  748. SYSTEM.GET (x, ch);
  749. sum := (sum + ORD(ch)) MOD 256
  750. END;
  751. RETURN sum
  752. END ChecksumMP;
  753. (* Search for MP floating pointer structure. *)
  754. PROCEDURE SearchMem (adr: ADDRESS; size: SIZE): ADDRESS;
  755. VAR x, len: LONGINT; ch: CHAR;
  756. BEGIN
  757. WHILE size > 0 DO
  758. SYSTEM.GET (adr, x);
  759. IF x = 05F504D5FH THEN (* "_MP_" found *)
  760. SYSTEM.GET (adr + 8, ch); len := ORD(ch)*16;
  761. IF len > 0 THEN
  762. SYSTEM.GET (adr + 9, ch);
  763. IF (ch = 1X) OR (ch >= 4X) THEN (* version 1.1 or 1.4 or higher *)
  764. IF ChecksumMP(adr, len) = 0 THEN
  765. RETURN adr (* found *)
  766. END
  767. END
  768. END
  769. END;
  770. INC (adr, 16); DEC (size, 16)
  771. END;
  772. RETURN NilAdr (* not found *)
  773. END SearchMem;
  774. (* Search for MP spec info. *)
  775. PROCEDURE SearchMP;
  776. VAR adr: ADDRESS;
  777. BEGIN
  778. adr := 0;
  779. SYSTEM.GET (040EH, SYSTEM.VAL (INTEGER, adr)); (* EBDA address *)
  780. adr := adr*16;
  781. IF adr < 100000H THEN adr := SearchMem(adr, 1024) (* 1. look in EBDA *)
  782. ELSE adr := NilAdr
  783. END;
  784. IF adr = NilAdr THEN (* 2. look in last kb of base memory *)
  785. adr := SearchMem(lowTop + (-lowTop) MOD 10000H - 1024, 1024);
  786. IF adr = NilAdr THEN (* 3. look at top of physical memory *)
  787. adr := SearchMem(memTop - 1024, 1024);
  788. IF adr = NilAdr THEN (* 4. look in BIOS ROM space *)
  789. adr := SearchMem(0E0000H, 20000H)
  790. END
  791. END
  792. END;
  793. IF adr = NilAdr THEN
  794. revMP := 0X; configMP := NilAdr
  795. ELSE
  796. SYSTEM.GET (adr + 9, revMP);
  797. SYSTEM.MOVE(adr + 11, ADDRESSOF(featureMP[0]), 5); (* feature bytes *)
  798. configMP := SYSTEM.GET32 (adr + 4); (* physical address outside reported RAM (spec 1.4 p. 4-2) *)
  799. IF configMP = 0 THEN configMP := NilAdr END
  800. END
  801. END SearchMP;
  802. (* Allocate area for ISA DMA. *)
  803. PROCEDURE AllocateDMA;
  804. VAR old: ADDRESS;
  805. BEGIN
  806. old := lowTop;
  807. dmaSize := DefaultDMASize*1024;
  808. ASSERT((dmaSize >= 0) & (dmaSize <= 65536));
  809. IF (lowTop-dmaSize) DIV 65536 # (lowTop-1) DIV 65536 THEN (* crosses 64KB boundary *)
  810. DEC (lowTop, lowTop MOD 65536) (* round down to 64KB boundary *)
  811. END;
  812. DEC (lowTop, dmaSize); (* allocate memory *)
  813. dmaSize := old - lowTop (* how much was allocated (including rounding) *)
  814. END AllocateDMA;
  815. (* Check if the specified address is RAM. *)
  816. PROCEDURE IsRAM(adr: ADDRESS): BOOLEAN;
  817. CONST Pattern1 = LONGINT (0BEEFC0DEH); Pattern2 = LONGINT (0AA55FF00H);
  818. VAR save, x: LONGINT; ok: BOOLEAN;
  819. BEGIN
  820. ok := FALSE;
  821. SYSTEM.GET (adr, save);
  822. SYSTEM.PUT (adr, Pattern1); (* attempt 1st write *)
  823. x := Pattern2; (* write something else *)
  824. SYSTEM.GET (adr, x); (* attempt 1st read *)
  825. IF x = Pattern1 THEN (* first test passed *)
  826. SYSTEM.PUT (adr, Pattern2); (* attempt 2nd write *)
  827. x := Pattern1; (* write something else *)
  828. SYSTEM.GET (adr, x); (* attempt 2nd read *)
  829. ok := (x = Pattern2)
  830. END;
  831. SYSTEM.PUT (adr, save);
  832. RETURN ok
  833. END IsRAM;
  834. (* Map the physical address in the second virtual page *)
  835. PROCEDURE -InvalidateTLB (address: ADDRESS);
  836. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  837. POP RAX
  838. INVLPG [RAX]
  839. END InvalidateTLB;
  840. PROCEDURE -GetPML4Base (): ADDRESS;
  841. CODE {SYSTEM.AMD64}
  842. MOV RAX, CR3
  843. END GetPML4Base;
  844. PROCEDURE -INVLPG (adr: ADDRESS);
  845. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  846. POP RAX
  847. INVLPG [RAX]
  848. END INVLPG;
  849. (* Check amount of memory available and update memTop. *)
  850. PROCEDURE CheckMemory;
  851. CONST K = 1024; M = K * K; PS = 2 * M; ExtMemAdr = M;
  852. TPS = 4 * K; UserPage = 7; PageNotPresent = 0;
  853. VAR s: ARRAY 16 OF CHAR; i: LONGINT;
  854. physicalAddress, pml4Base, pdpBase, pdBase: ADDRESS;
  855. pml4e, pdpe, pde, lastTable: ADDRESS;
  856. PROCEDURE AllocateTranslationTable (VAR baseAddress, firstEntry: ADDRESS);
  857. BEGIN
  858. baseAddress := lastTable;
  859. firstEntry := baseAddress;
  860. INC (lastTable, TPS);
  861. Fill32 (baseAddress, TPS, PageNotPresent)
  862. END AllocateTranslationTable;
  863. BEGIN
  864. GetConfig("ExtMemSize", s); (* in MB *)
  865. IF s[0] # 0X THEN (* override detection *)
  866. i := 0;
  867. memTop := ExtMemAdr + (StrToInt(i, s)) * M
  868. END;
  869. pml4Base := GetPML4Base ();
  870. DEC (pml4Base, pml4Base MOD TPS);
  871. SYSTEM.GET (pml4Base, pdpBase);
  872. DEC (pdpBase, pdpBase MOD TPS);
  873. SYSTEM.GET (pdpBase, pdBase);
  874. DEC (pdBase, pdBase MOD TPS);
  875. physicalAddress := PS;
  876. lastTable := pdBase + TPS;
  877. pml4e := pml4Base;
  878. pdpe := pdpBase;
  879. pde := pdBase;
  880. WHILE (pml4e < pml4Base + TPS) DO
  881. WHILE (pdpe < pdpBase + TPS) DO
  882. WHILE (pde < pdBase + TPS) DO
  883. INC (pde, 8);
  884. SYSTEM.PUT (pde, physicalAddress + UserPage + 80H);
  885. INVLPG (physicalAddress);
  886. INC (physicalAddress, PS);
  887. IF physicalAddress >= memTop THEN RETURN END;
  888. END;
  889. INC (pdpe, 8);
  890. AllocateTranslationTable (pdBase, pde);
  891. SYSTEM.PUT (pdpe, pde + UserPage);
  892. END;
  893. INC (pml4e, 8);
  894. AllocateTranslationTable (pdpBase, pdpe);
  895. SYSTEM.PUT (pml4e, pdpe + UserPage);
  896. END;
  897. HALT (99);
  898. END CheckMemory;
  899. (* Initialize locks. *)
  900. PROCEDURE InitLocks;
  901. VAR i: LONGINT; s: ARRAY 12 OF CHAR;
  902. BEGIN
  903. IF TimeCount # 0 THEN
  904. GetConfig("LockTimeout", s);
  905. i := 0; maxTime := StrToInt(i, s);
  906. IF maxTime > MAX(LONGINT) DIV 1000000 THEN
  907. maxTime := MAX(LONGINT)
  908. ELSE
  909. maxTime := maxTime * 1000000
  910. END
  911. END;
  912. FOR i := 0 TO MaxCPU-1 DO
  913. proc[i].locksHeld := {}; proc[i].preemptCount := 0
  914. END;
  915. FOR i := 0 TO MaxLocks-1 DO
  916. lock[i].locked := FALSE
  917. END
  918. END InitLocks;
  919. (* Return flags state. *)
  920. PROCEDURE -GetFlags (): SET;
  921. CODE {SYSTEM.AMD64}
  922. PUSHFQ
  923. POP RAX
  924. END GetFlags;
  925. (* Set flags state. *)
  926. PROCEDURE -SetFlags (s: SET);
  927. CODE {SYSTEM.AMD64}
  928. POPFQ
  929. END SetFlags;
  930. PROCEDURE -PushFlags*;
  931. CODE {SYSTEM.AMD64}
  932. PUSHFQ
  933. END PushFlags;
  934. PROCEDURE -PopFlags*;
  935. CODE {SYSTEM.AMD64}
  936. POPFQ
  937. END PopFlags;
  938. (** Disable preemption on the current processor (increment the preemption counter). Returns the current processor ID as side effect. *)
  939. PROCEDURE AcquirePreemption* (): LONGINT;
  940. VAR id: LONGINT;
  941. BEGIN
  942. PushFlags; Cli;
  943. id := ID ();
  944. INC (proc[id].preemptCount);
  945. PopFlags;
  946. RETURN id
  947. END AcquirePreemption;
  948. (** Enable preemption on the current processor (decrement the preemption counter). *)
  949. PROCEDURE ReleasePreemption*;
  950. VAR id: LONGINT;
  951. BEGIN
  952. PushFlags; Cli;
  953. id := ID ();
  954. IF StrongChecks THEN
  955. ASSERT(proc[id].preemptCount > 0)
  956. END;
  957. DEC (proc[id].preemptCount);
  958. PopFlags
  959. END ReleasePreemption;
  960. (** Return the preemption counter of the current processor (specified in parameter). *)
  961. PROCEDURE PreemptCount* (id: LONGINT): LONGINT;
  962. BEGIN
  963. IF StrongChecks THEN
  964. (*ASSERT(~(9 IN GetFlags ()));*) (* interrupts off *) (* commented out because check is too strong *)
  965. ASSERT(id = ID ()) (* caller must specify current processor *)
  966. END;
  967. RETURN proc[id].preemptCount
  968. END PreemptCount;
  969. (* Spin waiting for a lock. Return AL = 1X iff timed out. *)
  970. PROCEDURE AcquireSpinTimeout(VAR locked: BOOLEAN; count: LONGINT; flags: SET): CHAR;
  971. CODE {SYSTEM.AMD64}
  972. MOV RSI, [RBP + flags] ; RSI := flags
  973. MOV EDI, [RBP + count] ; RDI := count
  974. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  975. MOV AL, 1 ; AL := 1
  976. CLI ; switch interrupts off before acquiring lock
  977. test:
  978. CMP [RBX], AL ; locked? { AL = 1 }
  979. JE wait ; yes, go wait
  980. XCHG [RBX], AL ; set and read the lock atomically. LOCK prefix implicit.
  981. CMP AL, 1 ; was locked?
  982. JNE exit ; no, we have it now, interrupts are off, and AL # 1
  983. wait:
  984. ; ASSERT(AL = 1)
  985. XOR RCX, RCX ; just in case some processor interprets REP this way
  986. REP NOP ; PAUSE instruction (* see SpinHint *)
  987. TEST RSI, 200H ; bit 9 - IF
  988. JZ intoff
  989. STI ; restore interrupt state quickly to allow pending interrupts (e.g. AosProcessors.StopAll/Broadcast)
  990. NOP ; NOP required, otherwise STI; CLI not interruptable
  991. CLI ; disable interrupts
  992. intoff:
  993. DEC EDI ; counter
  994. JNZ test ; not timed out yet
  995. OR EDI, [RBP + count] ; re-fetch original value & set flags
  996. JZ test ; if count = 0, retry forever
  997. ; timed out (AL = 1)
  998. exit:
  999. END AcquireSpinTimeout;
  1000. (** Acquire a spin-lock and disable interrupts. *)
  1001. PROCEDURE Acquire* (level: LONGINT);
  1002. VAR id, i: LONGINT; flags: SET; start: HUGEINT;
  1003. BEGIN
  1004. id := AcquirePreemption ();
  1005. flags := GetFlags (); (* store state of interrupt flag *)
  1006. IF StrongChecks THEN
  1007. ASSERT(~(9 IN flags) OR (proc[id].locksHeld = {})); (* interrupts enabled => no locks held *)
  1008. ASSERT(~(level IN proc[id].locksHeld)) (* recursive locks not allowed *)
  1009. END;
  1010. IF (TimeCount = 0) OR (maxTime = 0) THEN
  1011. IF AcquireSpinTimeout(lock[level].locked, 0, flags) = 0X THEN END; (* {interrupts off} *)
  1012. ELSE
  1013. start := GetTimer ();
  1014. WHILE AcquireSpinTimeout(lock[level].locked, TimeCount, flags) = 1X DO
  1015. IF GetTimer () - start > maxTime THEN
  1016. trapState := proc;
  1017. trapLocksBusy := {};
  1018. FOR i := 0 TO MaxLocks-1 DO
  1019. IF lock[i].locked THEN INCL(trapLocksBusy, i) END
  1020. END;
  1021. HALT(1301) (* Lock timeout - see Traps *)
  1022. END
  1023. END
  1024. END;
  1025. IF proc[id].locksHeld = {} THEN
  1026. proc[id].state := flags
  1027. END;
  1028. INCL(proc[id].locksHeld, level); (* we now hold the lock *)
  1029. IF StrongChecks THEN (* no lower-level locks currently held by this processor *)
  1030. ASSERT((level = 0) OR (proc[id].locksHeld * {0..level-1} = {}))
  1031. END
  1032. END Acquire;
  1033. (** Release a spin-lock. Switch on interrupts when last lock released. *)
  1034. PROCEDURE Release* (level: LONGINT);
  1035. VAR id: LONGINT; flags: SET;
  1036. BEGIN (* {interrupts off} *)
  1037. id := ID ();
  1038. IF StrongChecks THEN
  1039. ASSERT(~(9 IN GetFlags ())); (* {interrupts off} *)
  1040. ASSERT(lock[level].locked);
  1041. ASSERT(level IN proc[id].locksHeld)
  1042. END;
  1043. EXCL(proc[id].locksHeld, level);
  1044. IF proc[id].locksHeld = {} THEN
  1045. flags := proc[id].state ELSE flags := GetFlags ()
  1046. END;
  1047. lock[level].locked := FALSE;
  1048. SetFlags(flags);
  1049. ReleasePreemption
  1050. END Release;
  1051. (** Acquire all locks. Only for exceptional cases. *)
  1052. PROCEDURE AcquireAll*;
  1053. VAR lock: LONGINT;
  1054. BEGIN
  1055. FOR lock := HighestLock TO LowestLock BY -1 DO Acquire(lock) END
  1056. END AcquireAll;
  1057. (** Release all locks. Reverse of AcquireAll. *)
  1058. PROCEDURE ReleaseAll*;
  1059. VAR lock: LONGINT;
  1060. BEGIN
  1061. FOR lock := LowestLock TO HighestLock DO Release(lock) END
  1062. END ReleaseAll;
  1063. (** Break all locks held by current processor (for exception handling). Returns levels released. *)
  1064. PROCEDURE BreakAll* (): SET;
  1065. VAR id, level: LONGINT; released: SET;
  1066. BEGIN
  1067. id := AcquirePreemption ();
  1068. PushFlags; Cli;
  1069. released := {};
  1070. FOR level := 0 TO MaxLocks-1 DO
  1071. IF level IN proc[id].locksHeld THEN
  1072. lock[level].locked := FALSE; (* break the lock *)
  1073. EXCL(proc[id].locksHeld, level);
  1074. INCL(released, level)
  1075. END
  1076. END;
  1077. IF proc[id].preemptCount > 1 THEN INCL(released, Preemption) END;
  1078. proc[id].preemptCount := 0; (* clear preemption flag *)
  1079. PopFlags;
  1080. RETURN released
  1081. END BreakAll;
  1082. (** Acquire a fine-grained lock on an active object. *)
  1083. PROCEDURE AcquireObject* (VAR locked: BOOLEAN);
  1084. CODE {SYSTEM.AMD64}
  1085. PUSHFQ
  1086. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  1087. MOV AL, 1
  1088. test:
  1089. CMP [RBX], AL ; locked? { AL = 1 }
  1090. JNE try
  1091. STI
  1092. PAUSE ; PAUSE instruction (* see SpinHint *)
  1093. CLI
  1094. JMP test
  1095. try:
  1096. XCHG [RBX], AL ; set and read the lock atomically. LOCK prefix implicit.
  1097. CMP AL, 1 ; was locked?
  1098. JE test ; yes, try again
  1099. POPFQ
  1100. END AcquireObject;
  1101. (** Release an active object lock. *)
  1102. PROCEDURE ReleaseObject* (VAR locked: BOOLEAN);
  1103. CODE {SYSTEM.AMD64}
  1104. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  1105. MOV BYTE [RBX], 0
  1106. END ReleaseObject;
  1107. (* Load global descriptor table *)
  1108. PROCEDURE LoadGDT(base: ADDRESS; size: SIZE);
  1109. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1110. ; LGDT needs 10 bytes: 2 for the 16-bit limit and 8 for the 64-bit base address in this order
  1111. ; Assumption: size argument in front of base -> promote size value to upper 48 bits of size
  1112. SHL QWORD [RBP + size], 64-16
  1113. LGDT [RBP + size + (64-16) / 8]
  1114. END LoadGDT;
  1115. (* Load segment registers *)
  1116. PROCEDURE LoadSegRegs(data: INTEGER);
  1117. CODE {SYSTEM.AMD64}
  1118. MOV AX, [RBP + data]
  1119. MOV DS, AX
  1120. XOR AX, AX
  1121. MOV ES, AX
  1122. MOV FS, AX
  1123. MOV GS, AX
  1124. END LoadSegRegs;
  1125. (* Return CS. *)
  1126. PROCEDURE -CS* (): INTEGER;
  1127. CODE {SYSTEM.AMD64}
  1128. MOV AX, CS
  1129. END CS;
  1130. (** -- Memory management -- *)
  1131. (* Allocate a physical page below 1M. Parameter adr returns physical and virtual address (or NilAdr).*)
  1132. PROCEDURE NewLowPage(VAR adr: ADDRESS);
  1133. BEGIN
  1134. adr := freeLowPage;
  1135. IF freeLowPage # NilAdr THEN
  1136. SYSTEM.GET (freeLowPage, freeLowPage); (* freeLowPage := freeLowPage.next *)
  1137. DEC(freeLowPages)
  1138. END
  1139. END NewLowPage;
  1140. (* Allocate a directly-mapped page. Parameter adr returns physical and virtual address (or NilAdr). *)
  1141. PROCEDURE NewDirectPage(VAR adr: ADDRESS);
  1142. BEGIN
  1143. IF pageHeapAdr # heapEndAdr THEN
  1144. DEC(pageHeapAdr, PS); adr := pageHeapAdr;
  1145. DEC(freeHighPages)
  1146. ELSE
  1147. adr := NilAdr
  1148. END
  1149. END NewDirectPage;
  1150. (* Allocate a physical page. *)
  1151. PROCEDURE NewPage(VAR physAdr: ADDRESS);
  1152. VAR sp, prev: ADDRESS;
  1153. BEGIN
  1154. SYSTEM.GET(pageStackAdr + NodeSP, sp);
  1155. ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *)
  1156. IF sp > MinSP THEN (* stack not empty, pop entry *)
  1157. DEC(sp, AddressSize);
  1158. SYSTEM.GET (pageStackAdr+sp, physAdr);
  1159. SYSTEM.PUT (pageStackAdr+NodeSP, sp);
  1160. SYSTEM.GET (pageStackAdr+NodePrev, prev);
  1161. IF (sp = MinSP) & (prev # NilAdr) THEN
  1162. pageStackAdr := prev
  1163. END;
  1164. DEC(freeHighPages)
  1165. ELSE
  1166. NewDirectPage(physAdr)
  1167. END
  1168. END NewPage;
  1169. (* Deallocate a physical page. *)
  1170. PROCEDURE DisposePage(physAdr: ADDRESS);
  1171. VAR sp, next, newAdr: ADDRESS;
  1172. BEGIN
  1173. SYSTEM.GET (pageStackAdr + NodeSP, sp);
  1174. ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *)
  1175. IF sp = MaxSP THEN (* current stack full *)
  1176. SYSTEM.GET (pageStackAdr + NodeNext, next);
  1177. IF next # NilAdr THEN (* next stack exists, make it current *)
  1178. pageStackAdr := next;
  1179. SYSTEM.GET (pageStackAdr+NodeSP, sp);
  1180. ASSERT(sp = MinSP) (* must be empty *)
  1181. ELSE (* allocate next stack *)
  1182. NewDirectPage(newAdr);
  1183. IF newAdr = NilAdr THEN
  1184. NewLowPage(newAdr); (* try again from reserve *)
  1185. IF newAdr = NilAdr THEN
  1186. IF Stats THEN INC(NlostPages) END;
  1187. RETURN (* give up (the disposed page is lost) *)
  1188. ELSE
  1189. IF Stats THEN INC(NreservePagesUsed) END
  1190. END
  1191. END;
  1192. sp := MinSP; (* will be written to NodeSP below *)
  1193. SYSTEM.PUT (newAdr + NodeNext, next);
  1194. SYSTEM.PUT (newAdr + NodePrev, pageStackAdr);
  1195. pageStackAdr := newAdr
  1196. END
  1197. END;
  1198. (* push entry on current stack *)
  1199. SYSTEM.PUT (pageStackAdr + sp, physAdr);
  1200. SYSTEM.PUT (pageStackAdr + NodeSP, sp + AddressSize);
  1201. INC(freeHighPages)
  1202. END DisposePage;
  1203. (* Allocate virtual address space for mapping. Parameter size must be multiple of page size. Parameter virtAdr returns virtual address or NilAdr on failure. *)
  1204. PROCEDURE NewVirtual(VAR virtAdr: ADDRESS; size: SIZE);
  1205. BEGIN
  1206. ASSERT(size MOD PS = 0);
  1207. (*
  1208. IF mapTop+size > MapAreaAdr+MapAreaSize THEN
  1209. virtAdr := NilAdr (* out of virtual space *)
  1210. ELSE
  1211. virtAdr := mapTop;
  1212. INC(mapTop, size)
  1213. END
  1214. *)
  1215. (* this code is commented because PACO produces weird behaviour when used with
  1216. 64-bit ADDRESS*)
  1217. virtAdr := mapTop;
  1218. INC(mapTop, size)
  1219. END NewVirtual;
  1220. PROCEDURE DisposeVirtual(virtAdr: ADDRESS; size: SIZE);
  1221. (* to do *)
  1222. END DisposeVirtual;
  1223. (* Map a physical page into the virtual address space. Parameter virtAdr is mapped address and phys is mapping value. Returns TRUE iff mapping successful. *)
  1224. PROCEDURE MapTable (base, index: ADDRESS): ADDRESS;
  1225. VAR pt: ADDRESS;
  1226. BEGIN
  1227. SYSTEM.GET (base + index * AddressSize, pt);
  1228. IF ODD (pt) THEN (* pt present *)
  1229. DEC (pt, pt MOD TPS)
  1230. ELSE
  1231. NewPage(pt);
  1232. IF pt = NilAdr THEN RETURN NilAdr END;
  1233. SYSTEM.PUT (base + index * AddressSize, pt + UserPage);
  1234. Fill32 (pt, TPS, PageNotPresent)
  1235. END;
  1236. RETURN pt;
  1237. END MapTable;
  1238. PROCEDURE MapPage(virtAdr, phys: ADDRESS): BOOLEAN;
  1239. VAR i, pt: ADDRESS;
  1240. pml4e, pdpe, pde, pte: ADDRESS;
  1241. BEGIN
  1242. virtAdr := virtAdr DIV PS;
  1243. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1244. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1245. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1246. pml4e := virtAdr MOD PTEs;
  1247. pt := MapTable (kernelPML4, pml4e);
  1248. IF pt = NilAdr THEN RETURN FALSE END;
  1249. pt := MapTable (pt, pdpe);
  1250. IF pt = NilAdr THEN RETURN FALSE END;
  1251. pt := MapTable (pt, pde);
  1252. IF pt = NilAdr THEN RETURN FALSE END;
  1253. SYSTEM.PUT(pt + pte * AddressSize, phys);
  1254. RETURN TRUE;
  1255. END MapPage;
  1256. (* Return mapped page address for a given virtual address (ODD if mapped) *)
  1257. PROCEDURE MappedPage(virtAdr: ADDRESS): ADDRESS;
  1258. VAR pt: ADDRESS;
  1259. pml4e, pdpe, pde, pte: ADDRESS;
  1260. BEGIN
  1261. virtAdr := virtAdr DIV PS;
  1262. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1263. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1264. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1265. pml4e := virtAdr MOD PTEs;
  1266. SYSTEM.GET(kernelPML4 + pml4e * AddressSize, pt);
  1267. IF ~ODD(pt) THEN RETURN 0 END;
  1268. DEC (pt, pt MOD 1000H);
  1269. SYSTEM.GET(pt + pdpe * AddressSize, pt);
  1270. IF ~ODD(pt) THEN RETURN 0 END;
  1271. DEC (pt, pt MOD 1000H);
  1272. SYSTEM.GET(pt + pde * AddressSize, pt);
  1273. IF ~ODD(pt) THEN RETURN 0 END;
  1274. DEC (pt, pt MOD 1000H);
  1275. SYSTEM.GET (pt + pte * AddressSize, pt);
  1276. RETURN pt;
  1277. END MappedPage;
  1278. (* Unmap a page and return the previous mapping, like MappedPage (). Caller must flush TLB. *)
  1279. PROCEDURE UnmapPage(virtAdr: ADDRESS): ADDRESS;
  1280. VAR t, pt: ADDRESS;
  1281. pml4e, pdpe, pde, pte: ADDRESS;
  1282. BEGIN
  1283. virtAdr := virtAdr DIV PS;
  1284. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1285. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1286. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1287. pml4e := virtAdr MOD PTEs;
  1288. SYSTEM.GET(kernelPML4 + pml4e * AddressSize, pt);
  1289. IF ~ODD(pt) THEN RETURN 0 END;
  1290. DEC (pt, pt MOD 1000H);
  1291. SYSTEM.GET(pt + pdpe * AddressSize, pt);
  1292. IF ~ODD(pt) THEN RETURN 0 END;
  1293. DEC (pt, pt MOD 1000H);
  1294. SYSTEM.GET(pt + pde * AddressSize, pt);
  1295. IF ~ODD(pt) THEN RETURN 0 END;
  1296. DEC (pt, pt MOD 1000H);
  1297. SYSTEM.GET(pt + pte * AddressSize, t);
  1298. SYSTEM.PUT(pt + pte * AddressSize, NIL);
  1299. INVLPG (t);
  1300. RETURN t;
  1301. END UnmapPage;
  1302. (* Map area [virtAdr..virtAdr+size) directly to area [Adr(phys)..Adr(phys)+size). Returns TRUE iff successful. *)
  1303. PROCEDURE MapDirect(virtAdr: ADDRESS; size: SIZE; phys: ADDRESS): BOOLEAN;
  1304. BEGIN
  1305. (*
  1306. Trace.String("MapDirect "); Trace.Address (virtAdr); Trace.Char(' '); Trace.Address (phys); Trace.Char (' '); Trace.Int (size, 0);
  1307. Trace.Int(size DIV PS, 8); Trace.Ln;
  1308. *)
  1309. ASSERT((virtAdr MOD PS = 0) & (size MOD PS = 0));
  1310. WHILE size # 0 DO
  1311. IF ~ODD(MappedPage(virtAdr)) THEN
  1312. IF ~MapPage(virtAdr, phys) THEN RETURN FALSE END
  1313. END;
  1314. INC(virtAdr, PS); INC(phys, PS); DEC(size, PS)
  1315. END;
  1316. RETURN TRUE
  1317. END MapDirect;
  1318. (* Policy decision for heap expansion. NewBlock for the same block has failed try times. *)
  1319. PROCEDURE ExpandNow(try: LONGINT): BOOLEAN;
  1320. VAR size: SIZE;
  1321. BEGIN
  1322. size := LSH(memBlockTail.endBlockAdr - memBlockHead.beginBlockAdr, -10); (* heap size in KB *)
  1323. RETURN (~ODD(try) OR (size < heapMinKB)) & (size < heapMaxKB)
  1324. END ExpandNow;
  1325. (* Try to expand the heap by at least "size" bytes *)
  1326. PROCEDURE ExpandHeap*(try: LONGINT; size: SIZE; VAR memBlock: MemoryBlock; VAR beginBlockAdr, endBlockAdr: ADDRESS);
  1327. BEGIN
  1328. IF ExpandNow(try) THEN
  1329. IF size < expandMin THEN size := expandMin END;
  1330. beginBlockAdr := memBlockHead.endBlockAdr;
  1331. endBlockAdr := beginBlockAdr;
  1332. INC(endBlockAdr, size);
  1333. SetHeapEndAdr(endBlockAdr); (* in/out parameter *)
  1334. memBlock := memBlockHead;
  1335. (* endBlockAdr of memory block is set by caller after free block has been set in memory block - this process is part of lock-free heap expansion *)
  1336. ELSE
  1337. beginBlockAdr := memBlockHead.endBlockAdr;
  1338. endBlockAdr := memBlockHead.endBlockAdr;
  1339. memBlock := NIL
  1340. END
  1341. END ExpandHeap;
  1342. (* Set memory block end address *)
  1343. PROCEDURE SetMemoryBlockEndAddress*(memBlock: MemoryBlock; endBlockAdr: ADDRESS);
  1344. BEGIN
  1345. ASSERT(endBlockAdr >= memBlock.beginBlockAdr);
  1346. memBlock.endBlockAdr := endBlockAdr
  1347. END SetMemoryBlockEndAddress;
  1348. (* Free unused memory block *)
  1349. PROCEDURE FreeMemBlock*(memBlock: MemoryBlock);
  1350. BEGIN
  1351. HALT(515) (* impossible to free heap in I386 native A2 version *)
  1352. END FreeMemBlock;
  1353. (** Attempt to set the heap end address to the specified address. The returned value is the actual new end address (never smaller than previous value). *)
  1354. PROCEDURE SetHeapEndAdr(VAR endAdr: ADDRESS);
  1355. VAR n, m: SIZE;
  1356. BEGIN
  1357. Acquire(Memory);
  1358. n := LSH(endAdr+(PS-1), -PSlog2) - LSH(heapEndAdr, -PSlog2); (* pages requested *)
  1359. m := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2) - ReservedPages; (* max pages *)
  1360. IF n > m THEN n := m END;
  1361. IF n > 0 THEN INC(heapEndAdr, n*PS); DEC(freeHighPages, n) END;
  1362. endAdr := heapEndAdr;
  1363. Release(Memory)
  1364. END SetHeapEndAdr;
  1365. (** Map a physical memory area (physAdr..physAdr+size-1) into the virtual address space. Parameter virtAdr returns the virtual address of mapped region, or NilAdr on failure. *)
  1366. PROCEDURE MapPhysical*(physAdr: ADDRESS; size: SIZE; VAR virtAdr: ADDRESS);
  1367. VAR ofs: ADDRESS;
  1368. BEGIN
  1369. IF (LSH(physAdr, -PSlog2) <= topPageNum) &
  1370. (LSH(physAdr+size-1, -PSlog2) <= topPageNum) &
  1371. (LSH(physAdr, -PSlog2) >= LSH(LowAdr, -PSlog2)) THEN
  1372. virtAdr := physAdr (* directly mapped *)
  1373. ELSE
  1374. ofs := physAdr MOD PS;
  1375. DEC(physAdr, ofs); INC(size, ofs); (* align start to page boundary *)
  1376. INC(size, (-size) MOD PS); (* align end to page boundary *)
  1377. Acquire(Memory);
  1378. NewVirtual(virtAdr, size);
  1379. IF virtAdr # NilAdr THEN
  1380. IF ~MapDirect(virtAdr, size, physAdr + UserPage) THEN
  1381. DisposeVirtual(virtAdr, size);
  1382. virtAdr := NilAdr
  1383. END
  1384. END;
  1385. Release(Memory);
  1386. IF TraceVerbose THEN
  1387. Acquire (TraceOutput);
  1388. Trace.String("Mapping ");
  1389. Trace.IntSuffix(size, 1, "B"); Trace.String(" at ");
  1390. Trace.Address (physAdr); Trace.String (" - "); Trace.Address (physAdr+size-1);
  1391. IF virtAdr = NilAdr THEN
  1392. Trace.String(" failed")
  1393. ELSE
  1394. Trace.String (" to "); Trace.Address (virtAdr);
  1395. IF ofs # 0 THEN Trace.String (", offset "); Trace.Int(ofs, 0) END
  1396. END;
  1397. Trace.Ln;
  1398. Release (TraceOutput);
  1399. END;
  1400. IF virtAdr # NilAdr THEN INC(virtAdr, ofs) END (* adapt virtual address to correct offset *)
  1401. END
  1402. END MapPhysical;
  1403. (** Unmap an area previously mapped with MapPhysical. *)
  1404. PROCEDURE UnmapPhysical*(virtAdr: ADDRESS; size: SIZE);
  1405. (* to do *)
  1406. END UnmapPhysical;
  1407. (** Return the physical address of the specified range of memory, or NilAdr if the range is not contiguous. It is the caller's responsibility to assure the range remains allocated during the time it is in use. *)
  1408. PROCEDURE PhysicalAdr*(adr: ADDRESS; size: SIZE): ADDRESS;
  1409. VAR physAdr, mapped, expected: ADDRESS;
  1410. BEGIN
  1411. IF (LSH(adr, -PSlog2) <= topPageNum) & (LSH(adr+size-1, -PSlog2) <= topPageNum) THEN
  1412. RETURN adr (* directly mapped *)
  1413. ELSE
  1414. Acquire(Memory);
  1415. mapped := MappedPage(adr);
  1416. Release(Memory);
  1417. IF ODD(mapped) & (size > 0) THEN (* mapped, and range not empty or too big *)
  1418. physAdr := mapped - mapped MOD PS + adr MOD PS; (* strip paging bits and add page offset *)
  1419. (* now check if whole range is physically contiguous *)
  1420. DEC(size, PS - adr MOD PS); (* subtract distance to current page end *)
  1421. IF size > 0 THEN (* range crosses current page end *)
  1422. expected := LSH(mapped, -PSlog2)+1; (* expected physical page *)
  1423. LOOP
  1424. INC(adr, PS); (* step to next page *)
  1425. Acquire(Memory);
  1426. mapped := MappedPage(adr);
  1427. Release(Memory);
  1428. IF ~ODD(mapped) OR (LSH(mapped, -PSlog2) # expected) THEN
  1429. physAdr := NilAdr; EXIT
  1430. END;
  1431. DEC(size, PS);
  1432. IF size <= 0 THEN EXIT END; (* ok *)
  1433. INC(expected)
  1434. END
  1435. ELSE
  1436. (* ok, skip *)
  1437. END
  1438. ELSE
  1439. physAdr := NilAdr
  1440. END;
  1441. RETURN physAdr
  1442. END
  1443. END PhysicalAdr;
  1444. (** Translate a virtual address range to num ranges of physical address. num returns 0 on error. *)
  1445. PROCEDURE TranslateVirtual*(virtAdr: ADDRESS; size: SIZE; VAR num: LONGINT; VAR physAdr: ARRAY OF Range);
  1446. VAR ofs, phys1: ADDRESS; size1: SIZE;
  1447. BEGIN
  1448. Acquire(Memory);
  1449. num := 0;
  1450. LOOP
  1451. IF size = 0 THEN EXIT END;
  1452. IF num = LEN(physAdr) THEN num := 0; EXIT END; (* index check *)
  1453. ofs := virtAdr MOD PS; (* offset in page *)
  1454. size1 := PS - ofs; (* distance to next page boundary *)
  1455. IF size1 > size THEN size1 := size END;
  1456. phys1 := MappedPage(virtAdr);
  1457. IF ~ODD(phys1) THEN num := 0; EXIT END; (* page not present *)
  1458. physAdr[num].adr := phys1 - phys1 MOD PS + ofs;
  1459. physAdr[num].size := size1; INC(num);
  1460. INC(virtAdr, size1); DEC(size, size1)
  1461. END;
  1462. IF num = 0 THEN physAdr[0].adr := NilAdr; physAdr[0].size := 0 END;
  1463. Release(Memory)
  1464. END TranslateVirtual;
  1465. (** Return information on free memory in Kbytes. *)
  1466. PROCEDURE GetFreeK*(VAR total, lowFree, highFree: SIZE);
  1467. CONST KperPage = PS DIV 1024;
  1468. BEGIN
  1469. Acquire(Memory);
  1470. total := totalPages * KperPage;
  1471. lowFree := freeLowPages * KperPage;
  1472. highFree := freeHighPages * KperPage;
  1473. Release(Memory)
  1474. END GetFreeK;
  1475. (** -- Stack -- *)
  1476. (** Extend the stack to include the specified address, if possible. Returns TRUE iff ok. *)
  1477. PROCEDURE ExtendStack*(VAR s: Stack; virtAdr: ADDRESS): BOOLEAN;
  1478. VAR phys: ADDRESS; ok: BOOLEAN;
  1479. BEGIN
  1480. Acquire(Memory);
  1481. ok := FALSE;
  1482. IF (virtAdr < s.high) & (virtAdr >= s.low) THEN
  1483. DEC(virtAdr, virtAdr MOD PS); (* round down to page boundary *)
  1484. IF Stats & (virtAdr < s.adr-PS) THEN INC(Nbigskips) END;
  1485. IF ODD(MappedPage(virtAdr)) THEN (* already mapped *)
  1486. ok := TRUE
  1487. ELSE
  1488. NewPage(phys);
  1489. IF phys # NilAdr THEN
  1490. IF MapPage(virtAdr, phys + UserPage) THEN
  1491. IF virtAdr < s.adr THEN
  1492. s.adr := virtAdr
  1493. ELSE
  1494. IF Stats THEN INC(Nfilled) END
  1495. END;
  1496. ok := TRUE
  1497. ELSE
  1498. DisposePage(phys)
  1499. END
  1500. END
  1501. END
  1502. END;
  1503. Release(Memory);
  1504. RETURN ok
  1505. END ExtendStack;
  1506. (** Allocate a stack. Parameter initSP returns initial stack pointer value. *)
  1507. PROCEDURE NewStack*(VAR s: Stack; process: ANY; VAR initSP: ADDRESS);
  1508. VAR adr, phys: ADDRESS; old: HUGEINT; free: SET;
  1509. BEGIN
  1510. ASSERT(InitUserStackSize = PS); (* for now *)
  1511. Acquire(Memory);
  1512. IF Stats THEN INC(NnewStacks) END;
  1513. old := freeStackIndex;
  1514. LOOP
  1515. IF Stats THEN INC(NnewStackLoops) END;
  1516. free := freeStack[freeStackIndex];
  1517. IF free # {} THEN
  1518. adr := 0; WHILE ~(adr IN free) DO INC(adr) END; (* BTW: BSF instruction is not faster *)
  1519. IF Stats THEN INC(NnewStackInnerLoops, adr+1) END;
  1520. EXCL(freeStack[freeStackIndex], adr);
  1521. adr := 10000000H + (freeStackIndex*SetSize + adr)*MaxUserStackSize; (*StackAreaAdr *)
  1522. EXIT
  1523. END;
  1524. INC(freeStackIndex);
  1525. IF freeStackIndex = LEN(freeStack) THEN freeStackIndex := 0 END;
  1526. IF freeStackIndex = old THEN HALT(1503) END (* out of stack space *)
  1527. END;
  1528. NewPage(phys); ASSERT(phys # NilAdr); (* allocate one physical page at first *)
  1529. s.high := adr + MaxUserStackSize; s.low := adr + UserStackGuardSize;
  1530. s.adr := s.high - InitUserStackSize; (* at the top of the virtual area *)
  1531. initSP := s.high-AddressSize;
  1532. IF ~MapPage(s.adr, phys + UserPage) THEN HALT(99) END;
  1533. SYSTEM.PUT (initSP, process);
  1534. Release(Memory)
  1535. END NewStack;
  1536. (** Return the process pointer set when the current user stack was created (must be running on user stack). *)
  1537. PROCEDURE -GetProcessPtr* (): ANY;
  1538. CODE {SYSTEM.AMD64}
  1539. MOV RAX, -MaxUserStackSize
  1540. AND RAX, RSP
  1541. MOV RAX, [RAX + MaxUserStackSize - 8]
  1542. POP RBX; pointer return passed via stack
  1543. MOV [RBX], RAX
  1544. END GetProcessPtr;
  1545. (** True iff current process works on a kernel stack *)
  1546. PROCEDURE WorkingOnKernelStack* (): BOOLEAN;
  1547. VAR id: LONGINT; sp: ADDRESS;
  1548. BEGIN
  1549. ASSERT(KernelStackSize # MaxUserStackSize - UserStackGuardSize); (* detection does only work with this assumption *)
  1550. sp := CurrentSP ();
  1551. id := ID ();
  1552. RETURN (sp >= procm[id].stack.low) & (sp <= procm[id].stack.high)
  1553. END WorkingOnKernelStack;
  1554. (** Deallocate a stack. Current thread should not dispose its own stack. Uses privileged instructions. *)
  1555. PROCEDURE DisposeStack*(CONST s: Stack);
  1556. VAR adr, phys: ADDRESS;
  1557. BEGIN
  1558. (* First make sure there are no references to virtual addresses of the old stack in the TLBs. This is required because we are freeing the pages, and they could be remapped later at different virtual addresses. DisposeStack will only be called from the thread finalizer, which ensures that the user will no longer be referencing this memory. Therefore we can make this upcall from outside the locked region, avoiding potential deadlock. *)
  1559. GlobalFlushTLB; (* finalizers are only called after Processors has initialized this upcall *)
  1560. Acquire(Memory);
  1561. IF Stats THEN INC(NdisposeStacks) END;
  1562. adr := s.adr; (* unmap and deallocate all pages of stack *)
  1563. REPEAT
  1564. phys := UnmapPage(adr); (* TLB was flushed and no intermediate references possible to unreachable stack *)
  1565. IF ODD(phys) THEN DisposePage(phys - phys MOD PS) END;
  1566. INC(adr, PS)
  1567. UNTIL adr = s.high;
  1568. adr := (adr - MaxUserStackSize - StackAreaAdr) DIV MaxUserStackSize;
  1569. INCL(freeStack[adr DIV 32], adr MOD 32);
  1570. Release(Memory)
  1571. END DisposeStack;
  1572. (** Check if the specified stack is valid. *)
  1573. PROCEDURE ValidStack*(CONST s: Stack; sp: ADDRESS): BOOLEAN;
  1574. VAR valid: BOOLEAN;
  1575. BEGIN
  1576. Acquire(Memory);
  1577. valid := (sp MOD 4 = 0) & (sp >= s.adr) & (sp <= s.high);
  1578. WHILE valid & (sp < s.high) DO
  1579. valid := ODD(MappedPage(sp));
  1580. INC(sp, PS)
  1581. END;
  1582. Release(Memory);
  1583. RETURN valid
  1584. END ValidStack;
  1585. (** Update the stack snapshot of the current processor. (for Processors) *)
  1586. PROCEDURE UpdateState*;
  1587. VAR id: LONGINT;
  1588. BEGIN
  1589. ASSERT(CS () MOD 4 = 0); (* to get kernel stack pointer *)
  1590. id := ID ();
  1591. ASSERT(procm[id].stack.high # 0); (* current processor stack has been assigned *)
  1592. procm[id].sp := CurrentBP () (* instead of ESP, just fetch EBP of current procedure (does not contain pointers) *)
  1593. END UpdateState;
  1594. (** Get kernel stack regions for garbage collection. (for Heaps) *)
  1595. PROCEDURE GetKernelStacks*(VAR stack: ARRAY OF Stack);
  1596. VAR i: LONGINT;
  1597. BEGIN (* {UpdateState has been called by each processor} *)
  1598. FOR i := 0 TO MaxCPU-1 DO
  1599. stack[i].adr := procm[i].sp;
  1600. stack[i].high := procm[i].stack.high
  1601. END
  1602. END GetKernelStacks;
  1603. (* Init page tables (paging still disabled until EnableMM is called). *)
  1604. PROCEDURE InitPages;
  1605. VAR i, j: HUGEINT; phys, lTop, mTop: ADDRESS;
  1606. BEGIN
  1607. (* get top of high and low memory *)
  1608. mTop := memTop;
  1609. DEC(mTop, mTop MOD PS); (* mTop MOD PS = 0 *)
  1610. topPageNum := LSH(mTop-1, -PSlog2);
  1611. lTop := lowTop;
  1612. DEC(lTop, lTop MOD PS); (* lTop MOD PS = 0 *)
  1613. (* initialize NewDirectPage and SetHeapEndAdr (get kernel range) *)
  1614. SYSTEM.GET (LinkAdr + EndBlockOfs, heapEndAdr);
  1615. (* ug *) (*
  1616. SYSTEM.PUT (heapEndAdr, NIL); (* set tag to NIL *)
  1617. INC(heapEndAdr, AddressSize); (* space for NIL *)
  1618. *)
  1619. (* ug: not needed, extension of heap done in GetStaticHeap anyway
  1620. INC(heapEndAdr, K); (* space for free heap block descriptor of type Heaps.HeapBlockDesc at heapEndAdr, initialization is done in Heaps *)
  1621. INC(heapEndAdr, (-heapEndAdr) MOD PS); (* round up to page size *)
  1622. *)
  1623. pageHeapAdr := mTop;
  1624. freeHighPages := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2);
  1625. IF TraceVerbose THEN
  1626. Trace.String("Kernel: "); Trace.Address (LinkAdr); Trace.String(" .. ");
  1627. Trace.Address (heapEndAdr-1); Trace.Ln;
  1628. Trace.String ("High: "); Trace.Address (heapEndAdr); Trace.String(" .. ");
  1629. Trace.Address (pageHeapAdr-1); Trace.String(" = "); Trace.Int (SHORT(freeHighPages),0);
  1630. Trace.StringLn (" free pages")
  1631. END;
  1632. (* initialize empty free page stack *)
  1633. NewDirectPage(pageStackAdr); ASSERT(pageStackAdr # NilAdr);
  1634. SYSTEM.PUT (pageStackAdr+NodeSP, SYSTEM.VAL (ADDRESS, MinSP));
  1635. SYSTEM.PUT (pageStackAdr+NodeNext, SYSTEM.VAL (ADDRESS, NilAdr));
  1636. SYSTEM.PUT (pageStackAdr+NodePrev, SYSTEM.VAL (ADDRESS, NilAdr));
  1637. (* free low pages *)
  1638. freeLowPage := NilAdr; freeLowPages := 0;
  1639. i := lTop DIV PS; j := LowAdr DIV PS;
  1640. IF TraceVerbose THEN
  1641. Trace.String("Low: "); Trace.Address (j*PS); Trace.String (".."); Trace.Address (i*PS-1)
  1642. END;
  1643. REPEAT
  1644. DEC(i); phys := i*PS;
  1645. SYSTEM.PUT (phys, freeLowPage); (* phys.next := freeLowPage *)
  1646. freeLowPage := phys; INC(freeLowPages)
  1647. UNTIL i = j;
  1648. IF TraceVerbose THEN
  1649. Trace.String(" = "); Trace.Int(SHORT(freeLowPages), 1); Trace.StringLn (" free pages")
  1650. END;
  1651. totalPages := LSH(memTop - M + lowTop + dmaSize + PS, -PSlog2); (* what BIOS gave us *)
  1652. (* stacks *)
  1653. ASSERT((StackAreaAdr MOD MaxUserStackSize = 0) & (StackAreaSize MOD MaxUserStackSize = 0));
  1654. FOR i := 0 TO LEN(freeStack)-1 DO freeStack[i] := {0..SetSize-1} END;
  1655. FOR i := MaxUserStacks TO LEN(freeStack)*SetSize-1 DO EXCL(freeStack[i DIV SetSize], i MOD SetSize) END;
  1656. freeStackIndex := 0;
  1657. (* mappings *)
  1658. mapTop := MapAreaAdr;
  1659. (* create the address space *)
  1660. NewPage(kernelPML4); ASSERT(kernelPML4 # NilAdr);
  1661. Fill32(kernelPML4, TPS, PageNotPresent);
  1662. IF ~MapDirect(LowAdr, memTop-LowAdr, LowAdr + UserPage) THEN HALT(99) END (* map heap direct *)
  1663. END InitPages;
  1664. (* Generate a memory segment descriptor. type IN {0..7} & dpl IN {0..3}.
  1665. type
  1666. 0 data, expand-up, read-only
  1667. 1 data, expand-up, read-write
  1668. 2 data, expand-down, read-only
  1669. 3 data, expand-down, read-write
  1670. 4 code, non-conforming, execute-only
  1671. 5 code, non-conforming, execute-read
  1672. 6 code, conforming, execute-only
  1673. 7 code, conforming, execute-read
  1674. *)
  1675. PROCEDURE GenCodeSegDesc (dpl, base, limit: LONGINT; conforming, longmode: BOOLEAN; VAR sd: SegDesc);
  1676. VAR s: SET;
  1677. BEGIN
  1678. sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H;
  1679. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1680. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1681. s := s + {9, 11, 12, 15, 23}; (* present=1, D = 0*)
  1682. IF conforming THEN INCL(s, 10) END;
  1683. IF longmode THEN INCL(s, 21) ELSE INCL (s, 22) END; (* long mode flag or default 32-bit operand *)
  1684. sd.high := SYSTEM.VAL(LONGINT, s)
  1685. END GenCodeSegDesc;
  1686. PROCEDURE GenDataSegDesc (dpl, base, limit: LONGINT; VAR sd: SegDesc);
  1687. VAR s: SET;
  1688. BEGIN
  1689. sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H;
  1690. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1691. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1692. s := s + {9, 12, 15, 22, 23}; (* present=1 *)
  1693. sd.high := SYSTEM.VAL(LONGINT, s)
  1694. END GenDataSegDesc;
  1695. (* Generate a 64-bit TSS descriptor (16bytes). *)
  1696. PROCEDURE GenTSSDesc(base: ADDRESS; limit, dpl: LONGINT; VAR sdl, sdh: SegDesc);
  1697. VAR s: SET;
  1698. BEGIN
  1699. sdl.low := SYSTEM.VAL(LONGINT, ASH(base MOD 10000H, 16) + limit MOD 10000H);
  1700. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1701. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1702. s := s + {8, 11, 15}; (* type=non-busy TSS, present=1, AVL=0, 32-bit=0 *)
  1703. sdl.high := SYSTEM.VAL(LONGINT, s);
  1704. sdh.low := SYSTEM.VAL(LONGINT, base DIV 10000000H);
  1705. sdh.high := 0;
  1706. END GenTSSDesc;
  1707. (* Initialize segmentation. *)
  1708. PROCEDURE InitSegments;
  1709. VAR i: LONGINT;
  1710. BEGIN
  1711. (* limits and bases are ignored in 64-bit mode *)
  1712. (* GDT 0: Null segment *)
  1713. gdt[0].low := 0; gdt[0].high := 0;
  1714. (* GDT 1: 32-bit Kernel code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1715. GenCodeSegDesc(0, 0, M-1, FALSE, FALSE, gdt[1]);
  1716. (* GDT 2: 64-bit Kernel code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1717. GenCodeSegDesc(0, 0, M-1, FALSE, TRUE, gdt[2]);
  1718. (* GDT 3: 32-bit User code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1719. GenCodeSegDesc(0, 0, M-1, TRUE, FALSE, gdt[3]);
  1720. (* GDT 4: 64-bit User code: conforming, execute-read, base 0, limit 4G, PL 0 *)
  1721. GenCodeSegDesc(0, 0, M-1, TRUE, TRUE, gdt[4]);
  1722. (* GDT 5: Kernel stack: read-write, base 0, limit 4G, PL 0 *)
  1723. GenDataSegDesc(0, 0, M-1, gdt[5]);
  1724. (* GDT 6: User stack: read-write, base 0, limit 4G, PL 3 *)
  1725. GenDataSegDesc(3, 0, M-1, gdt[6]);
  1726. (* GDT 7: User/Kernel data: expand-up, read-write, base 0, limit 4G, PL 3 *)
  1727. GenDataSegDesc(3, 0, M-1, gdt[7]);
  1728. FOR i := 0 TO MaxCPU-1 DO
  1729. GenTSSDesc(ADDRESSOF(procm[i].tss), SIZEOF(TSSDesc)-1, 0, gdt[TSSOfs+i*2], gdt[TSSOfs+i*2 + 1]);
  1730. procm[i].sp := 0; procm[i].stack.high := 0
  1731. END
  1732. END InitSegments;
  1733. (* Enable segmentation on the current processor. *)
  1734. PROCEDURE EnableSegments;
  1735. BEGIN
  1736. LoadGDT(ADDRESSOF(gdt[0]), SIZEOF(GDT)-1);
  1737. LoadSegRegs(DataSel)
  1738. END EnableSegments;
  1739. (* Allocate a kernel stack. *)
  1740. PROCEDURE NewKernelStack(VAR stack: Stack);
  1741. VAR phys, virt: ADDRESS; size: SIZE;
  1742. BEGIN
  1743. size := KernelStackSize;
  1744. NewVirtual(virt, size + PS); (* add one page for overflow protection *)
  1745. ASSERT(virt # NilAdr, 1502);
  1746. INC(virt, PS); (* leave page open at bottom *)
  1747. stack.low := virt;
  1748. stack.adr := virt; (* return stack *)
  1749. REPEAT
  1750. NewPage(phys); ASSERT(phys # NilAdr);
  1751. IF ~MapPage(virt, phys + KernelPage) THEN HALT(99) END;
  1752. DEC(size, PS); INC(virt, PS)
  1753. UNTIL size = 0;
  1754. stack.high := virt
  1755. END NewKernelStack;
  1756. (* Set task register *)
  1757. PROCEDURE -SetTR(tr: ADDRESS);
  1758. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1759. POP RAX
  1760. LTR AX
  1761. END SetTR;
  1762. (* Enable memory management and switch to new stack in virtual space.
  1763. Stack layout:
  1764. caller1 return
  1765. caller1 RBP <-- caller0 RBP
  1766. [caller0 locals]
  1767. 04 caller0 return
  1768. 00 caller0 RBP <-- RBP
  1769. locals <-- RSP
  1770. *)
  1771. PROCEDURE -EnableMM(pml4Base, rsp: ADDRESS);
  1772. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1773. POP RBX
  1774. POP RAX
  1775. MOV RCX, [RBP + 8] ; caller0 return
  1776. MOV RDX, [RBP] ; caller0 RBP
  1777. MOV RDX, [RDX + 8] ; caller 1 return
  1778. MOV CR3, RAX ; pml4 page translation base address
  1779. XOR RAX, RAX
  1780. MOV [RBX - 8], RAX ; not UserStackSel (cf. GetUserStack)
  1781. MOV [RBX - 16], RDX ; caller1 return on new stack
  1782. MOV [RBX - 24], RAX ; caller1 RBP on new stack
  1783. LEA RBP, [RBX - 24] ; new stack top
  1784. MOV RSP, RBP
  1785. JMP RCX
  1786. END EnableMM;
  1787. (** -- Initialization -- *)
  1788. (** Initialize memory management.
  1789. o every processor calls this once during initialization
  1790. o mutual exclusion with other processors must be guaranteed by the caller
  1791. o interrupts must be off
  1792. o segmentation and paging is enabled
  1793. o return is on the new stack => caller must have no local variables
  1794. *)
  1795. PROCEDURE InitMemory*;
  1796. VAR id: LONGINT;
  1797. BEGIN
  1798. EnableSegments;
  1799. (* allocate stack *)
  1800. id := ID ();
  1801. NewKernelStack(procm[id].stack);
  1802. procm[id].sp := 0;
  1803. (* initialize TSS *)
  1804. Fill32(ADDRESSOF(procm[id].tss), SIZEOF(TSSDesc), 0);
  1805. procm[id].tss.RSP0 := procm[id].stack.high; (* kernel stack org *)
  1806. procm[id].tss.IOMapBaseAddress := -1; (* no bitmap *)
  1807. (* enable paging and switch stack *)
  1808. SetTR(KernelTR + id*16);
  1809. EnableMM(kernelPML4, procm[id].tss.RSP0)
  1810. END InitMemory;
  1811. (** Initialize a boot page for MP booting. Parameter physAdr returns the physical address of a low page. *)
  1812. PROCEDURE InitBootPage*(start: Startup; VAR physAdr: ADDRESS);
  1813. CONST BootOfs = 800H;
  1814. VAR adr, a: ADDRESS;
  1815. BEGIN
  1816. Acquire(Memory);
  1817. NewLowPage(physAdr);
  1818. Release(Memory);
  1819. ASSERT((physAdr # NilAdr) & (physAdr >= 0) & (physAdr < M) & (physAdr MOD PS = 0));
  1820. adr := physAdr + BootOfs;
  1821. a := adr;
  1822. (* put binary code copy of SMP.Bin to address a (cf. BinToCode.Mod ) *)
  1823. SYSTEM.PUT32(a, 0002F10EBH); INC (a, 4);
  1824. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1825. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1826. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1827. SYSTEM.PUT32(a, 031660000H); INC (a, 4);
  1828. SYSTEM.PUT32(a, 066C88CC0H); INC (a, 4);
  1829. SYSTEM.PUT32(a, 02E04E0C1H); INC (a, 4);
  1830. SYSTEM.PUT32(a, 04A060966H); INC (a, 4);
  1831. SYSTEM.PUT32(a, 0010F2E08H); INC (a, 4);
  1832. SYSTEM.PUT32(a, 02E08081EH); INC (a, 4);
  1833. SYSTEM.PUT32(a, 00216010FH); INC (a, 4);
  1834. SYSTEM.PUT32(a, 0C4896608H); INC (a, 4);
  1835. SYSTEM.PUT32(a, 000C48166H); INC (a, 4);
  1836. SYSTEM.PUT32(a, 00F000008H); INC (a, 4);
  1837. SYSTEM.PUT32(a, 00F66C020H); INC (a, 4);
  1838. SYSTEM.PUT32(a, 00F00E8BAH); INC (a, 4);
  1839. SYSTEM.PUT32(a, 0662EC022H); INC (a, 4);
  1840. SYSTEM.PUT32(a, 0080E1E8BH); INC (a, 4);
  1841. SYSTEM.PUT32(a, 00850EA66H); INC (a, 4);
  1842. SYSTEM.PUT32(a, 000080000H); INC (a, 4);
  1843. SYSTEM.PUT32(a, 00FE0200FH); INC (a, 4);
  1844. SYSTEM.PUT32(a, 00F05E8BAH); INC (a, 4);
  1845. SYSTEM.PUT32(a, 0220FE022H); INC (a, 4);
  1846. SYSTEM.PUT32(a, 00080B9DBH); INC (a, 4);
  1847. SYSTEM.PUT32(a, 0320FC000H); INC (a, 4);
  1848. SYSTEM.PUT32(a, 008E8BA0FH); INC (a, 4);
  1849. SYSTEM.PUT32(a, 0200F300FH); INC (a, 4);
  1850. SYSTEM.PUT32(a, 0E8BA0FC0H); INC (a, 4);
  1851. SYSTEM.PUT32(a, 0C0220F1FH); INC (a, 4);
  1852. SYSTEM.PUT32(a, 0000000EAH); INC (a, 4);
  1853. SYSTEM.PUT16(a, 01000H); INC (a, 2);
  1854. SYSTEM.PUT8(a, 000H); INC (a);
  1855. (* the following offsets must be patched and can be reported
  1856. by the assembler when assembling SMP.S with: PCAAMD64.Assemble SMP.S l~ *)
  1857. SYSTEM.PUT32 (adr+14, SYSTEM.VAL (LONGINT, kernelPML4)); (* cf. label PML4BASE *)
  1858. SYSTEM.PUT32 (adr+117, SYSTEM.VAL (LONGINT, start)); (* not a method *) (* cf. label KENTRY *)
  1859. SYSTEM.PUT32 (adr+4, SYSTEM.VAL (LONGINT, ADDRESSOF(gdt[0]))); (* cf. label GDT *)
  1860. (* jump at start *)
  1861. SYSTEM.PUT8(physAdr, 0EAX); (* jmp far *)
  1862. SYSTEM.PUT32(physAdr + 1, ASH(physAdr, 16-4) + BootOfs) (* seg:ofs *)
  1863. END InitBootPage;
  1864. (** The BP in a MP system calls this to map the APIC physical address directly. *)
  1865. PROCEDURE InitAPICArea*(adr: ADDRESS; size: SIZE);
  1866. BEGIN
  1867. (* ASSERT((size = PS) & (adr >= IntelAreaAdr) & (adr+size-1 < IntelAreaAdr+IntelAreaSize)); *)
  1868. IF ~MapDirect(adr, size, adr + UserPage) THEN HALT(99) END
  1869. END InitAPICArea;
  1870. (* Set machine-dependent parameters gcThreshold, expandMin, heapMinKB and heapMaxKB *)
  1871. PROCEDURE SetGCParams*;
  1872. VAR size, t: SIZE;
  1873. BEGIN
  1874. GetFreeK(size, t, t); (* size is total memory size in KB *)
  1875. heapMinKB := size * HeapMin DIV 100;
  1876. heapMaxKB := size * HeapMax DIV 100;
  1877. expandMin := size * ExpandRate DIV 100 * 1024;
  1878. IF expandMin < 0 THEN expandMin := MAX(LONGINT) END;
  1879. gcThreshold := size * Threshold DIV 100 * 1024;
  1880. IF gcThreshold < 0 THEN gcThreshold := MAX(LONGINT) END
  1881. END SetGCParams;
  1882. (** Get first memory block and first free address, heap area in first memory block is automatically expanded to account for the first
  1883. few calls to NEW *)
  1884. PROCEDURE GetStaticHeap*(VAR beginBlockAdr, endBlockAdr, freeBlockAdr: ADDRESS);
  1885. BEGIN
  1886. beginBlockAdr := initialMemBlock.beginBlockAdr;
  1887. endBlockAdr := initialMemBlock.endBlockAdr;
  1888. freeBlockAdr := beginBlockAdr;
  1889. END GetStaticHeap;
  1890. (* returns if an address is a currently allocated heap address *)
  1891. PROCEDURE ValidHeapAddress*(p: ADDRESS): BOOLEAN;
  1892. BEGIN
  1893. RETURN (p >= memBlockHead.beginBlockAdr) & (p <= memBlockTail.endBlockAdr)
  1894. OR (p>=401000H) & (p<=500000H) (*! guess until kernel size known *)
  1895. END ValidHeapAddress;
  1896. (** Jump from kernel to user mode. Every processor calls this during initialization. *)
  1897. PROCEDURE JumpToUserLevel*(userRBP: ADDRESS);
  1898. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1899. PUSH UserStackSel ; SS3
  1900. PUSH QWORD [RBP + userRBP] ; RSP3
  1901. PUSHFQ ; RFLAGS3
  1902. PUSH User64CodeSel ; CS3
  1903. CALL DWORD L1 ; PUSH L1 (RIP3)
  1904. L1:
  1905. ADD QWORD [RSP], BYTE 7 ; adjust RIP3 to L2 (L2-L1 should be 7)
  1906. IRETQ ; switch to level 3 and continue at following instruction
  1907. L2:
  1908. POP RBP ; from level 3 stack (refer to AosActive.NewProcess)
  1909. RET ; jump to body of first active object; cf. Objects.NewProcess
  1910. END JumpToUserLevel;
  1911. (* should ensure that a given address can be represented in the legacy 4GB address space
  1912. replacement for unsafe: x := SYSTEM.VAL (LONGINT, y) with y of type ADDRESS
  1913. -> better rewrite client code! this procedure should be redundant and removable in the end! *)
  1914. PROCEDURE Ensure32BitAddress*(adr: ADDRESS): Address32;
  1915. BEGIN
  1916. (* TODO *)
  1917. ASSERT (Is32BitAddress (adr), 9876);
  1918. RETURN SYSTEM.VAL (Address32, adr)
  1919. END Ensure32BitAddress;
  1920. PROCEDURE Is32BitAddress*(adr: ADDRESS): BOOLEAN;
  1921. BEGIN RETURN SYSTEM.VAL (Address32, adr) = adr;
  1922. END Is32BitAddress;
  1923. (**
  1924. * Flush Data Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1925. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1926. * left empty on Intel architecture.
  1927. *)
  1928. PROCEDURE FlushDCacheRange * (adr: ADDRESS; len: LONGINT);
  1929. END FlushDCacheRange;
  1930. (**
  1931. * Invalidate Data Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1932. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1933. * left empty on Intel architecture.
  1934. *)
  1935. PROCEDURE InvalidateDCacheRange * (adr: ADDRESS; len: LONGINT);
  1936. END InvalidateDCacheRange;
  1937. (**
  1938. * Invalidate Instruction Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1939. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1940. * left empty on Intel architecture.
  1941. *)
  1942. PROCEDURE InvalidateICacheRange * (adr: ADDRESS; len: LONGINT);
  1943. END InvalidateICacheRange;
  1944. (* Unexpected - Default interrupt handler *)
  1945. PROCEDURE Unexpected(VAR state: State);
  1946. VAR int: HUGEINT; isr, irr: CHAR;
  1947. BEGIN
  1948. int := state.INT;
  1949. IF HandleSpurious & ((int >= IRQ0) & (int <= MaxIRQ) OR (int = MPSPU)) THEN (* unexpected IRQ, get more info *)
  1950. IF (int >= IRQ8) & (int <= IRQ15) THEN
  1951. Portout8 (IntB0, 0BX); Portin8(IntB0, isr);
  1952. Portout8 (IntB0, 0AX); Portin8(IntB0, irr)
  1953. ELSIF (int >= IRQ0) & (int <= IRQ7) THEN
  1954. Portout8 (IntA0, 0BX); Portin8(IntA0, isr);
  1955. Portout8 (IntA0, 0AX); Portin8(IntA0, irr)
  1956. ELSE
  1957. isr := 0X; irr := 0X
  1958. END;
  1959. IF TraceSpurious THEN
  1960. Acquire (TraceOutput);
  1961. Trace.String("INT"); Trace.Int(SHORT(int), 1);
  1962. Trace.Hex(ORD(isr), -3); Trace.Hex(ORD(irr), -2); Trace.Ln;
  1963. Release (TraceOutput);
  1964. END
  1965. ELSE
  1966. Acquire (TraceOutput);
  1967. Trace.StringLn ("Unexpected interrupt");
  1968. Trace.Memory(ADDRESSOF(state), SIZEOF(State)-4*8); (* exclude last 4 fields *)
  1969. IF int = 3 THEN (* was a HALT or ASSERT *)
  1970. (* It seems that no trap handler is installed (Traps not linked), so wait endlessly, while holding trace lock. This should quiten down the system, although other processors may possibly still run processes. *)
  1971. LOOP END
  1972. ELSE
  1973. Release (TraceOutput);
  1974. SetRAX(int);
  1975. HALT(1801) (* unexpected interrupt *)
  1976. END
  1977. END
  1978. END Unexpected;
  1979. (* InEnableIRQ - Enable a hardware interrupt (caller must hold module lock). *)
  1980. PROCEDURE -InEnableIRQ (int: HUGEINT);
  1981. CODE {SYSTEM.AMD64}
  1982. POP RBX
  1983. CMP RBX, IRQ7
  1984. JG cont2
  1985. IN AL, IntA1
  1986. SUB RBX, IRQ0
  1987. BTR RAX, RBX
  1988. OUT IntA1, AL
  1989. JMP end
  1990. cont2:
  1991. IN AL, IntB1
  1992. SUB RBX, IRQ8
  1993. BTR RAX, RBX
  1994. OUT IntB1, AL
  1995. end:
  1996. END InEnableIRQ;
  1997. (* InDisableIRQ - Disable a hardware interrupt (caller must hold module lock). *)
  1998. PROCEDURE -InDisableIRQ (int: HUGEINT);
  1999. CODE {SYSTEM.AMD64}
  2000. POP RBX
  2001. CMP RBX, IRQ7
  2002. JG cont2
  2003. IN AL, IntA1
  2004. SUB RBX, IRQ0
  2005. BTS RAX, RBX
  2006. OUT IntA1, AL
  2007. JMP end
  2008. cont2:
  2009. IN AL, IntB1
  2010. SUB RBX, IRQ8
  2011. BTS RAX, RBX
  2012. OUT IntB1, AL
  2013. end:
  2014. END InDisableIRQ;
  2015. (** EnableIRQ - Enable a hardware interrupt (also done automatically by InstallHandler). *)
  2016. PROCEDURE EnableIRQ* (int: HUGEINT);
  2017. BEGIN
  2018. (* ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2)); *)
  2019. Acquire(Interrupts); (* protect interrupt mask register *)
  2020. InEnableIRQ(int);
  2021. Release(Interrupts)
  2022. END EnableIRQ;
  2023. (** DisableIRQ - Disable a hardware interrupt. *)
  2024. PROCEDURE DisableIRQ* (int: HUGEINT);
  2025. BEGIN
  2026. ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2));
  2027. Acquire(Interrupts); (* protect interrupt mask register *)
  2028. InDisableIRQ(int);
  2029. Release(Interrupts)
  2030. END DisableIRQ;
  2031. (** InstallHandler - Install interrupt handler & enable IRQ if necessary.
  2032. On entry to h interrupts are disabled and may be enabled with Sti. After handling the interrupt
  2033. the state of interrupts are restored. The acknowledgement of a hardware interrupt is done automatically.
  2034. IRQs are mapped from IRQ0 to MaxIRQ. *)
  2035. PROCEDURE InstallHandler* (h: Handler; int: LONGINT);
  2036. VAR (* n: HandlerList; *) i: LONGINT; unexpected: Handler;
  2037. BEGIN
  2038. ASSERT(default.valid); (* initialized *)
  2039. ASSERT(int # IRQ2); (* IRQ2 is used for cascading and remapped to IRQ9 *)
  2040. Acquire(Interrupts);
  2041. (* FieldInterrupt may traverse list while it is being modified *)
  2042. i := 0;
  2043. unexpected := Unexpected;
  2044. IF intHandler[int, 0].handler # unexpected THEN
  2045. WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO
  2046. INC(i)
  2047. END;
  2048. IF i < MaxNumHandlers - 1 THEN
  2049. intHandler[int, i].valid := TRUE;
  2050. intHandler[int, i].handler := h;
  2051. ELSE
  2052. Acquire(TraceOutput);
  2053. Trace.String("Machine.InstallHandler: handler could not be installed for interrupt "); Trace.Int(int, 0);
  2054. Trace.String(" - too many handlers per interrupt number"); Trace.Ln;
  2055. Release(TraceOutput)
  2056. END
  2057. ELSE
  2058. intHandler[int, 0].handler := h;
  2059. IF (int >= IRQ0) & (int <= IRQ15) THEN InEnableIRQ(int) END
  2060. END;
  2061. Release(Interrupts)
  2062. END InstallHandler;
  2063. (** RemoveHandler - Uninstall interrupt handler & disable IRQ if necessary *)
  2064. PROCEDURE RemoveHandler* (h: Handler; int: LONGINT);
  2065. VAR (* p, c: HandlerList; *) i, j, foundIndex: LONGINT;
  2066. BEGIN
  2067. ASSERT(default.valid); (* initialized *)
  2068. Acquire(Interrupts);
  2069. (* find h *)
  2070. i := 0;
  2071. foundIndex := -1;
  2072. WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO
  2073. IF intHandler[int, i].handler = h THEN foundIndex := i END;
  2074. INC(i)
  2075. END;
  2076. IF foundIndex # -1 THEN
  2077. (* h found -> copy interrupt handlers higher than foundIndex *)
  2078. FOR j := foundIndex TO i - 2 DO
  2079. intHandler[int, j] := intHandler[int, j + 1]
  2080. END
  2081. END;
  2082. IF ~intHandler[int, 0].valid THEN
  2083. (* handler h was the only interrupt handler for interrupt int -> install the default handler *)
  2084. intHandler[int, 0] := default;
  2085. IF (int >= IRQ0) & (int <= IRQ15) THEN DisableIRQ(int) END
  2086. END;
  2087. Release(Interrupts)
  2088. END RemoveHandler;
  2089. (* Get control registers. *)
  2090. PROCEDURE GetCR0to4(VAR cr: ARRAY OF HUGEINT);
  2091. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2092. MOV RDI, [RBP + cr]
  2093. MOV RAX, CR0
  2094. XOR RBX, RBX ; CR1 is not documented
  2095. MOV RCX, CR2
  2096. MOV RDX, CR3
  2097. MOV [RDI + 0], RAX
  2098. MOV [RDI + 8], RBX
  2099. MOV [RDI + 16], RCX
  2100. MOV [RDI + 24], RDX
  2101. MOV RAX, CR4 ; Pentium only
  2102. MOV [RDI + 32], RAX
  2103. END GetCR0to4;
  2104. (* GetDR0to7 - Get debug registers. *)
  2105. PROCEDURE GetDR0to7(VAR dr: ARRAY OF HUGEINT);
  2106. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2107. MOV RDI, [RBP + dr]
  2108. MOV RAX, DR0
  2109. MOV RBX, DR1
  2110. MOV RCX, DR2
  2111. MOV RDX, DR3
  2112. MOV [RDI + 0], RAX
  2113. MOV [RDI + 8], RBX
  2114. MOV [RDI + 16], RCX
  2115. MOV [RDI + 24], RDX
  2116. XOR RAX, RAX ; DR4 is not documented
  2117. XOR RBX, RBX ; DR5 is not documented
  2118. MOV RCX, DR6
  2119. MOV RDX, DR7
  2120. MOV [RDI + 32], RAX
  2121. MOV [RDI + 40], RBX
  2122. MOV [RDI + 48], RCX
  2123. MOV [RDI + 56], RDX
  2124. END GetDR0to7;
  2125. (* CLTS - Clear task-switched flag. *)
  2126. PROCEDURE -CLTS;
  2127. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2128. CLTS
  2129. END CLTS;
  2130. (* GetFPU - Store floating-point environment (28 bytes) and mask all floating-point exceptions. *)
  2131. PROCEDURE -GetFPU(adr: ADDRESS);
  2132. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2133. POP RBX
  2134. FNSTENV [RBX] ; also masks all exceptions
  2135. FWAIT
  2136. END GetFPU;
  2137. (* CR2 - Get page fault address. *)
  2138. PROCEDURE -CR2* (): ADDRESS;
  2139. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2140. MOV RAX, CR2
  2141. END CR2;
  2142. (** GetExceptionState - Get exception state from interrupt state (and switch on interrupts). *)
  2143. PROCEDURE GetExceptionState* (VAR int: State; VAR exc: ExceptionState);
  2144. VAR id: LONGINT; level0: BOOLEAN;
  2145. BEGIN
  2146. (* save all state information while interrupts are still disabled *)
  2147. exc.halt := -int.INT; id := ID ();
  2148. IF int.INT = PF THEN exc.pf := CR2 () ELSE exc.pf := 0 END;
  2149. GetCR0to4(exc.CR);
  2150. GetDR0to7(exc.DR);
  2151. CLTS; (* ignore task switch flag *)
  2152. IF int.INT = MF THEN
  2153. GetFPU(ADDRESSOF(exc.FPU[0]));
  2154. int.PC := SYSTEM.VAL (ADDRESS, exc.FPU[3]); (* modify PC according to FPU info *)
  2155. (* set halt code according to FPU info *)
  2156. IF 2 IN exc.FPU[1] THEN exc.halt := -32 (* division by 0 *)
  2157. ELSIF 3 IN exc.FPU[1] THEN exc.halt := -33 (* overflow *)
  2158. ELSIF 0 IN exc.FPU[1] THEN exc.halt := -34 (* operation invalid *)
  2159. ELSIF 6 IN exc.FPU[1] THEN exc.halt := -35 (* stack fault *)
  2160. ELSIF 1 IN exc.FPU[1] THEN exc.halt := -36 (* denormalized *)
  2161. ELSIF 4 IN exc.FPU[1] THEN exc.halt := -37 (* underflow *)
  2162. ELSIF 5 IN exc.FPU[1] THEN exc.halt := -38 (* precision loss *)
  2163. ELSE (* {exc.halt = -16} *)
  2164. END
  2165. ELSE
  2166. Fill32(ADDRESSOF(exc.FPU[0]), LEN(exc.FPU)*SIZEOF(SET), 0)
  2167. END;
  2168. SetupFPU;
  2169. level0 := (int.CS MOD 4 = KernelLevel);
  2170. IF int.INT = BP THEN (* breakpoint (HALT) *)
  2171. IF level0 THEN
  2172. exc.halt := int.SP (* get halt code *)
  2173. (* if HALT(MAX(INTEGER)), leave halt code on stack when returning, but not serious problem.*)
  2174. ELSE
  2175. SYSTEM.GET (int.SP, exc.halt); (* get halt code from outer stack *)
  2176. IF exc.halt >= MAX(INTEGER) THEN INC (int.SP, AddressSize) END (* pop halt code from outer stack *)
  2177. END;
  2178. IF exc.halt < MAX(INTEGER) THEN DEC (int.PC) END; (* point to the INT 3 instruction (assume 0CCX, not 0CDX 3X) *)
  2179. ELSIF int.INT = OVF THEN (* overflow *)
  2180. DEC (int.PC) (* point to the INTO instruction (assume 0CEX, not 0CDX 4X) *)
  2181. ELSIF int.INT = PF THEN (* page fault *)
  2182. IF int.PC = 0 THEN (* reset PC to return address of indirect CALL to 0 *)
  2183. IF level0 THEN int.PC := int.SP (* ret adr *) ELSE SYSTEM.GET (int.SP, int.PC) END
  2184. END
  2185. END;
  2186. (* get segment registers *)
  2187. IF level0 THEN (* from same level, no ESP, SS etc. on stack *)
  2188. exc.SP := ADDRESSOF(int.SP) (* stack was here when interrupt happened *)
  2189. ELSE (* from outer level *)
  2190. exc.SP := int.SP
  2191. END
  2192. END GetExceptionState;
  2193. (* FieldInterrupt and FieldIRQ *)
  2194. (*
  2195. At entry to a Handler procedure the stack is as follows:
  2196. -- if (VMBit IN .RFLAGS) --
  2197. 176 -- .SS
  2198. 168 -- .RSP ; or haltcode
  2199. -- (VMBit IN .RFLAGS) OR (CS MOD 4 < .CS MOD 4) --
  2200. 160 -- .RFLAGS
  2201. 152 -- .CS
  2202. 144 -- .RIP ; rest popped by IRETD
  2203. 136 -- .ERR/RBP ; pushed by processor or glue code, popped by POP RBP
  2204. 128 -- .INT <-- .RSP0 ; pushed by glue code, popped by POP RBP
  2205. 120 -- .RAX
  2206. 112 -- .RCX
  2207. 104 -- .RDX
  2208. 96 -- .RBX
  2209. 88 -- .RSP0
  2210. 80 -- .RBP/ERR ; exchanged by glue code
  2211. 72 -- .RSI
  2212. 64 -- .RDI
  2213. 56 -- .R8
  2214. 48 -- .R9
  2215. 40 -- .R10
  2216. 32 -- .R11
  2217. 24 -- .R12
  2218. 16 -- .R13
  2219. 08 -- .R14
  2220. 00 48 .R15 <--- state: State
  2221. -- 40 ptr
  2222. -- 32 object pointer for DELEGATE
  2223. -- 24 TAG(state)
  2224. -- 16 ADR(state)
  2225. -- 08 RIP' (RET to FieldInterrupt)
  2226. -- 00 RBP' <-- RBP
  2227. -- -- locals <-- RSP
  2228. *)
  2229. PROCEDURE {NOPAF} FieldInterrupt;
  2230. CONST SizeOfHandlerRec = SIZEOF(HandlerRec);
  2231. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2232. entry:
  2233. ; fake PUSHAD (not available in 64-bit mode)
  2234. PUSH RAX
  2235. PUSH RCX
  2236. PUSH RDX
  2237. PUSH RBX ; (error code)
  2238. LEA RAX, [RSP - 4 * 8] ; (RSP minus the four pushed 64-bit registers)
  2239. PUSH RAX ; original value of RSP
  2240. PUSH RBP
  2241. PUSH RSI
  2242. PUSH RDI
  2243. PUSH R8
  2244. PUSH R9
  2245. PUSH R10
  2246. PUSH R11
  2247. PUSH R12
  2248. PUSH R13
  2249. PUSH R14
  2250. PUSH R15
  2251. LEA RBP, [RSP + 136]
  2252. MOV RBX, [RSP + 128] ; RBX = int number
  2253. IMUL RBX, RBX, MaxNumHandlers
  2254. IMUL RBX, RBX, SizeOfHandlerRec
  2255. ; todo: replace LEA by MOV when compiler supports this
  2256. LEA RAX, intHandler
  2257. ADD RAX, RBX ; address of intHandler[int, 0]
  2258. ; todo: replace LEA by MOV when compiler supports this
  2259. LEA RDX, stateTag
  2260. loop: ; call all handlers for the interrupt
  2261. MOV RCX, RSP
  2262. PUSH RAX ; save ptr for table
  2263. PUSH QWORD [RAX + 12] ; delegate
  2264. PUSH RDX ; TAG(state)
  2265. PUSH RCX ; ADR(state)
  2266. CALL QWORD [RAX+4] ; call handler
  2267. ADD RSP, 24
  2268. CLI ; handler may have re-enabled interrupts
  2269. POP RAX
  2270. ADD RAX, SizeOfHandlerRec
  2271. MOV RBX, [RAX]
  2272. CMP RBX, 0
  2273. JNE loop
  2274. ; fake POPAD (not available in 64-bit mode)
  2275. POP R15
  2276. POP R14
  2277. POP R13
  2278. POP R12
  2279. POP R11
  2280. POP R10
  2281. POP R9
  2282. POP R8
  2283. POP RDI
  2284. POP RSI
  2285. POP RBP
  2286. ADD RSP, 8 ;POP RSP
  2287. POP RBX
  2288. POP RDX
  2289. POP RCX
  2290. POP RAX ; now EBP = error code
  2291. POP RBP ; now EBP = INT
  2292. POP RBP ; now EBP = caller RBP
  2293. IRETQ
  2294. END FieldInterrupt;
  2295. PROCEDURE {NOPAF} FieldIRQ;
  2296. CONST SizeOfHandlerRec = SIZEOF(HandlerRec);
  2297. CODE {SYSTEM.AMD64}
  2298. entry:
  2299. ; fake PUSHAD (not available in 64-bit mode)
  2300. PUSH RAX
  2301. PUSH RCX
  2302. PUSH RDX
  2303. PUSH RBX ; (error code)
  2304. LEA RAX, [RSP - 4 * 8] ; (RSP minus the four pushed 64-bit registers)
  2305. PUSH RAX ; original value of RSP
  2306. PUSH RBP
  2307. PUSH RSI
  2308. PUSH RDI
  2309. PUSH R8
  2310. PUSH R9
  2311. PUSH R10
  2312. PUSH R11
  2313. PUSH R12
  2314. PUSH R13
  2315. PUSH R14
  2316. PUSH R15
  2317. LEA RBP, [RSP + 136]
  2318. ;; PUSH 32[ESP] ; int number
  2319. ;; CALL traceInterruptIn
  2320. MOV RBX, [RSP + 128] ; RBX = int number
  2321. IMUL RBX, RBX, MaxNumHandlers
  2322. IMUL RBX, RBX, SizeOfHandlerRec
  2323. ; todo: replace LEA by MOV when compiler supports this
  2324. LEA RAX, intHandler
  2325. ADD RAX, RBX ; address of intHandler[int, 0]
  2326. ; todo: replace LEA by MOV when compiler supports this
  2327. LEA RDX, stateTag
  2328. loop: ; call all handlers for the interrupt
  2329. MOV RCX, RSP
  2330. PUSH RAX ; save ptr for linked list
  2331. PUSH QWORD [RAX + 12] ; delegate
  2332. PUSH RDX ; TAG(state)
  2333. PUSH RCX ; ADR(state)
  2334. CALL QWORD [RAX + 4] ; call handler
  2335. ADD RSP, 24
  2336. CLI ; handler may have re-enabled interrupts
  2337. POP RAX
  2338. ADD RAX, SizeOfHandlerRec
  2339. MOV RBX, [RAX]
  2340. CMP RBX, 0
  2341. JNE loop
  2342. ;; PUSH 32[ESP] ; int number
  2343. ;; CALL traceInterruptOut
  2344. ; ack interrupt
  2345. MOV AL, 20H ; undoc PC ed. 2 p. 1018
  2346. CMP BYTE [RSP + 128], IRQ8
  2347. JB irq0
  2348. OUT IntB0, AL ; 2nd controller
  2349. irq0:
  2350. OUT IntA0, AL ; 1st controller
  2351. ; fake POPAD (not available in 64-bit mode)
  2352. POP R15
  2353. POP R14
  2354. POP R13
  2355. POP R12
  2356. POP R11
  2357. POP R10
  2358. POP R9
  2359. POP R8
  2360. POP RDI
  2361. POP RSI
  2362. POP RBP
  2363. ADD RSP, 8 ;POP RSP
  2364. POP RBX
  2365. POP RDX
  2366. POP RCX
  2367. POP RAX ; now RBP = error code
  2368. POP RBP ; now RBP = INT
  2369. POP RBP ; now RBP = caller RBP
  2370. IRETQ
  2371. END FieldIRQ;
  2372. (* LoadIDT - Load interrupt descriptor table *)
  2373. PROCEDURE LoadIDT(base: ADDRESS; size: SIZE);
  2374. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2375. ; LIDT needs 10 bytes: 2 for the 16-bit limit and 8 for the 64-bit base address
  2376. ; Assumption: size in front of base -> promote size value to upper 48 bits of size
  2377. SHL QWORD [RBP + size], 64-16
  2378. LIDT [RBP + size + (64-16) / 8]
  2379. END LoadIDT;
  2380. (** Init - Initialize interrupt handling. Called once during initialization. Uses NEW. *)
  2381. (*
  2382. The glue code is:
  2383. entry0: ; entry point for interrupts without error code
  2384. PUSH 0 ; fake error code
  2385. entry1: ; entry point for interrupts with error code
  2386. XCHG [ESP], EBP ; exchange error code and caller EBP
  2387. PUSH int ; interrupt number
  2388. JMP FieldInterrupt:entry
  2389. *)
  2390. PROCEDURE InitInterrupts*;
  2391. VAR a: ADDRESS; o, i: LONGINT; p: PROCEDURE; mask: SET;
  2392. BEGIN
  2393. stateTag := SYSTEM.TYPECODE(State);
  2394. (* initialise 8259 interrupt controller chips *)
  2395. Portout8 (IntA0, 11X); Portout8 (IntA1, CHR(IRQ0));
  2396. Portout8 (IntA1, 4X); Portout8 (IntA1, 1X); Portout8 (IntA1, 0FFX);
  2397. Portout8 (IntB0, 11X); Portout8 (IntB1, CHR(IRQ8));
  2398. Portout8 (IntB1, 2X); Portout8 (IntB1, 1X); Portout8 (IntB1, 0FFX);
  2399. (* enable interrupts from second interrupt controller, chained to line 2 of controller 1 *)
  2400. Portin8(IntA1, SYSTEM.VAL (CHAR, mask));
  2401. EXCL(mask, IRQ2-IRQ0);
  2402. Portout8 (IntA1, SYSTEM.VAL (CHAR, mask));
  2403. (*
  2404. NEW(default); default.next := NIL; default.handler := Unexpected;
  2405. *)
  2406. (*
  2407. newrec (SYSTEM.VAL (ANY, default), SYSTEM.TYPECODE (HandlerList));
  2408. *)
  2409. (* default.next := NIL; default.handler := Unexpected; *)
  2410. default.valid := TRUE; default.handler := Unexpected;
  2411. FOR i := 0 TO IDTSize-1 DO (* set up glue code *)
  2412. intHandler[i, 0] := default; o := 0;
  2413. (* PUSH error code, int num & regs *)
  2414. glue[i][o] := 6AX; INC (o); glue[i][o] := 0X; INC (o); (* PUSH 0 ; {o = 2} *)
  2415. glue[i][o] := 48X; INC(o); glue[i][o] := 87X; INC(o); glue[i][o] := 2CX; INC(o); glue[i][o] := 24X; INC(o); (* XCHG [RSP], RBP *)
  2416. glue[i][o] := 6AX; INC (o); glue[i][o] := CHR(i); INC (o); (* PUSH i *)
  2417. IF (i >= IRQ0) & (i <= IRQ15) THEN p := FieldIRQ ELSE p := FieldInterrupt END;
  2418. a := SYSTEM.VAL(ADDRESS, p) - (ADDRESSOF(glue[i][o])+5);
  2419. (* a must be a 32-bit offset to be used with the followingjump instruction, ensured since
  2420. both the glue code array and the interrupt functions are inside this module *)
  2421. glue[i][o] := 0E9X; INC (o); (* JMP FieldInterrupt.entry *)
  2422. SYSTEM.PUT32 (ADDRESSOF(glue[i][o]), a);
  2423. (* set up IDT entry *)
  2424. IF (i > 31) OR ~(i IN {8, 10..14, 17}) THEN a := ADDRESSOF(glue[i][0]) (* include PUSH 0 *)
  2425. ELSE a := ADDRESSOF(glue[i][2]) (* skip PUSH 0, processor supplies error code *)
  2426. END;
  2427. idt[i].offsetBits0to15 := INTEGER(a MOD 10000H);
  2428. (* IRQ0 must be at level 0 because time slicing in Objects needs to set interrupted process' ESP *)
  2429. (* all irq's are handled at level 0, because of priority experiment in Objects.FieldIRQ *)
  2430. IF TRUE (* (i < IRQ0) OR (i > IRQ15) OR (i = IRQ0) OR (i = IRQ0 + 1)*) THEN
  2431. idt[i].selector := Kernel64CodeSel; (* gdt[1] -> non-conformant segment => level 0 *)
  2432. idt[i].gateType := SYSTEM.VAL(INTEGER, 0EE00H) (* present, DPL 3, system, 64-bit interrupt gate *)
  2433. ELSE (* {IRQ0..IRQ15} - {IRQ0 + 1} *)
  2434. idt[i].selector := User64CodeSel; (* gdt[3] -> conformant segment => level 0 or 3 *)
  2435. idt[i].gateType := SYSTEM.VAL(INTEGER, 08E00H) (* present, DPL 0, system, 64-bit interrupt gate *)
  2436. END;
  2437. idt[i].offsetBits16to31 := INTEGER(a DIV 10000H);
  2438. idt[i].offsetBits32to63 := LONGINT(a DIV 100000000H);
  2439. idt[i].reserved := 0;
  2440. END
  2441. END InitInterrupts;
  2442. (** Start - Start handling interrupts. Every processor calls this once during initialization. *)
  2443. PROCEDURE Start*;
  2444. BEGIN
  2445. ASSERT(default.valid); (* initialized *)
  2446. LoadIDT(ADDRESSOF(idt[0]), SIZEOF(IDT)-1);
  2447. Sti
  2448. END Start;
  2449. (* Return current instruction pointer *)
  2450. PROCEDURE CurrentPC* (): ADDRESS;
  2451. CODE {SYSTEM.AMD64}
  2452. MOV RAX, [RBP + 8]
  2453. END CurrentPC;
  2454. (* Return current frame pointer *)
  2455. PROCEDURE -CurrentBP* (): ADDRESS;
  2456. CODE {SYSTEM.AMD64}
  2457. MOV RAX, RBP
  2458. END CurrentBP;
  2459. (* Set current frame pointer *)
  2460. PROCEDURE -SetBP* (bp: ADDRESS);
  2461. CODE {SYSTEM.AMD64}
  2462. POP RBP
  2463. END SetBP;
  2464. (* Return current stack pointer *)
  2465. PROCEDURE -CurrentSP* (): ADDRESS;
  2466. CODE {SYSTEM.AMD64}
  2467. MOV RAX, RSP
  2468. END CurrentSP;
  2469. (* Set current stack pointer *)
  2470. PROCEDURE -SetSP* (sp: ADDRESS);
  2471. CODE {SYSTEM.AMD64}
  2472. POP RSP
  2473. END SetSP;
  2474. PROCEDURE -GetRAX*(): HUGEINT;
  2475. CODE{SYSTEM.AMD64}
  2476. END GetRAX;
  2477. PROCEDURE -GetRCX*(): HUGEINT;
  2478. CODE{SYSTEM.AMD64}
  2479. MOV RAX,RCX
  2480. END GetRCX;
  2481. PROCEDURE -GetRSI*(): HUGEINT;
  2482. CODE{SYSTEM.AMD64}
  2483. MOV RAX,RSI
  2484. END GetRSI;
  2485. PROCEDURE -GetRDI*(): HUGEINT;
  2486. CODE{SYSTEM.AMD64}
  2487. MOV RAX,RDI
  2488. END GetRDI;
  2489. PROCEDURE -SetRAX*(n: HUGEINT);
  2490. CODE{SYSTEM.AMD64}
  2491. NOP
  2492. POP RAX
  2493. END SetRAX;
  2494. PROCEDURE -SetRBX*(n: HUGEINT);
  2495. CODE{SYSTEM.AMD64}
  2496. NOP
  2497. POP RBX
  2498. END SetRBX;
  2499. PROCEDURE -SetRCX*(n: HUGEINT);
  2500. CODE{SYSTEM.AMD64}
  2501. POP RCX
  2502. END SetRCX;
  2503. PROCEDURE -SetRDX*(n: HUGEINT);
  2504. CODE{SYSTEM.AMD64}
  2505. POP RDX
  2506. END SetRDX;
  2507. PROCEDURE -SetRSI*(n: HUGEINT);
  2508. CODE{SYSTEM.AMD64}
  2509. POP RSI
  2510. END SetRSI;
  2511. PROCEDURE -SetRDI*(n: HUGEINT);
  2512. CODE{SYSTEM.AMD64}
  2513. POP RDI
  2514. END SetRDI;
  2515. PROCEDURE Portin8*(port: LONGINT; VAR val: CHAR);
  2516. CODE{SYSTEM.AMD64}
  2517. MOV EDX,[RBP+port]
  2518. IN AL, DX
  2519. MOV RCX, [RBP+val]
  2520. MOV [RCX], AL
  2521. END Portin8;
  2522. PROCEDURE Portin16*(port: LONGINT; VAR val: INTEGER);
  2523. CODE{SYSTEM.AMD64}
  2524. MOV EDX,[RBP+port]
  2525. IN AX, DX
  2526. MOV RCX, [RBP+val]
  2527. MOV [RCX], AX
  2528. END Portin16;
  2529. PROCEDURE Portin32*(port: LONGINT; VAR val: LONGINT);
  2530. CODE{SYSTEM.AMD64}
  2531. MOV EDX,[RBP+port]
  2532. IN EAX, DX
  2533. MOV RCX, [RBP+val]
  2534. MOV [RCX], EAX
  2535. END Portin32;
  2536. PROCEDURE Portout8*(port: LONGINT; val: CHAR);
  2537. CODE{SYSTEM.AMD64}
  2538. MOV AL,[RBP+val]
  2539. MOV EDX,[RBP+port]
  2540. OUT DX,AL
  2541. END Portout8;
  2542. PROCEDURE Portout16*(port: LONGINT; val: INTEGER);
  2543. CODE{SYSTEM.AMD64}
  2544. MOV AX,[RBP+val]
  2545. MOV EDX,[RBP+port]
  2546. OUT DX,AX
  2547. END Portout16;
  2548. PROCEDURE Portout32*(port: LONGINT; val: LONGINT);
  2549. CODE{SYSTEM.AMD64}
  2550. MOV EAX,[RBP+val]
  2551. MOV EDX,[RBP+port]
  2552. OUT DX,EAX
  2553. END Portout32;
  2554. PROCEDURE -Cli*;
  2555. CODE{SYSTEM.AMD64}
  2556. CLI
  2557. END Cli;
  2558. PROCEDURE -Sti*;
  2559. CODE{SYSTEM.AMD64}
  2560. STI
  2561. END Sti;
  2562. (* Save minimal FPU state (for synchronous process switches). *)
  2563. (* saving FPU state takes 108 bytes memory space, no alignment required *)
  2564. PROCEDURE -FPUSaveMin* (VAR state: SSEState);
  2565. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2566. POP RAX
  2567. FNSTCW [RAX] ; control word is at state[0]
  2568. FWAIT
  2569. END FPUSaveMin;
  2570. (* Restore minimal FPU state. *)
  2571. PROCEDURE -FPURestoreMin* (VAR state: SSEState);
  2572. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2573. POP RAX
  2574. FLDCW [RAX] ; control word is at state[0]
  2575. END FPURestoreMin;
  2576. (* Save full FPU state (for asynchronous process switches). *)
  2577. PROCEDURE -FPUSaveFull* (VAR state: SSEState);
  2578. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2579. POP RAX
  2580. FSAVE [RAX]
  2581. END FPUSaveFull;
  2582. (* Restore full FPU state. *)
  2583. PROCEDURE -FPURestoreFull* (VAR state: SSEState);
  2584. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2585. POP RAX
  2586. FRSTOR [RAX]
  2587. END FPURestoreFull;
  2588. (* stateAdr must be the address of a 16-byte aligned memory area of at least 512 bytes *)
  2589. PROCEDURE -SSESaveFull* (stateAdr: ADDRESS);
  2590. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2591. POP RAX
  2592. FXSAVE [RAX]
  2593. FWAIT
  2594. FNINIT
  2595. END SSESaveFull;
  2596. PROCEDURE -SSERestoreFull* (stateAdr: ADDRESS);
  2597. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2598. POP RAX
  2599. FXRSTOR [RAX]
  2600. END SSERestoreFull;
  2601. PROCEDURE -SSESaveMin* (stateAdr: ADDRESS);
  2602. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2603. POP RAX
  2604. FNSTCW [RAX]
  2605. FWAIT
  2606. STMXCSR [RAX + 24]
  2607. END SSESaveMin;
  2608. PROCEDURE -SSERestoreMin* (stateAdr: ADDRESS);
  2609. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2610. POP RAX
  2611. FLDCW [RAX]
  2612. LDMXCSR [RAX + 24]
  2613. END SSERestoreMin;
  2614. (* Helper functions for SwitchTo. *)
  2615. PROCEDURE -PushState* (CONST state: State);
  2616. CODE {SYSTEM.AMD64}
  2617. POP RAX ; ADR (state)
  2618. POP RBX ; TYPECODE (state), ignored
  2619. PUSH QWORD [RAX + 176] ; SS
  2620. PUSH QWORD [RAX + 168] ; SP
  2621. PUSH QWORD [RAX + 160] ; FLAGS
  2622. PUSH QWORD [RAX + 152] ; CS
  2623. PUSH QWORD [RAX + 144] ; PC
  2624. PUSH QWORD [RAX + 120] ; RAX
  2625. PUSH QWORD [RAX + 112] ; RCX
  2626. PUSH QWORD [RAX + 104] ; RDX
  2627. PUSH QWORD [RAX + 96] ; RBX
  2628. PUSH DWORD 0; ignored
  2629. PUSH QWORD [RAX + 136] ; RBP
  2630. PUSH QWORD [RAX + 72] ; RSI
  2631. PUSH QWORD [RAX + 64] ; RDI
  2632. PUSH QWORD [RAX + 56] ; R8
  2633. PUSH QWORD [RAX + 48] ; R9
  2634. PUSH QWORD [RAX + 40] ; R10
  2635. PUSH QWORD [RAX + 32] ; R11
  2636. PUSH QWORD [RAX + 24] ; R12
  2637. PUSH QWORD [RAX + 16] ; R13
  2638. PUSH QWORD [RAX + 8] ; R14
  2639. PUSH QWORD [RAX + 0] ; R15
  2640. END PushState;
  2641. PROCEDURE -JumpState*;
  2642. CODE {SYSTEM.AMD64}
  2643. POP R15
  2644. POP R14
  2645. POP R13
  2646. POP R12
  2647. POP R11
  2648. POP R10
  2649. POP R9
  2650. POP R8
  2651. POP RDI
  2652. POP RSI
  2653. POP RBP
  2654. POP RBX; ignored
  2655. POP RBX
  2656. POP RDX
  2657. POP RCX
  2658. POP RAX
  2659. IRETQ
  2660. END JumpState;
  2661. PROCEDURE -CallLocalIPC*;
  2662. CODE {SYSTEM.AMD64}
  2663. INT MPIPCLocal
  2664. END CallLocalIPC;
  2665. PROCEDURE -HLT*;
  2666. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2667. STI ; (* required according to ACPI 2.0 spec section 8.2.2 *)
  2668. HLT
  2669. END HLT;
  2670. (* Kernel mode upcall to perform global processor halt. *)
  2671. PROCEDURE KernelCallHLT*;
  2672. CODE {SYSTEM.AMD64}
  2673. MOV EAX, 2
  2674. INT MPKC
  2675. END KernelCallHLT;
  2676. (* Parse processor entry in MP config table. *)
  2677. PROCEDURE CPUID1*(): LONGINT;
  2678. CODE {SYSTEM.AMD64}
  2679. MOV EAX, 1
  2680. CPUID
  2681. MOV EAX, EBX
  2682. END CPUID1;
  2683. (** -- Atomic operations -- *)
  2684. (** Atomic INC(x). *)
  2685. PROCEDURE -AtomicInc*(VAR x: LONGINT);
  2686. CODE {SYSTEM.AMD64}
  2687. POP RAX
  2688. LOCK
  2689. INC DWORD [RAX]
  2690. END AtomicInc;
  2691. (** Atomic DEC(x). *)
  2692. PROCEDURE -AtomicDec*(VAR x: LONGINT);
  2693. CODE {SYSTEM.AMD64}
  2694. POP RAX
  2695. LOCK
  2696. DEC DWORD [RAX]
  2697. END AtomicDec;
  2698. (** Atomic EXCL. *)
  2699. PROCEDURE AtomicExcl* (VAR s: SET; bit: LONGINT);
  2700. CODE {SYSTEM.AMD64}
  2701. MOV EAX, [RBP + bit]
  2702. MOV RBX, [RBP + s]
  2703. LOCK
  2704. BTR [RBX], EAX
  2705. END AtomicExcl;
  2706. (** Atomic INC(x, y). *)
  2707. PROCEDURE -AtomicAdd*(VAR x: LONGINT; y: LONGINT);
  2708. CODE {SYSTEM.AMD64}
  2709. POP EBX
  2710. POP RAX
  2711. LOCK
  2712. ADD DWORD [RAX], EBX
  2713. END AtomicAdd;
  2714. (** Atomic test-and-set. Set x = TRUE and return old value of x. *)
  2715. PROCEDURE -AtomicTestSet*(VAR x: BOOLEAN): BOOLEAN;
  2716. CODE {SYSTEM.AMD64}
  2717. POP RBX
  2718. MOV AL, 1
  2719. XCHG [RBX], AL
  2720. END AtomicTestSet;
  2721. (* Atomic compare-and-swap. Set x = new if x = old and return old value of x *)
  2722. PROCEDURE -AtomicCAS* (VAR x: LONGINT; old, new: LONGINT): LONGINT;
  2723. CODE {SYSTEM.AMD64}
  2724. POP EBX ; new
  2725. POP EAX ; old
  2726. POP RCX ; address of x
  2727. LOCK CMPXCHG [RCX], EBX ; atomicly compare x with old and set it to new if equal
  2728. END AtomicCAS;
  2729. PROCEDURE CopyState* (CONST from: State; VAR to: State);
  2730. BEGIN
  2731. to.R15 := from.R15;
  2732. to.R14 := from.R14;
  2733. to.R13 := from.R13;
  2734. to.R12 := from.R12;
  2735. to.R11 := from.R11;
  2736. to.R10 := from.R10;
  2737. to.R9 := from.R9;
  2738. to.R8 := from.R8;
  2739. to.RDI := from.RDI;
  2740. to.RSI := from.RSI;
  2741. to.RBX := from.RBX;
  2742. to.RDX := from.RDX;
  2743. to.RCX := from.RCX;
  2744. to.RAX := from.RAX;
  2745. to.BP := from.BP;
  2746. to.PC := from.PC;
  2747. to.CS := from.CS;
  2748. to.SP := from.SP;
  2749. to.SS := from.SS;
  2750. to.FLAGS := from.FLAGS;
  2751. END CopyState;
  2752. (* function returning the number of processors that are available to Aos *)
  2753. PROCEDURE NumberOfProcessors*( ): LONGINT;
  2754. BEGIN
  2755. RETURN numberOfProcessors
  2756. END NumberOfProcessors;
  2757. (*! non portable code, for native Aos only *)
  2758. PROCEDURE SetNumberOfProcessors*(num: LONGINT);
  2759. BEGIN
  2760. numberOfProcessors := num;
  2761. END SetNumberOfProcessors;
  2762. (* function for changing byte order *)
  2763. PROCEDURE ChangeByteOrder* (n: LONGINT): LONGINT;
  2764. CODE {SYSTEM.AMD64}
  2765. MOV EAX, [RBP + n] ; load n in eax
  2766. BSWAP EAX ; swap byte order
  2767. END ChangeByteOrder;
  2768. (* Write a value to the APIC. *)
  2769. PROCEDURE ApicPut(ofs: SIZE; val: SET);
  2770. BEGIN
  2771. IF TraceApic THEN
  2772. Acquire(TraceOutput);
  2773. Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" := "); Trace.Hex(SYSTEM.VAL (LONGINT, val), 9); Trace.Ln;
  2774. Release(TraceOutput);
  2775. END;
  2776. SYSTEM.PUT(localAPIC+ofs, SYSTEM.VAL (LONGINT, val))
  2777. END ApicPut;
  2778. (* Read a value from the APIC. *)
  2779. PROCEDURE ApicGet(ofs: SIZE): SET;
  2780. VAR val: SET;
  2781. BEGIN
  2782. SYSTEM.GET(localAPIC+ofs, SYSTEM.VAL (LONGINT, val));
  2783. IF TraceApic THEN
  2784. Acquire(TraceOutput);
  2785. Trace.String(" ("); Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" = ");
  2786. Trace.Hex(SYSTEM.VAL(LONGINT, val), 9); Trace.StringLn (")");
  2787. Release(TraceOutput);
  2788. END;
  2789. RETURN val
  2790. END ApicGet;
  2791. (* Handle interprocessor interrupt. During upcall interrupts are off and processor is at kernel level. *)
  2792. PROCEDURE HandleIPC(VAR state: State);
  2793. VAR id: LONGINT;
  2794. BEGIN
  2795. id := ID();
  2796. IF ~TraceProcessor OR (id IN allProcessors) THEN
  2797. IF FrontBarrier IN ipcFlags THEN
  2798. AtomicExcl(ipcFrontBarrier, id);
  2799. WHILE ipcFrontBarrier # {} DO SpinHint END (* wait for all *)
  2800. END;
  2801. ipcHandler(id, state, ipcMessage); (* interrupts off and at kernel level *)
  2802. IF BackBarrier IN ipcFlags THEN
  2803. AtomicExcl(ipcBackBarrier, id);
  2804. WHILE ipcBackBarrier # {} DO SpinHint END (* wait for all *)
  2805. END;
  2806. AtomicExcl(ipcBusy, id) (* ack - after this point we do not access shared variables for this broadcast *)
  2807. END;
  2808. IF state.INT = MPIPC THEN
  2809. ApicPut(0B0H, {}) (* EOI (not needed for NMI or local call, see 7.4.10.6) *)
  2810. END
  2811. END HandleIPC;
  2812. (* Handle MP error interrupt. *)
  2813. PROCEDURE HandleError(VAR state: State);
  2814. VAR esr: SET; (* int: LONGINT; *)
  2815. BEGIN
  2816. (* int := state.INT; *) esr := ApicGet(280H);
  2817. ApicPut(0B0H, {}); (* EOI *)
  2818. HALT(2302) (* SMP error *)
  2819. END HandleError;
  2820. (* Interprocessor broadcasting. Lock level SMP. *)
  2821. PROCEDURE LocalBroadcast(h: BroadcastHandler; msg: Message; flags: SET);
  2822. BEGIN
  2823. IF Self IN flags THEN ipcBusy := allProcessors
  2824. ELSE ipcBusy := allProcessors - {ID()}
  2825. END;
  2826. ipcFrontBarrier := ipcBusy; ipcBackBarrier := ipcBusy;
  2827. ipcHandler := h; ipcMessage := msg; ipcFlags := flags;
  2828. IF numProcessors > 1 THEN (* ICR: Fixed, Physical, Edge, All Excl. Self, INT IPC *)
  2829. ApicPut(300H, {18..19} + SYSTEM.VAL (SET, MPIPC));
  2830. (*REPEAT UNTIL ~(12 IN ApicGet(300H))*) (* wait for send to finish *)
  2831. END;
  2832. IF Self IN flags THEN CallLocalIPC END; (* "send" to self also *)
  2833. WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack before we release locks *)
  2834. ipcHandler := NIL; ipcMessage := NIL (* no race, because we have IPC lock *)
  2835. END LocalBroadcast;
  2836. (** Broadcast an operation to all processors. *)
  2837. PROCEDURE Broadcast* (h: BroadcastHandler; msg: Message; flags: SET);
  2838. BEGIN
  2839. Acquire(Processors);
  2840. LocalBroadcast(h, msg, flags);
  2841. Release(Processors)
  2842. END Broadcast;
  2843. (* Start all halted processors. *) (* Lock level Processors. *)
  2844. PROCEDURE StartAll*;
  2845. BEGIN
  2846. Acquire(Processors); (* wait for any pending Stops to finish, and disallow further Stops *)
  2847. ASSERT(stopped & (ipcBusy = {}));
  2848. ipcBusy := allProcessors - {ID()};
  2849. stopped := FALSE;
  2850. WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack *)
  2851. Release(Processors)
  2852. END StartAll;
  2853. PROCEDURE HandleFlushTLB(id: LONGINT; CONST state: State; msg: Message);
  2854. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2855. MOV EAX, CR3
  2856. MOV CR3, EAX
  2857. END HandleFlushTLB;
  2858. (** Flush the TLBs on all processors (multiprocessor-safe). *)
  2859. PROCEDURE GlobalFlushTLB;
  2860. BEGIN
  2861. Acquire(Processors);
  2862. LocalBroadcast(HandleFlushTLB, NIL, {Self, FrontBarrier, BackBarrier});
  2863. Release(Processors)
  2864. END GlobalFlushTLB;
  2865. PROCEDURE HandleFlushCache(id: LONGINT; CONST state: State; msg: Message);
  2866. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2867. WBINVD ; write back and invalidate internal cache and initiate write back and invalidation of external caches
  2868. END HandleFlushCache;
  2869. (** Flush the caches on all processors (multiprocessor-safe). *)
  2870. PROCEDURE GlobalFlushCache;
  2871. BEGIN
  2872. Acquire(Processors);
  2873. LocalBroadcast(HandleFlushCache, NIL, {Self, FrontBarrier, BackBarrier});
  2874. Release(Processors)
  2875. END GlobalFlushCache;
  2876. (* Activate the garbage collector in single-processor mode. Lock level ALL. *)
  2877. PROCEDURE HandleKernelCall(VAR state: State);
  2878. BEGIN (* level 0 *)
  2879. IF IFBit IN state.FLAGS THEN
  2880. Sti (* re-enable interrupts *)
  2881. END;
  2882. CASE state.RAX OF (* see KernelCall* *)
  2883. |2: (* HLT *)
  2884. IF IFBit IN state.FLAGS THEN
  2885. HLT
  2886. END
  2887. END
  2888. END HandleKernelCall;
  2889. (*
  2890. (** Activate the garbage collector immediately (multiprocessor-safe). *)
  2891. PROCEDURE GlobalGC*;
  2892. BEGIN
  2893. Acquire(Processors);
  2894. gcBarrier := allProcessors;
  2895. LocalBroadcast(HandleGC, NIL, {Self, BackBarrier});
  2896. Release(Processors);
  2897. END GlobalGC;
  2898. *)
  2899. PROCEDURE HandleGetTimestamp(id: LONGINT; CONST state: State; msg: Message);
  2900. BEGIN
  2901. time[id] := GetTimer()
  2902. END HandleGetTimestamp;
  2903. (** Get timestamp on all processors (for testing). *)
  2904. PROCEDURE GlobalGetTimestamp;
  2905. VAR t: TimeArray; i: LONGINT; mean, var, n: HUGEINT;
  2906. BEGIN
  2907. Acquire(Processors);
  2908. LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier});
  2909. LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier});
  2910. t := time;
  2911. Release(Processors);
  2912. Acquire (TraceOutput);
  2913. FOR i := 0 TO numProcessors-1 DO Trace.HIntHex(t[i], 17) END;
  2914. IF numProcessors > 1 THEN
  2915. mean := 0;
  2916. n := numProcessors;
  2917. FOR i := 0 TO numProcessors-1 DO
  2918. INC (mean, t[i])
  2919. END;
  2920. mean := mean DIV n;
  2921. var := 0;
  2922. FOR i := 0 TO numProcessors-1 DO
  2923. n := t[i] - mean;
  2924. INC (var, n * n)
  2925. END;
  2926. var := var DIV (numProcessors - 1);
  2927. Trace.String(" mean="); Trace.HIntHex(mean, 16);
  2928. Trace.String(" var="); Trace.HIntHex(var, 16);
  2929. Trace.String(" var="); Trace.Int(SHORT (var), 1);
  2930. Trace.String(" diff:");
  2931. FOR i := 0 TO numProcessors-1 DO
  2932. Trace.Int(SHORT (t[i] - mean), 1); Trace.Char(" ")
  2933. END
  2934. END;
  2935. Release (TraceOutput);
  2936. END GlobalGetTimestamp;
  2937. PROCEDURE ParseProcessor(adr: ADDRESS);
  2938. VAR id, idx, signature, family, feat, ver, log: LONGINT; flags: SET; string : ARRAY 8 OF CHAR;
  2939. BEGIN
  2940. SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, flags));
  2941. id := ASH(SYSTEM.VAL (LONGINT, flags * {8..15}), -8);
  2942. ver := ASH(SYSTEM.VAL (LONGINT, flags * {16..23}), -16);
  2943. SYSTEM.GET (adr+4, signature);
  2944. family := ASH(signature, -8) MOD 10H;
  2945. SYSTEM.GET (adr+8, feat);
  2946. idx := -1;
  2947. IF (family # 0) & (signature MOD 1000H # 0FFFH) & (24 IN flags) & (id < LEN(idMap)) & (idMap[id] = -1) THEN
  2948. IF 25 IN flags THEN idx := 0 (* boot processor *)
  2949. ELSIF numProcessors < maxProcessors THEN idx := numProcessors; INC(numProcessors)
  2950. ELSE (* skip *)
  2951. END
  2952. END;
  2953. IF idx # -1 THEN apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx)) END;
  2954. Trace.String(" Processor "); Trace.Int(id, 1);
  2955. Trace.String(", APIC"); Trace.Hex(ver, -3);
  2956. Trace.String(", ver "); Trace.Int(family, 1);
  2957. Trace.Char("."); Trace.Int(ASH(signature, -4) MOD 10H, 1);
  2958. Trace.Char("."); Trace.Int(signature MOD 10H, 1);
  2959. Trace.String(", features "); Trace.Hex(feat, 9);
  2960. Trace.String(", ID "); Trace.Int(idx, 1);
  2961. IF (threadsPerCore > 1) THEN Trace.String(" ("); Trace.Int(threadsPerCore, 0); Trace.String(" threads)"); END;
  2962. Trace.Ln;
  2963. IF (threadsPerCore > 1) THEN
  2964. GetConfig("DisableHyperthreading", string);
  2965. IF (string = "1") THEN
  2966. Trace.String("Machine: Hyperthreading disabled."); Trace.Ln;
  2967. RETURN;
  2968. END;
  2969. log := (LSH(CPUID1(), -16) MOD 256);
  2970. WHILE log > 1 DO
  2971. INC(id); DEC(log);
  2972. IF numProcessors < maxProcessors THEN
  2973. idx := numProcessors; INC(numProcessors);
  2974. apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx))
  2975. END
  2976. END
  2977. END
  2978. END ParseProcessor;
  2979. (* Parse MP configuration table. *)
  2980. PROCEDURE ParseMPConfig;
  2981. VAR adr, x: ADDRESS; i: LONGINT; entries: INTEGER; ch: CHAR; s: SET; str: ARRAY 8 OF CHAR;
  2982. BEGIN
  2983. localAPIC := 0; numProcessors := 1; allProcessors := {0};
  2984. FOR i := 0 TO LEN(idMap)-1 DO idMap[i] := -1 END; (* all unassigned *)
  2985. FOR i := 0 TO MaxCPU-1 DO started[i] := FALSE END;
  2986. adr := configMP;
  2987. GetConfig("MaxProcs", str);
  2988. i := 0; maxProcessors := StrToInt(i, str);
  2989. IF maxProcessors = 0 THEN maxProcessors := MaxCPU END;
  2990. IF (maxProcessors > 0) & (adr # NilAdr) THEN (* MP config table present, possible multi-processor *)
  2991. Trace.String("Machine: Intel MP Spec "); Trace.Int(ORD(revMP) DIV 10H + 1, 1);
  2992. Trace.Char("."); Trace.Int(ORD(revMP) MOD 10H, 1); Trace.Ln;
  2993. IF TraceVerbose THEN
  2994. IF ODD(ASH(ORD(featureMP[1]), -7)) THEN
  2995. Trace.StringLn (" PIC mode");
  2996. (* to do: enable SymIO *)
  2997. ELSE
  2998. Trace.StringLn (" Virtual wire mode");
  2999. END
  3000. END;
  3001. IF featureMP[0] # 0X THEN (* pre-defined configuration *)
  3002. Trace.String(" Default config "); Trace.Int(ORD(featureMP[0]), 1); Trace.Ln;
  3003. localAPIC := (0FEE00000H);
  3004. apicVer[0] := 0; apicVer[1] := 0
  3005. ELSE (* configuration defined in table *)
  3006. MapPhysical(adr, 68*1024, adr); (* 64K + 4K header *)
  3007. SYSTEM.GET (adr, i); ASSERT(i = 504D4350H); (* check signature *)
  3008. SYSTEM.GET (adr+4, i); (* length *)
  3009. ASSERT(ChecksumMP(adr, i MOD 10000H) = 0);
  3010. IF TraceVerbose THEN
  3011. Trace.String(" ID: ");
  3012. FOR x := adr+8 TO adr+27 DO
  3013. SYSTEM.GET (x, ch); Trace.Char(ch);
  3014. IF x = adr+15 THEN Trace.Char(" ") END
  3015. END;
  3016. Trace.Ln
  3017. END;
  3018. localAPIC := 0; SYSTEM.GET(adr+36, SYSTEM.VAL (LONGINT, localAPIC));
  3019. IF TraceVerbose THEN Trace.String(" Local APIC:"); Trace.Address (localAPIC); Trace.Ln END;
  3020. SYSTEM.GET (adr+34, entries);
  3021. INC(adr, 44); (* skip header *)
  3022. WHILE entries > 0 DO
  3023. SYSTEM.GET (adr, ch); (* type *)
  3024. CASE ORD(ch) OF
  3025. 0: (* processor *)
  3026. ParseProcessor(adr);
  3027. INC(adr, 20)
  3028. |1: (* bus *)
  3029. IF TraceVerbose THEN
  3030. SYSTEM.GET (adr+1, ch);
  3031. Trace.String(" Bus "); Trace.Int(ORD(ch), 1); Trace.String(": ");
  3032. FOR x := adr+2 TO adr+7 DO SYSTEM.GET (x, ch); Trace.Char(ch) END;
  3033. Trace.Ln
  3034. END;
  3035. INC(adr, 8)
  3036. |2: (* IO APIC *)
  3037. IF TraceVerbose THEN
  3038. SYSTEM.GET (adr+1, ch); Trace.String(" IO APIC ID:"); Trace.Hex(ORD(ch), -3);
  3039. SYSTEM.GET (adr+2, ch); Trace.String(", version "); Trace.Int(ORD(ch), 1);
  3040. SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, s)); IF ~(24 IN s) THEN Trace.String(" (disabled)") END;
  3041. Trace.Ln
  3042. END;
  3043. INC(adr, 8)
  3044. |3: (* IO interrupt assignment *)
  3045. INC(adr, 8)
  3046. |4: (* Local interrupt assignment *)
  3047. INC(adr, 8)
  3048. END; (* CASE *)
  3049. DEC(entries)
  3050. END
  3051. END
  3052. END;
  3053. IF localAPIC = 0 THEN (* single processor *)
  3054. Trace.StringLn ("Machine: Single-processor");
  3055. apicVer[0] := 0
  3056. END;
  3057. started[0] := TRUE;
  3058. FOR i := 0 TO MaxCPU-1 DO revIDmap[i] := -1 END;
  3059. FOR i := 0 TO LEN(idMap)-1 DO
  3060. x := idMap[i];
  3061. IF x # -1 THEN
  3062. ASSERT(revIDmap[x] = -1); (* no duplicate APIC ids *)
  3063. revIDmap[x] := SHORT(SHORT(i))
  3064. END
  3065. END;
  3066. (* timer configuration *)
  3067. GetConfig("TimerRate", str);
  3068. i := 0; timerRate := StrToInt(i, str);
  3069. IF timerRate = 0 THEN timerRate := 1000 END;
  3070. IF TraceProcessor THEN
  3071. GetConfig("TraceProc", str);
  3072. i := 0; traceProcessor := StrToInt(i, str) # 0
  3073. END
  3074. END ParseMPConfig;
  3075. (* Return the current average measured bus clock speed in Hz. *)
  3076. PROCEDURE GetBusClockRate(): LONGINT;
  3077. VAR timer: LONGINT; t: LONGINT;
  3078. BEGIN
  3079. t := ticks;
  3080. REPEAT UNTIL ticks # t; (* wait for edge *)
  3081. timer := ticks + ClockRateDelay;
  3082. ApicPut(380H, SYSTEM.VAL (SET, MAX(LONGINT))); (* initial count *)
  3083. REPEAT UNTIL timer - ticks <= 0;
  3084. t := MAX(LONGINT) - SYSTEM.VAL (LONGINT, ApicGet(390H)); (* current count *)
  3085. IF t <= MAX(LONGINT) DIV 1000 THEN
  3086. RETURN 1000 * t DIV ClockRateDelay
  3087. ELSE
  3088. RETURN t DIV ClockRateDelay * 1000
  3089. END
  3090. END GetBusClockRate;
  3091. (* Initialize APIC timer for timeslicing. *)
  3092. PROCEDURE InitMPTimer;
  3093. VAR rate: LONGINT;
  3094. BEGIN
  3095. IF timerRate > 0 THEN
  3096. ApicPut(3E0H, {0,1,3}); (* divide by 1 *)
  3097. ApicPut(320H, {16} + SYSTEM.VAL (SET, MPTMR)); (* masked, one-shot *)
  3098. rate := GetBusClockRate();
  3099. busHz0[ID()] := rate;
  3100. rate := (rate+500000) DIV 1000000 * 1000000; (* round to nearest MHz *)
  3101. busHz1[ID()] := rate;
  3102. ApicPut(320H, {17} + SYSTEM.VAL (SET, MPTMR)); (* unmasked, periodic *)
  3103. ApicPut(380H, SYSTEM.VAL (SET, rate DIV timerRate)) (* initial count *)
  3104. END
  3105. END InitMPTimer;
  3106. (* Handle multiprocessor timer interrupt. *)
  3107. PROCEDURE HandleMPTimer(VAR state: State);
  3108. BEGIN (* {interrupts off} *)
  3109. timer(ID(), state);
  3110. ApicPut(0B0H, {}); (* EOI *)
  3111. Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *)
  3112. Timeslice(state) (* fixme: check recursive interrupt *)
  3113. END HandleMPTimer;
  3114. (* Handle uniprocessor timer interrupt. *)
  3115. PROCEDURE HandleUPTimer(VAR state: State);
  3116. BEGIN (* {interrupts off} *)
  3117. timer(0, state);
  3118. Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *)
  3119. Timeslice(state)
  3120. END HandleUPTimer;
  3121. PROCEDURE DummyEvent(id: LONGINT; CONST state: State);
  3122. END DummyEvent;
  3123. (** Install a processor timer event handler. *)
  3124. PROCEDURE InstallEventHandler* (h: EventHandler);
  3125. BEGIN
  3126. IF h # NIL THEN timer := h ELSE timer := DummyEvent END
  3127. END InstallEventHandler;
  3128. (* Initialize APIC for current processor. *)
  3129. PROCEDURE InitAPIC;
  3130. BEGIN
  3131. (* enable APIC, set focus checking & set spurious interrupt handler *)
  3132. ASSERT(MPSPU MOD 16 = 15); (* low 4 bits set, p. 7-29 *)
  3133. ApicPut(0F0H, {8} + SYSTEM.VAL (SET, MPSPU));
  3134. (* set error interrupt handler *)
  3135. ApicPut(370H, SYSTEM.VAL (SET, MPERR));
  3136. InitMPTimer
  3137. END InitAPIC;
  3138. (* Start processor activity. *)
  3139. PROCEDURE StartMP;
  3140. VAR id: LONGINT; state: State;
  3141. BEGIN (* running at kernel level with interrupts on *)
  3142. InitAPIC;
  3143. id := ID(); (* timeslicing is disabled, as we are running at kernel level *)
  3144. Acquire (TraceOutput);
  3145. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" running");
  3146. Release (TraceOutput);
  3147. IF TraceProcessor & traceProcessor & (id = numProcessors-1) THEN
  3148. DEC(numProcessors) (* exclude from rest of activity *)
  3149. ELSE
  3150. INCL(allProcessors, id)
  3151. END;
  3152. (* synchronize with boot processor - end of mutual exclusion *)
  3153. started[id] := TRUE;
  3154. IF TraceProcessor & ~(id IN allProcessors) THEN
  3155. Acquire (TraceOutput);
  3156. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" tracing");
  3157. Release (TraceOutput);
  3158. LOOP
  3159. IF traceProcessorProc # NIL THEN traceProcessorProc(id, state) END;
  3160. SpinHint
  3161. END
  3162. END;
  3163. (* wait until woken up *)
  3164. WHILE stopped DO SpinHint END;
  3165. (* now fully functional, including storage allocation *)
  3166. AtomicExcl(ipcBusy, id); (* ack *)
  3167. Acquire (TraceOutput);
  3168. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn(" scheduling");
  3169. Release (TraceOutput);
  3170. ASSERT(id = ID()); (* still running on same processor *)
  3171. start;
  3172. END StartMP;
  3173. (* Subsequent processors start executing here. *)
  3174. PROCEDURE EnterMP;
  3175. (* no local variables allowed, because stack is switched. *)
  3176. BEGIN (* running at kernel level with interrupts off *)
  3177. InitProcessor;
  3178. InitMemory; (* switch stack *)
  3179. Start;
  3180. StartMP
  3181. END EnterMP;
  3182. (* Start another processor. *)
  3183. PROCEDURE StartProcessor(phys: ADDRESS; apicid: LONGINT; startup: BOOLEAN);
  3184. VAR j, k: LONGINT; s: SET; timer: LONGINT;
  3185. BEGIN
  3186. (* clear APIC errors *)
  3187. ApicPut(280H, {}); s := ApicGet(280H);
  3188. (* assert INIT *)
  3189. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3190. ApicPut(300H, {8, 10, 14, 15}); (* set Dest, INIT, Phys, Assert, Level *)
  3191. timer := ticks + 5; (* > 200us *)
  3192. REPEAT UNTIL timer - ticks <= 0;
  3193. (* deassert INIT *)
  3194. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3195. ApicPut(300H, {8, 10, 15}); (* set Dest, INIT, Deassert, Phys, Level *)
  3196. IF startup THEN (* send STARTUP if required *)
  3197. j := 0; k := 2;
  3198. WHILE j # k DO
  3199. ApicPut(280H, {});
  3200. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3201. (* set Dest, Startup, Deassert, Phys, Edge *)
  3202. ApicPut(300H, {9, 10} + SYSTEM.VAL (SET, phys DIV 4096 MOD 256));
  3203. timer := ticks + 10; (* ~10ms *)
  3204. REPEAT UNTIL timer - ticks <= 0;
  3205. IF ~(12 IN ApicGet(300H)) THEN (* idle *)
  3206. IF ApicGet(280H) * {0..3, 5..7} = {} THEN k := j (* ESR success, exit *)
  3207. ELSE INC(j) (* retry *)
  3208. END
  3209. ELSE INC(j) (* retry *)
  3210. END
  3211. END
  3212. END
  3213. END StartProcessor;
  3214. (* Boot other processors, one at a time. *)
  3215. PROCEDURE BootMP;
  3216. VAR phys, page0Adr: ADDRESS; i: LONGINT; timer: LONGINT;
  3217. BEGIN
  3218. stopped := TRUE; ipcBusy := {}; (* other processors can be woken with StartAll *)
  3219. InitBootPage(EnterMP, phys);
  3220. MapPhysical(0, 4096, page0Adr); (* map in BIOS data area *)
  3221. Acquire(TraceOutput); Trace.String("Machine: Booting processors... "); Trace.Ln; Release(TraceOutput);
  3222. FOR i := 1 TO numProcessors-1 DO
  3223. (* set up booting for old processor types that reset on INIT & don't understand STARTUP *)
  3224. SYSTEM.PUT (page0Adr + 467H, ASH(phys, 16-4));
  3225. PutNVByte(15, 0AX); (* shutdown status byte *)
  3226. (* attempt to start another processor *)
  3227. Acquire(TraceOutput); Trace.String(" P0 starting P"); Trace.Int(i, 1); Trace.Ln; Release(TraceOutput);
  3228. StartProcessor(phys, revIDmap[i], apicVer[i] >= 10H); (* try booting processor i *)
  3229. (* wait for CPU to become active *)
  3230. timer := ticks + 5000; (* ~5s timeout *)
  3231. REPEAT SpinHint UNTIL started[i] OR (timer - ticks <= 0);
  3232. (* end of mutual exclusion *)
  3233. Acquire(TraceOutput);
  3234. IF started[i] THEN
  3235. Trace.String(" P0 recognized P"); Trace.Int(i, 1);
  3236. ELSE
  3237. Trace.String(" P0 timeout on P"); Trace.Int(i, 1);
  3238. END;
  3239. Trace.Ln;
  3240. Release(TraceOutput);
  3241. END;
  3242. SYSTEM.PUT (page0Adr + 467H, SYSTEM.VAL (LONGINT, 0));
  3243. UnmapPhysical(page0Adr, 4096);
  3244. PutNVByte(15, 0X) (* restore shutdown status *)
  3245. END BootMP;
  3246. (* Timer interrupt handler. *)
  3247. PROCEDURE TimerInterruptHandler(VAR state: State);
  3248. BEGIN
  3249. INC(ticks);
  3250. DEC(eventCount);
  3251. IF eventCount = 0 THEN
  3252. eventCount := eventMax; event(state)
  3253. END
  3254. END TimerInterruptHandler;
  3255. PROCEDURE Dummy(VAR state: State);
  3256. END Dummy;
  3257. PROCEDURE InitTicks;
  3258. CONST Div = (2*TimerClock + Second) DIV (2*Second); (* timer clock divisor *)
  3259. BEGIN
  3260. eventCount := 0; eventMax := 0; event := Dummy;
  3261. (* initialize timer hardware *)
  3262. ASSERT(Div <= 65535);
  3263. Portout8(43H, 34X); Wait; (* mode 2, rate generator *)
  3264. Portout8(40H, CHR(Div MOD 100H)); Wait;
  3265. Portout8(40H, CHR(ASH(Div, -8)));
  3266. InstallHandler(TimerInterruptHandler, IRQ0)
  3267. END InitTicks;
  3268. (* Set timer upcall. The handler procedure will be called at a rate of Second/divisor Hz. *)
  3269. PROCEDURE InstallTickHandler(handler: Handler; divisor: LONGINT);
  3270. BEGIN
  3271. eventMax := divisor; event := handler;
  3272. eventCount := eventMax
  3273. END InstallTickHandler;
  3274. (* Initialize processors *)
  3275. PROCEDURE InitProcessors*;
  3276. BEGIN
  3277. traceProcessor := FALSE; traceProcessorProc := NIL;
  3278. ASSERT(Second = 1000); (* use of Machine.ticks *)
  3279. InitTicks;
  3280. timer := DummyEvent;
  3281. ParseMPConfig;
  3282. InstallHandler(HandleIPC, MPIPCLocal);
  3283. IF localAPIC # 0 THEN (* APIC present *)
  3284. InitAPICArea(localAPIC, 4096);
  3285. InitAPICIDAdr(localAPIC+20H, idMap);
  3286. ASSERT(MPSPU MOD 16 = 15); (* use default handler (see 7.4.11.1) *)
  3287. InstallHandler(HandleError, MPERR);
  3288. InstallHandler(HandleMPTimer, MPTMR);
  3289. InstallHandler(HandleIPC, MPIPC);
  3290. InitAPIC;
  3291. IF numProcessors > 1 THEN BootMP END
  3292. ELSE
  3293. IF timerRate > 0 THEN
  3294. InstallTickHandler(HandleUPTimer, Second DIV timerRate)
  3295. END
  3296. END;
  3297. InstallHandler(HandleKernelCall, MPKC);
  3298. END InitProcessors;
  3299. (* Send and print character *)
  3300. PROCEDURE TraceChar (c: CHAR);
  3301. VAR status: SHORTINT;
  3302. (* Scroll the screen by one line. *)
  3303. PROCEDURE Scroll;
  3304. VAR adr: ADDRESS; off: SIZE;
  3305. BEGIN
  3306. adr := traceBase + TraceLen;
  3307. SYSTEM.MOVE (adr, adr - TraceLen, TraceSize - TraceLen);
  3308. adr := traceBase + TraceSize - TraceLen;
  3309. FOR off := 0 TO TraceLen - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (adr + off, 100H * 7H + 32) END
  3310. END Scroll;
  3311. BEGIN
  3312. IF TraceV24 IN traceMode THEN
  3313. REPEAT (* wait until port is ready to accept a character *)
  3314. Portin8 (tracePort + 5, SYSTEM.VAL(CHAR,status))
  3315. UNTIL ODD (status DIV 20H); (* THR empty *)
  3316. Portout8 (tracePort, c);
  3317. END;
  3318. IF TraceScreen IN traceMode THEN
  3319. IF c = 9X THEN c := 20X END;
  3320. IF c = 0DX THEN (* CR *)
  3321. DEC (tracePos, tracePos MOD TraceLen)
  3322. ELSIF c = 0AX THEN (* LF *)
  3323. IF tracePos < TraceSize THEN
  3324. INC (tracePos, TraceLen) (* down to next line *)
  3325. ELSE
  3326. Scroll
  3327. END
  3328. ELSE
  3329. IF tracePos >= TraceSize THEN
  3330. Scroll;
  3331. DEC (tracePos, TraceLen)
  3332. END;
  3333. SYSTEM.PUT16 (traceBase + tracePos, 100H * traceColor + ORD (c));
  3334. INC (tracePos, SIZEOF(INTEGER))
  3335. END
  3336. END
  3337. END TraceChar;
  3338. (* Change color *)
  3339. PROCEDURE TraceColor (c: SHORTINT);
  3340. BEGIN traceColor := c;
  3341. END TraceColor;
  3342. (* Initialise tracing. *)
  3343. PROCEDURE InitTrace;
  3344. CONST MaxPorts = 8;
  3345. VAR i, p, bps: LONGINT; off: SIZE; s, name: ARRAY 32 OF CHAR;
  3346. baselist: ARRAY MaxPorts OF LONGINT;
  3347. BEGIN
  3348. GetConfig ("TraceMode", s);
  3349. p := 0; traceMode := SYSTEM.VAL (SET, StrToInt (p, s));
  3350. IF TraceScreen IN traceMode THEN
  3351. GetConfig ("TraceMem", s);
  3352. p := 0; traceBase := SYSTEM.VAL (ADDRESS, StrToInt (p, s));
  3353. IF traceBase = 0 THEN traceBase := 0B8000H END; (* default screen buffer *)
  3354. FOR off := 0 TO TraceSize - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (traceBase + off, 100H * 7H + 32) END;
  3355. tracePos := 0;
  3356. Portout8(3D4H, 0EX);
  3357. Portout8(3D5H, CHR((TraceWidth*TraceHeight) DIV 100H));
  3358. Portout8(3D4H, 0FX);
  3359. Portout8(3D5H, CHR((TraceWidth*TraceHeight) MOD 100H))
  3360. END;
  3361. IF TraceV24 IN traceMode THEN
  3362. FOR i := 0 TO MaxPorts - 1 DO
  3363. COPY ("COMx", name); name[3] := CHR (ORD ("1") + i);
  3364. GetConfig (name, s); p := 0; baselist[i] := StrToInt (p, s);
  3365. END;
  3366. IF baselist[0] = 0 THEN baselist[0] := 3F8H END; (* COM1 port default values *)
  3367. IF baselist[1] = 0 THEN baselist[1] := 2F8H END; (* COM2 port default values *)
  3368. GetConfig("TracePort", s); p := 0; p := StrToInt(p, s); DEC(p);
  3369. IF (p >= 0) & (p < MaxPorts) THEN tracePort := baselist[p] ELSE tracePort := baselist[0] END;
  3370. ASSERT(tracePort > 0);
  3371. GetConfig("TraceBPS", s); p := 0; bps := StrToInt(p, s);
  3372. IF bps <= 0 THEN bps := 38400 END;
  3373. Portout8 (tracePort + 3, 80X); (* Set the Divisor Latch Bit - DLAB = 1 *)
  3374. bps := 115200 DIV bps; (* compiler DIV/PORTOUT bug workaround *)
  3375. Portout8 (tracePort + 1, CHR (bps DIV 100H)); (* Set the Divisor Latch MSB *)
  3376. Portout8 (tracePort, CHR (bps MOD 100H)); (* Set the Divisor Latch LSB *)
  3377. Portout8 (tracePort + 3, 3X); (* 8N1 *)
  3378. Portout8 (tracePort + 4, 3X); (* Set DTR, RTS on in the MCR *)
  3379. Portout8 (tracePort + 1, 0X); (* Disable receive interrupts *)
  3380. END;
  3381. traceColor := 7; Trace.Char := TraceChar; Trace.Color := TraceColor;
  3382. END InitTrace;
  3383. (* The following procedure is linked as the first block in the bootfile *)
  3384. PROCEDURE {NOPAF, FIXED(0100000H)} FirstAddress;
  3385. CODE{SYSTEM.AMD64}
  3386. ; relocate the bootfile from 0x1000 to target address 0x100000
  3387. PUSH RAX
  3388. PUSH RSI
  3389. PUSH RDI
  3390. MOV RSI,1000H
  3391. MOV RDI,100000H
  3392. MOV RCX, LastAddress
  3393. SUB RCX, RDI
  3394. CLD
  3395. REP MOVSB
  3396. POP RDI
  3397. POP RSI
  3398. POP RAX
  3399. ; continue in relocated bootfile
  3400. JMP DWORD 100000H - 1000H + Skip
  3401. Skip:
  3402. ; save arguments passed by bootloader
  3403. MOV bootFlag, RAX
  3404. MOV initRegs0,RSI
  3405. MOV initRegs1, RDI
  3406. END FirstAddress;
  3407. (* empty section allocated at end of bootfile *)
  3408. PROCEDURE {NOPAF} LastAddress;
  3409. CODE {SYSTEM.AMD64}
  3410. END LastAddress;
  3411. (* Init code called from OBL. EAX = boot table offset. ESI, EDI=initRegs. 2k stack is available. No trap handling. *)
  3412. BEGIN
  3413. initRegs[0] := initRegs0;
  3414. initRegs[1] := initRegs1;
  3415. (* registers 6 and 7 get converted to 32 bit, cf. PCB.Assigne
  3416. SYSTEM.GETREG(6, initRegs[0]); SYSTEM.GETREG(7, initRegs[1]); (* initRegs0 & initRegs1 *)
  3417. *)
  3418. SYSTEM.PUT16(0472H, 01234H); (* soft boot flag, for when we reboot *)
  3419. ReadBootTable(bootFlag);
  3420. InitTrace;
  3421. Trace.String("Machine: "); Trace.Blue;Trace.StringLn (Version); Trace.Default;
  3422. CheckMemory;
  3423. SearchMP;
  3424. AllocateDMA; (* must be called after SearchMP, as lowTop is modified *)
  3425. version := Version;
  3426. InitBoot;
  3427. InitProcessor;
  3428. InitLocks;
  3429. NmaxUserStacks := MaxUserStacks;
  3430. ASSERT(ASH(1, PSlog2) = PS);
  3431. Trace.String("Machine: Enabling MMU... ");
  3432. InitSegments; (* enable flat segments *)
  3433. InitPages; (* create page tables *)
  3434. InitMemory; (* switch on segmentation, paging and switch stack *)
  3435. Trace.Green; Trace.StringLn("Ok"); Trace.Default;
  3436. (* allocate empty memory block with enough space for at least one free block *)
  3437. memBlockHead := SYSTEM.VAL (MemoryBlock, ADDRESSOF (initialMemBlock));
  3438. memBlockTail := memBlockHead;
  3439. initialMemBlock.beginBlockAdr := SYSTEM.VAL (ADDRESS, LastAddress);
  3440. initialMemBlock.endBlockAdr := initialMemBlock.beginBlockAdr + StaticBlockSize;
  3441. initialMemBlock.size := initialMemBlock.endBlockAdr - initialMemBlock.beginBlockAdr;
  3442. FOR i := 0 TO IDTSize - 1 DO
  3443. FOR j := 0 TO MaxNumHandlers - 1 DO
  3444. intHandler[i, j].valid := FALSE;
  3445. intHandler[i, j].handler := NIL
  3446. END
  3447. END;
  3448. default.valid := FALSE; (* initialized later *)
  3449. END Machine.
  3450. (*
  3451. 03.03.1998 pjm First version
  3452. 30.06.1999 pjm ProcessorID moved to AosProcessor
  3453. *)
  3454. (**
  3455. Notes
  3456. This module defines an interface to the boot environment of the system. The facilities provided here are only intended for the lowest levels of the system, and should never be directly imported by user modules (exceptions are noted below). They are highly specific to the system hardware and firmware architecture.
  3457. Typically a machine has some type of firmware that performs initial testing and setup of the system. The firmware initiates the operating system bootstrap loader, which loads the boot file. This module is the first module in the statically linked boot file that gets control.
  3458. There are two more-or-less general procedures in this module: GetConfig and StrToInt. GetConfig is used to query low-level system settings, e.g., the location of the boot file system. StrToInt is a utility procedure that parses numeric strings.
  3459. Config strings:
  3460. ExtMemSize Specifies size of extended memory (above 1MB) in MB. This value is not checked for validity. Setting it false may cause the system to fail, possible after running for some time. The memory size is usually detected automatically, but if the detection does not work for some reason, or if you want to limit the amount of memory detected, this string can be set. For example, if the machine has 64MB of memory, this value can be set as ExtMemSize="63".
  3461. *)