Generic.I386.Machine.Mod 121 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878
  1. MODULE Machine; (** AUTHOR "pjm"; PURPOSE "Bootstrapping, configuration and machine interface"; *)
  2. (* The code of this module body must be the first in the statically linked boot file. *)
  3. IMPORT SYSTEM, Trace;
  4. CONST
  5. Version = "A2 Revision 5296 (10.04.2013)";
  6. MaxCPU* = 8; (** maximum number of processors (up to 16) *)
  7. DefaultObjectFileExtension* = ".Gof";
  8. (** bits in features variable *)
  9. MTTR* = 12; MMX* = 23; HTT* = 28;
  10. MaxDisks = 2; (* maximum number of disks with BIOS parameters *)
  11. HeapAdr = 100000H;
  12. MaxMemTop = (80000000H);
  13. DefaultDMASize = 20; (* default size of ISA DMA area in KB *)
  14. IsCooperative*= FALSE;
  15. CONST
  16. StrongChecks = FALSE; (* perform strong checks *)
  17. Stats* = FALSE; (* acquire statistics *)
  18. TimeCount = 0 (* 100000 *); (* number of lock tries before checking timeout - 0 to disable *)
  19. (** standard lock levels (in order) *) (* also refer to Traps.Show *)
  20. TraceOutput* = 0; (* Trace output *)
  21. Memory* = 1; (* Virtual memory management, stack and page allocation *)
  22. Heaps* = 2; (* Storage allocation and Garbage collection *)
  23. Interrupts* = 3 ; (* Interrupt handling. *)
  24. Modules* = 4; (* Module list *)
  25. Objects* = 5; (* Ready queue *)
  26. Processors* = 6; (* Interprocessor interrupts *)
  27. KernelLog* = 7; (* Atomic output *)
  28. (** highest level is all object locks *)
  29. Preemption* = 31; (** flag for BreakAll *)
  30. MaxLocks = 8; (* { <= 32 } *)
  31. LowestLock = 0; HighestLock = MaxLocks-1;
  32. CONST
  33. TraceVerbose = TRUE; (* write out verbose trace info *)
  34. AddressSize = SIZEOF(ADDRESS);
  35. SetSize = MAX (SET) + 1;
  36. (** error codes *)
  37. Ok* = 0;
  38. (* standard multipliers *)
  39. K = 1024; M = 100000H; (* 1K, 1M *)
  40. (* paging sizes *)
  41. PS = 4096; (* page size in bytes *)
  42. PSlog2 = 12; (* ASH(1, PSlog2) = PS *)
  43. RS = 4*M; (* region covered by a page table in bytes *)
  44. PTEs = RS DIV PS; (* number of page table/directory entries *)
  45. ReservedPages = 8; (* pages reserved on page heap (not for normal heap use) *)
  46. NilAdr* = -1; (** nil value for addresses (not same as pointer NIL value) *)
  47. (* free page stack page node layout *)
  48. NodeSP = 0;
  49. NodeNext = AddressSize;
  50. NodePrev = AddressSize*2;
  51. MinSP = AddressSize*3; MaxSP = PS;
  52. (*
  53. 0 sp
  54. AddressSize nextAdr
  55. AddressSize*2 prevAdr
  56. AddressSize*3 first entry
  57. 4092 last entry
  58. *)
  59. (* virtual memory layout. no area will cross the 2G boundary, to avoid LONGINT sign problems. *)
  60. MapAreaAdr = (80000000H); (* dynamic mappings: bottom part of 2G..4G *)
  61. MapAreaSize = 64*M;
  62. IntelAreaAdr = (0FEE00000H); (* reserved by Intel for APIC: 4G-18M..4G-18M+4K *)
  63. IntelAreaSize = 00001000H;
  64. StackAreaAdr = MapAreaAdr+MapAreaSize; (* stacks: middle part of 2G..4G *)
  65. StackAreaSize = IntelAreaAdr-StackAreaAdr;
  66. (* stack sizes *)
  67. KernelStackSize = 2*PS; (* multiple of PS *)
  68. MaxUserStackSize = 128*K; (* multiple of PS *)
  69. InitUserStackSize = PS; (* must be PS (or change NewStack) *)
  70. UserStackGuardSize = PS; (* multiple of PS left unallocated at bottom of stack virtual area *)
  71. MaxUserStacks = StackAreaSize DIV MaxUserStackSize;
  72. (* physical memory layout *)
  73. LowAdr = PS; (* lowest physical address used *)
  74. LinkAdr = M; (* address where kernel is linked, also address where heap begins *)
  75. StaticBlockSize = 32; (* static heap block size *)
  76. BlockHeaderSize = 2 * AddressSize;
  77. RecordDescSize = 4 * AddressSize; (* needs to be adapted in case Heaps.RecordDesc is changed *)
  78. (* gdt indices *)
  79. TSSOfs = 6; (* offset in GDT of TSSs *)
  80. StackOfs = TSSOfs + MaxCPU; (* offset in GDT of stacks *)
  81. GDTSize = StackOfs + MaxCPU;
  82. (* gdt selectors *)
  83. KernelCodeSel = 1*8; (* selector 1 in gdt, RPL 0 *)
  84. KernelStackSel = 2*8; (* selector 2 in gdt, RPL 0 *)
  85. UserCodeSel = 3*8 + 3; (* selector 3 in gdt, RPL 3 *)
  86. DataSel = 4*8; (* selector 4 in gdt, RPL 0 *)
  87. UserStackSel = 5*8 + 3; (* selector 5 in gdt, RPL 3 *)
  88. KernelTR = TSSOfs*8; (* selector in gdt, RPL 0 *)
  89. (* paging flags *)
  90. PageNotPresent = 0; (* not present page *)
  91. KernelPage = 3; (* supervisor, present, r/w *)
  92. UserPage = 7; (* user, present, r/w *)
  93. HeapMin = 50; (* "minimum" heap size as percentage of total memory size (used for heap expansion in scope of GC ) *)
  94. HeapMax = 95; (* "maximum" heap size as percentage of total memory size (used for heap expansion in scope of GC) *)
  95. ExpandRate = 1; (* always extend heap with at least this percentage of total memory size *)
  96. Threshold = 10; (* periodic GC initiated when this percentage of total memory size bytes has "passed through" NewBlock *)
  97. InitialHeapIncrement = 4096;
  98. HeaderSize = 40H; (* cf. Linker0 *)
  99. EndBlockOfs = 38H; (* cf. Linker0 *)
  100. MemoryBlockOfs = BlockHeaderSize + RecordDescSize + BlockHeaderSize; (* memory block (including header) starts at offset HeaderSize *)
  101. CONST
  102. (** pre-defined interrupts 0-31, used with InstallHandler *)
  103. DE* = 0; DB* = 1; NMI* = 2; BP* = 3; OVF* = 4; BR* = 5; UD* = 6; NM* = 7;
  104. DF* = 8; TS* = 10; NP* = 11; SSF* = 12; GP* = 13; PF* = 14; MF*= 16; AC*= 17; MC* = 18;
  105. IRQ0* = 32; (* {IRQ0 MOD 8 = 0} *)
  106. IRQ2 = IRQ0 + 2;
  107. IRQ7 = IRQ0 + 7;
  108. IRQ8 = IRQ0 + 8;
  109. IRQ15 = 47;
  110. MaxIRQ* = IRQ15; (** hardware interrupt numbers *)
  111. MPKC* = 49; (** SMP: kernel call *)
  112. SoftInt* = 58; (** temporary software interrupt *)
  113. MPIPCLocal* = 59; (** SMP: local interprocessor interrupt *)
  114. MPTMR* = 60; (** SMP: timer interrupt *)
  115. MPIPC* = 61; (** SMP: interprocessor interrupt *)
  116. MPERR* = 62; (** SMP: error interrupt *)
  117. MPSPU* = 63; (** SMP: spurious interrupt {MOD 16 = 15} *)
  118. IDTSize = 64;
  119. MaxNumHandlers = 16;
  120. TraceSpurious = FALSE; (* no message on spurious hardware interrupts *)
  121. HandleSpurious = TRUE OR TraceSpurious; (* do not trap on spurious interrupts *)
  122. IntA0 = 020H; IntA1 = 021H; (* Interrupt Controller 1 *)
  123. IntB0 = 0A0H; IntB1 = 0A1H; (* Interrupt Controller 2 *)
  124. (** EFLAGS bits *)
  125. IFBit* = 9; VMBit* = 17;
  126. KernelLevel* = 0; UserLevel* = 3; (** CS MOD 4 *)
  127. Second* = 1000; (* frequency of ticks increments in Hz *)
  128. CONST
  129. Self* = 0; FrontBarrier* = 1; BackBarrier* = 2; (** Broadcast flags. *)
  130. TraceApic = FALSE;
  131. TraceProcessor = FALSE; (* remove this hack! *)
  132. ClockRateDelay = 50; (* ms - delay when timing bus clock rate *)
  133. TimerClock = 1193180; (* timer clock is 1.19318 MHz *)
  134. CONST
  135. (* low level tracing *)
  136. TraceV24 = 2; TraceScreen = 0;
  137. TraceWidth = 80; TraceHeight = 25;
  138. TraceLen = TraceWidth * SIZEOF (INTEGER);
  139. TraceSize = TraceLen * TraceHeight;
  140. TYPE
  141. Vendor* = ARRAY 13 OF CHAR;
  142. IDMap* = ARRAY 16 OF SHORTINT;
  143. TYPE
  144. Stack* = RECORD (** values are read-only *)
  145. low: ADDRESS; (* lowest virtual address that may be allocated for stack *)
  146. adr*: ADDRESS; (* lowest address on allocated stack *) (* exported for Objects only *)
  147. high*: ADDRESS; (* next virtual address after stack *) (* exported for Objects only *)
  148. END;
  149. (* task state segment *)
  150. TSSDesc = RECORD (* 1, p. 485 and p. 612 for required fields *)
  151. Link: LONGINT; (* lower 16 bits significant *)
  152. ESP0: LONGINT;
  153. ESS0: LONGINT; (* lower 16 bits significant *)
  154. ESP1: LONGINT;
  155. ESS1: LONGINT; (* lower 16 bits significant *)
  156. ESP2: LONGINT;
  157. ESS2: LONGINT; (* lower 16 bits significant *)
  158. CR3: LONGINT;
  159. EIP: LONGINT;
  160. EFLAGS: SET;
  161. EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI: LONGINT;
  162. ES, CS, SS, DS, FS, GS: LONGINT; (* lower 16 bits significant *)
  163. LDT: LONGINT; (* lower 16 bits significant *)
  164. TaskAttributes: INTEGER;
  165. IOBitmapOffset: INTEGER
  166. (* Implicit: IOBitmap: ARRAY 8192 DIV 4 OF SET *)
  167. END;
  168. Startup* = PROCEDURE; (** can not be a method *)
  169. (* global descriptor table *)
  170. SegDesc = RECORD
  171. low, high: LONGINT
  172. END;
  173. GDT = ARRAY GDTSize OF SegDesc;
  174. Range* = RECORD
  175. adr*: ADDRESS; size*: SIZE;
  176. END;
  177. TYPE
  178. (** processor state, ordering of record fields is predefined! *)
  179. State* = RECORD (* offsets used in FieldInterrupt, FieldIRQ and Objects.RestoreState *)
  180. EDI*, ESI*, ERR*, ESP0*, EBX*, EDX*, ECX*, EAX*: LONGINT; (** ESP0 = ADR(s.INT) *)
  181. INT*, BP*, PC*, CS*: LONGINT; (* BP and ERR are exchanged by glue code, for procedure link *)
  182. FLAGS*: SET;
  183. SP*, SS*: LONGINT; (** only valid if (VMBit IN s.EFLAGS) OR (CS MOD 4 < s.CS MOD 4) *)
  184. ES*, DS*, FS*, GS*: LONGINT; (** only valid if (VMBit IN s.FLAGS) *)
  185. END;
  186. (** exception state, ordering of record fields is predefined! *)
  187. ExceptionState* = RECORD
  188. halt*: ADDRESS; (** halt code *)
  189. pf*: ADDRESS; (** page fault address *)
  190. locks*: SET; (** active locks *)
  191. SP*: ADDRESS; (** actual ESP value at time of interrupt *)
  192. SS*, ES*, DS*, FS*, GS*: LONGINT; (** segment registers *)
  193. CR*: ARRAY 5 OF LONGINT; (** control registers *)
  194. DR*: ARRAY 8 OF LONGINT; (** debug registers *)
  195. FPU*: ARRAY 7 OF SET (** floating-point state *)
  196. END;
  197. Handler* = PROCEDURE {DELEGATE} (VAR state: State);
  198. HandlerRec = RECORD
  199. valid: BOOLEAN; (* offset 0 *)
  200. handler: Handler (* offset 4 *)
  201. END;
  202. GateDescriptor = RECORD
  203. offsetBits0to15: INTEGER;
  204. selector: INTEGER;
  205. gateType: INTEGER;
  206. offsetBits16to31: INTEGER
  207. END;
  208. IDT = ARRAY IDTSize OF GateDescriptor;
  209. SSEState* = ARRAY (512+16) OF CHAR;
  210. TYPE
  211. MemoryBlock* = POINTER TO MemoryBlockDesc;
  212. MemoryBlockDesc* = RECORD
  213. next- {UNTRACED}: MemoryBlock;
  214. startAdr-: ADDRESS; (* unused field for I386 *)
  215. size-: SIZE; (* unused field for I386 *)
  216. beginBlockAdr-, endBlockAdr-: ADDRESS
  217. END;
  218. TYPE
  219. EventHandler = PROCEDURE (id: LONGINT; CONST state: State);
  220. Message* = POINTER TO RECORD END; (** Broadcast message. *)
  221. BroadcastHandler = PROCEDURE (id: LONGINT; CONST state: State; msg: Message);
  222. TimeArray = ARRAY MaxCPU OF HUGEINT;
  223. Address32* = LONGINT;
  224. VAR
  225. lowTop*: ADDRESS; (** top of low memory *)
  226. memTop*: ADDRESS; (** top of memory *)
  227. dmaSize*: SIZE; (** size of ISA dma area, above lowTop (for use in Aos.Diskettes) *)
  228. configMP: ADDRESS; (** MP spec config table physical address (outside reported RAM) *)
  229. revMP: CHAR; (** MP spec revision *)
  230. featureMP: ARRAY 5 OF CHAR; (** MP spec feature bytes 1-5 *)
  231. version-: ARRAY 64 OF CHAR; (** Aos version *)
  232. SSESupport-: BOOLEAN;
  233. SSE2Support-: BOOLEAN;
  234. SSE3Support-: BOOLEAN; (* PH 04/11*)
  235. SSSE3Support-: BOOLEAN;
  236. SSE41Support-: BOOLEAN;
  237. SSE42Support-: BOOLEAN;
  238. SSE5Support-: BOOLEAN;
  239. AVXSupport-: BOOLEAN;
  240. features-, features2-: SET; (** processor features *)
  241. fcr*: SET; (** default floating-point control register value (default rounding mode is towards -infinity, for ENTIER) *)
  242. mhz*: HUGEINT; (** clock rate of GetTimer in MHz, or 0 if not known *)
  243. chs: ARRAY MaxDisks OF RECORD cyls, hds, spt: LONGINT END;
  244. initRegs0, initRegs1: LONGINT;
  245. initRegs: ARRAY 2 OF LONGINT; (* kernel parameters *)
  246. config: ARRAY 2048 OF CHAR; (* config strings *)
  247. bootFlag: ADDRESS;
  248. idAdr: ADDRESS; (* address of processor ID register *)
  249. map: IDMap;
  250. bootID: LONGINT; (* ID of boot processor (0) *)
  251. numberOfProcessors: LONGINT; (* number of processors installed during start up *)
  252. coresPerProcessor : LONGINT; (* number of cores per physical package *)
  253. threadsPerCore : LONGINT; (* number of threads per core *)
  254. CONST
  255. CacheLineSize = 128;
  256. TYPE
  257. (* Synchronization variables should reside in own cache line. This data structure should be aligned to CacheLineSize. *)
  258. Lock = RECORD
  259. locked : BOOLEAN;
  260. filler : ARRAY CacheLineSize - 1 OF CHAR;
  261. END;
  262. VAR
  263. lock: ARRAY MaxLocks OF Lock; (** all locks *)
  264. (*
  265. Every element in the proc array belongs to one processor. It is therefore sufficient to disable interrupts to protect the consistency of these elements. Race conditions with interrupts handled on the same processor are avoided by disabling interrupts for the entire time that a lock is held (using locksHeld & state). The data structures are padded to CacheLineSize to separate the locks out on cache lines of their own, to avoid false sharing.
  266. *)
  267. proc-, trapState-: ARRAY MaxCPU OF RECORD
  268. locksHeld-: SET; (** locks held by a processor *)
  269. state-: SET; (** processor flags (interrupt state) at entry to its first lock *)
  270. preemptCount-: LONGINT; (** if 0, preemption is allowed *)
  271. padding : ARRAY CacheLineSize - 12 OF CHAR;
  272. END;
  273. (* the data structures above should be aligned to CacheLineSize *)
  274. padding : ARRAY 92 OF CHAR;
  275. trapLocksBusy-: SET;
  276. maxTime: LONGINT;
  277. VAR
  278. gdt: GDT; (* global descriptor table *)
  279. procm: ARRAY MaxCPU OF RECORD (* indexed by ID () *)
  280. tss: TSSDesc;
  281. sp: ADDRESS; (* snapshot for GC *)
  282. stack: Stack
  283. END;
  284. kernelPD: ADDRESS; (* physical address of page directory *)
  285. freeLowPage: ADDRESS; (* free low page stack pointer (link at offset 0 in page). All addresses physical. NIL = -1 *)
  286. freeLowPages, freeHighPages, totalPages: LONGINT; (* number of free pages and total number of pages *)
  287. mapTop: ADDRESS; (* virtual address of end of memory mapping area *)
  288. heapEndAdr: ADDRESS; (* virtual address of end of heap (page aligned) *)
  289. topPageNum: LONGINT; (* page containing byte memTop-1 *)
  290. pageHeapAdr: ADDRESS; (* address (physical and virtual) of bottom of page heap area *)
  291. pageStackAdr: ADDRESS; (* virtual address of top page of free page stack *)
  292. freeStack: ARRAY (MaxUserStacks+SetSize-1) DIV SetSize OF SET; (* free stack bitmap *)
  293. freeStackIndex: LONGINT; (* current position in bitmap (rotates) *)
  294. Nbigskips-: LONGINT; (* number of times a stack was extended leaving a hole *)
  295. Nfilled-: LONGINT; (* number of times a "hole" in a stack was filled *)
  296. NnewStacks-, NnewStackLoops-, NnewStackInnerLoops-, NdisposeStacks-,
  297. NlostPages-, NreservePagesUsed-, NmaxUserStacks-: LONGINT;
  298. VAR
  299. idt: IDT; (* interrupt descriptor table *)
  300. glue: ARRAY IDTSize OF ARRAY 15 OF CHAR; (* code *)
  301. intHandler: ARRAY IDTSize, MaxNumHandlers OF HandlerRec; (* array of handlers for interrupts, the table is only filled up to MaxNumHandlers - 1, the last element in each row acts as a sentinel *)
  302. stateTag: ADDRESS;
  303. default: HandlerRec;
  304. i, j, ticks*: LONGINT; (** timer ticks. Use Kernel.GetTicks() to read, don't write *)
  305. VAR
  306. ipcBusy, ipcFlags, ipcFrontBarrier, ipcBackBarrier: SET;
  307. ipcHandler: BroadcastHandler;
  308. ipcMessage: Message;
  309. numProcessors-: LONGINT; (* number of processors we attempted to boot (some may have failed) *)
  310. maxProcessors: LONGINT; (* max number of processors we are allowed to boot (-1 for uni) *)
  311. allProcessors-: SET; (* IDs of all successfully booted processors *)
  312. localAPIC: ADDRESS; (* address of local APIC, 0 if not present *)
  313. apicVer: ARRAY MaxCPU OF LONGINT; (* APIC version *)
  314. started: ARRAY MaxCPU OF BOOLEAN; (* CPU started successfully / CPU halted *)
  315. busHz0, busHz1: ARRAY MaxCPU OF LONGINT; (* unrounded and rounded bus speed in Hz *)
  316. timer: EventHandler;
  317. timerRate: LONGINT; (* Hz - rate at which CPU timers run - for timeslicing and profiling *)
  318. stopped: BOOLEAN; (* StopAll was called *)
  319. idMap: IDMap;
  320. revIDmap: ARRAY MaxCPU OF SHORTINT;
  321. time: TimeArray;
  322. eventCount, eventMax: LONGINT;
  323. event: Handler;
  324. expandMin, heapMinKB, heapMaxKB : SIZE;
  325. gcThreshold-: SIZE;
  326. memBlockHead-{UNTRACED}, memBlockTail-{UNTRACED}: MemoryBlock; (* refer to the same memory block for I386, not traced by GC *)
  327. initialMemBlock: MemoryBlockDesc;
  328. traceProcessorProc*: EventHandler; (** temp tracing *)
  329. traceProcessor: BOOLEAN;
  330. Timeslice*: Handler;
  331. start*: PROCEDURE;
  332. VAR
  333. traceMode: SET; (* tracing mode: Screen or V24 *)
  334. traceBase: ADDRESS; (* screen buffer base address *)
  335. tracePos: SIZE; (* current screen cursor *)
  336. tracePort: LONGINT; (* serial base port *)
  337. traceColor: SHORTINT; (* current screen tracing color *)
  338. (** -- Processor identification -- *)
  339. (** Return current processor ID (0 to MaxNum-1). *)
  340. PROCEDURE ID* (): LONGINT;
  341. CODE {SYSTEM.i386}
  342. MOV EAX, idAdr
  343. LEA EBX, map
  344. MOV EAX, [EAX]
  345. SHR EAX, 24
  346. AND EAX, 15
  347. MOV AL, [EBX+EAX]
  348. END ID;
  349. (** -- Miscellaneous -- *)
  350. (** This procedure should be called in all spin loops as a hint to the processor (e.g. Pentium 4). *)
  351. PROCEDURE -SpinHint*;
  352. CODE {SYSTEM.i386}
  353. XOR ECX, ECX ; just in case some processor interprets REP this way
  354. REP NOP ; PAUSE instruction; NOP on pre-P4 processors, Spin Loop Hint on P4 and after
  355. END SpinHint;
  356. (** Fill "size" bytes at "destAdr" with "filler". "size" must be multiple of 4. *)
  357. PROCEDURE Fill32* (destAdr: ADDRESS; size: SIZE; filler: ADDRESS);
  358. CODE {SYSTEM.i386}
  359. MOV EDI, [EBP+destAdr]
  360. MOV ECX, [EBP+size]
  361. MOV EAX, [EBP+filler]
  362. TEST ECX, 3
  363. JZ ok
  364. PUSH 8 ; ASSERT failure
  365. INT 3
  366. ok:
  367. SHR ECX, 2
  368. CLD
  369. REP STOSD
  370. END Fill32;
  371. (** Return timer value of the current processor, or 0 if not available. *)
  372. (* e.g. ARM does not have a fine-grained timer *)
  373. PROCEDURE -GetTimer* (): HUGEINT;
  374. CODE {SYSTEM.Pentium}
  375. RDTSC ; set EDX:EAX
  376. END GetTimer;
  377. (** Disable interrupts and return old interrupt state. *)
  378. PROCEDURE -DisableInterrupts* (): SET;
  379. CODE {SYSTEM.i386}
  380. PUSHFD
  381. CLI
  382. POP EAX
  383. END DisableInterrupts;
  384. (** Restore interrupt state. Parameter s must be return value of earlier DisableInterrupts call on same processor. *)
  385. PROCEDURE -RestoreInterrupts* (s: SET);
  386. CODE {SYSTEM.i386}
  387. POPFD
  388. END RestoreInterrupts;
  389. (** Return TRUE iff interrupts are enabled on the current processor. *)
  390. PROCEDURE -InterruptsEnabled* (): BOOLEAN;
  391. CODE {SYSTEM.i386}
  392. PUSHFD
  393. POP EAX
  394. SHR EAX, 9
  395. AND AL, 1
  396. END InterruptsEnabled;
  397. (** -- HUGEINT operations -- *)
  398. (** Return h*g. based on code from "AMD Athlon Processor x86 code optimization guide" *)
  399. PROCEDURE MulH* (h, g: HUGEINT): HUGEINT;
  400. CODE {SYSTEM.i386}
  401. MOV EDX, [EBP+12] ; y_hi
  402. MOV ECX, [EBP+20] ; x_hi
  403. OR EDX, ECX ; are x_hi and y_hi both zeros?
  404. MOV EDX, [EBP+16] ; x_lo
  405. MOV EAX, [EBP+8] ; y_lo
  406. JNZ fullMul ; yes, requires full multiplication
  407. MUL EDX ; EDX:EAX := y_lo * x_lo
  408. JMP exit ; done, return to caller
  409. fullMul: ; full multiplication is required
  410. MUL ECX ; EAX := LO(y_lo*x_hi)
  411. MOV EBX, EAX ; keep the result
  412. MOV EAX, [EBP+12] ; y_hi
  413. MUL DWORD [EBP+16] ; EAX := LO(y_hi*x_lo)
  414. ADD EBX, EAX ; EBX := LO(y_lo*x_hi) + LO(y_hi*x_lo)
  415. MOV EAX, [EBP+8] ; y_lo
  416. MUL DWORD [EBP+16] ; EDX := HI(y_lo*x_lo), EAX := LO(y_lo*x_lo)
  417. ADD EDX, EBX ; EDX := y_lo*x_hi + y_hi*x_lo + HI(y_lo*x_lo)
  418. exit:
  419. END MulH;
  420. (** Return h DIV g. Rounding and division by zero behaviour is currently undefined. *)
  421. PROCEDURE DivH* (x, y: HUGEINT): HUGEINT;
  422. CODE {SYSTEM.i386}
  423. MOV ECX, [EBP+12] ; y-hi
  424. MOV EBX, [EBP+8] ; y-lo
  425. MOV EDX, [EBP+20] ; x-hi
  426. MOV EAX, [EBP+16] ; x-lo
  427. MOV ESI, ECX ; y-hi
  428. XOR ESI, EDX ; y-hi ^ x-hi
  429. SAR ESI, 31 ; (quotient < 0) ? -1 : 0
  430. MOV EDI, EDX ; x-hi
  431. SAR EDI, 31 ; (x < 0) ? -1 : 0
  432. XOR EAX, EDI ; if (x < 0)
  433. XOR EDX, EDI ; compute 1s complement of x
  434. SUB EAX, EDI ; if (x < 0)
  435. SBB EDX, EDI ; compute 2s complement of x
  436. MOV EDI, ECX ; y-hi
  437. SAR EDI, 31 ; (y < 0) ? -1 : 0
  438. XOR EBX, EDI ; if (y < 0)
  439. XOR ECX, EDI ; compute 1s complement of y
  440. SUB EBX, EDI ; if (y < 0)
  441. SBB ECX, EDI ; compute 2s complement of y
  442. JNZ bigDivisor ; y > 2^32-1
  443. CMP EDX, EBX ; only one division needed ? (ECX = 0)
  444. JAE twoDivs ; need two divisions
  445. DIV EBX ; EAX = quotient-lo
  446. MOV EDX, ECX ; EDX = quotient-hi = 0
  447. ; quotient in EDX:EAX
  448. XOR EAX, ESI ; if (quotient < 0)
  449. XOR EDX, ESI ; compute 1s complement of result
  450. SUB EAX, ESI ; if (quotient < 0)
  451. SBB EDX, ESI ; compute 2s complement of result
  452. JMP exit ; done, return to caller
  453. twoDivs:
  454. MOV ECX, EAX ; save x-lo in ECX
  455. MOV EAX, EDX ; get x-hi
  456. XOR EDX, EDX ; zero extend it into EDX:EAX
  457. DIV EBX ; quotient-hi in EAX
  458. XCHG EAX, ECX ; ECX = quotient-hi, EAX = x-lo
  459. DIV EBX ; EAX = quotient-lo
  460. MOV EDX, ECX ; EDX = quotient-hi
  461. ; quotient in EDX:EAX
  462. JMP makeSign ; make quotient signed
  463. bigDivisor:
  464. SUB ESP, 12 ; create three local variables
  465. MOV [ESP], EAX ; x-lo
  466. MOV [ESP+4], EBX ; y-lo
  467. MOV [ESP+8], EDX ; x-hi
  468. MOV EDI, ECX ; save y-hi
  469. SHR EDX, 1 ; shift both
  470. RCR EAX, 1 ; y and
  471. ROR EDI, 1 ; and x
  472. RCR EBX, 1 ; right by 1 bit
  473. BSR ECX, ECX ; ECX = number of remaining shifts
  474. SHRD EBX, EDI, CL ; scale down y and
  475. SHRD EAX, EDX, CL ; x such that y
  476. SHR EDX, CL ; less than 2^32 (i.e. fits in EBX)
  477. ROL EDI, 1 ; restore original y-hi
  478. DIV EBX ; compute quotient
  479. MOV EBX, [ESP] ; x-lo
  480. MOV ECX, EAX ; save quotient
  481. IMUL EDI, EAX ; quotient * y hi-word (low only)
  482. MUL DWORD [ESP+4] ; quotient * y lo-word
  483. ADD EDX, EDI ; EDX:EAX = quotient * y
  484. SUB EBX, EAX ; x-lo - (quot.*y)-lo
  485. MOV EAX, ECX ; get quotient
  486. MOV ECX, [ESP+8] ; x-hi
  487. SBB ECX, EDX ; subtract y * quot. from x
  488. SBB EAX, 0 ; adjust quotient if remainder negative
  489. XOR EDX, EDX ; clear hi-word of quotient
  490. ADD ESP, 12 ; remove local variables
  491. makeSign:
  492. XOR EAX, ESI ; if (quotient < 0)
  493. XOR EDX, ESI ; compute 1s complement of result
  494. SUB EAX, ESI ; if (quotient < 0)
  495. SBB EDX, ESI ; compute 2s complement of result
  496. exit:
  497. END DivH;
  498. (** Return ASH(h, n). *)
  499. PROCEDURE -ASHH* (h: HUGEINT; n: LONGINT): HUGEINT;
  500. CODE {SYSTEM.i386}
  501. POP ECX
  502. POP EAX
  503. POP EDX
  504. CMP ECX, 0
  505. JL right
  506. AND ECX, 63 ; limit count, like ASH
  507. JZ exit
  508. ll:
  509. SHL EAX, 1
  510. RCL EDX, 1
  511. DEC ECX
  512. JNZ ll
  513. JMP exit
  514. right:
  515. NEG ECX
  516. AND ECX, 63 ; limit count, like ASH
  517. JZ exit
  518. lr:
  519. SAR EDX, 1
  520. RCR EAX, 1
  521. DEC ECX
  522. JNZ lr
  523. exit:
  524. END ASHH;
  525. (** Return a HUGEINT composed of high and low. *)
  526. PROCEDURE -LInt2ToHInt* (high, low: LONGINT): HUGEINT;
  527. CODE {SYSTEM.i386}
  528. POP EAX
  529. POP EDX
  530. END LInt2ToHInt;
  531. (** Return h as a LONGREAL, with possible loss of precision. *)
  532. PROCEDURE -HIntToLReal* (h: HUGEINT): LONGREAL;
  533. CODE {SYSTEM.i386, SYSTEM.FPU}
  534. FILD QWORD [ESP]
  535. FWAIT
  536. ADD ESP, 8
  537. END HIntToLReal;
  538. (** -- Processor initialization -- *)
  539. PROCEDURE -SetFCR (s: SET);
  540. CODE {SYSTEM.i386, SYSTEM.FPU}
  541. FLDCW [ESP] ; parameter s
  542. POP EAX
  543. END SetFCR;
  544. PROCEDURE -FCR (): SET;
  545. CODE {SYSTEM.i386, SYSTEM.FPU}
  546. PUSH 0
  547. FNSTCW [ESP]
  548. FWAIT
  549. POP EAX
  550. END FCR;
  551. PROCEDURE -InitFPU;
  552. CODE {SYSTEM.i386, SYSTEM.FPU}
  553. FNINIT
  554. END InitFPU;
  555. (** Setup FPU control word of current processor. *)
  556. PROCEDURE SetupFPU*;
  557. BEGIN
  558. InitFPU; SetFCR(fcr)
  559. END SetupFPU;
  560. (* Set up flags (3, p. 20)
  561. Bit
  562. 1,3,5,15,19..31 - no change
  563. 0,2,4,6..7,11 - CF,PF,AF,ZF,SF,OF off
  564. 8 - TF off
  565. 9 - IF off (no interrupts)
  566. 10 - DF off
  567. 12..13 - IOPL = 3
  568. 14 - NT off (no Windows)
  569. 16 - RF off (no Interference)
  570. 17- VM off (no virtual 8086 mode)
  571. 18 - AC off (no 486 alignment checks) *)
  572. PROCEDURE -SetupFlags;
  573. CODE {SYSTEM.i386}
  574. PUSHFD
  575. AND DWORD [ESP], 0FFF8802AH
  576. OR DWORD [ESP], 3000H
  577. POPFD
  578. END SetupFlags;
  579. (* Set up various 486-specific flags (3, p. 23)
  580. 1. Enable exception 16 on math errors.
  581. 2. Disable supervisor mode faults on write to read-only pages
  582. (386-compatible for stack checking).
  583. 3. Enable the Alignment Check field in EFLAGS *)
  584. PROCEDURE -Setup486Flags;
  585. CODE {SYSTEM.i386, SYSTEM.Privileged}
  586. MOV EAX, CR0
  587. OR EAX, 00040020H
  588. AND EAX, 0FFFEFFFFH
  589. MOV CR0, EAX
  590. END Setup486Flags;
  591. (* Set up 586-specific things *)
  592. PROCEDURE -Setup586Flags;
  593. CODE {SYSTEM.Pentium, SYSTEM.Privileged}
  594. MOV EAX, CR4
  595. BTR EAX, 2 ; clear TSD
  596. MOV CR4, EAX
  597. END Setup586Flags;
  598. (* setup SSE and SSE2 extension *)
  599. PROCEDURE SetupSSE2Ext;
  600. CONST
  601. FXSRFlag = 24; (*IN features from EBX*)
  602. SSEFlag = 25;
  603. SSE2Flag = 26;
  604. SSE3Flag = 0; (*IN features2 from ECX*) (*PH 04/11*)
  605. SSSE3Flag =9;
  606. SSE41Flag =19;
  607. SSE42Flag =20;
  608. SSE5Flag = 11;
  609. AVXFlag = 28;
  610. BEGIN
  611. SSE2Support := FALSE;
  612. SSE3Support := FALSE;
  613. SSSE3Support := FALSE;
  614. SSE41Support := FALSE;
  615. SSE42Support := FALSE;
  616. SSE5Support := FALSE;
  617. AVXSupport := FALSE;
  618. (* checking for SSE support *)
  619. IF SSEFlag IN features THEN
  620. SSESupport := TRUE;
  621. (* checking for SSE2 support *)
  622. IF SSE2Flag IN features THEN SSE2Support := TRUE;
  623. (* checking for SSE3... support*)(*PH 04/11*)
  624. IF SSE3Flag IN features2 THEN SSE3Support := TRUE;
  625. IF SSSE3Flag IN features2 THEN SSSE3Support := TRUE END;
  626. IF SSE41Flag IN features2 THEN SSE41Support := TRUE;
  627. IF SSE42Flag IN features2 THEN SSE42Support := TRUE END;
  628. END;
  629. IF SSE5Flag IN features2 THEN SSE5Support := TRUE END;
  630. IF AVXFlag IN features2 THEN AVXSupport := TRUE END;
  631. END;
  632. END;
  633. (* checking for support for the FXSAVE and FXRSTOR instruction *)
  634. IF FXSRFlag IN features THEN InitSSE END;
  635. END;
  636. END SetupSSE2Ext;
  637. PROCEDURE -InitSSE;
  638. CODE {SYSTEM.Pentium, SYSTEM.Privileged}
  639. MOV EAX, CR4
  640. OR EAX, 00000200H ; set bit 9 (OSFXSR)
  641. AND EAX, 0FFFFFBFFH ; delete bit 10 (OSXMMEXCPT)
  642. MOV CR4, EAX
  643. END InitSSE;
  644. (* Disable exceptions caused by math in new task. (1, p. 479) *)
  645. PROCEDURE -DisableMathTaskEx;
  646. CODE {SYSTEM.i386, SYSTEM.Privileged}
  647. MOV EAX,CR0
  648. AND AL, 0F5H
  649. MOV CR0, EAX
  650. END DisableMathTaskEx;
  651. (* Disable math emulation (1, p. 479) , bit 2 of CR0 *)
  652. PROCEDURE -DisableEmulation;
  653. CODE {SYSTEM.i386, SYSTEM.Privileged}
  654. MOV EAX, CR0
  655. AND AL, 0FBH
  656. MOV CR0, EAX
  657. END DisableEmulation;
  658. (** CPU identification *)
  659. PROCEDURE CPUID*(function :ADDRESS; VAR eax, ebx, ecx, edx : SET);
  660. CODE {SYSTEM.i386, SYSTEM.Pentium}
  661. MOV EAX, [EBP+function] ; CPUID function parameter
  662. MOV ESI, [EBP+ecx] ; copy ecx into ECX (sometimes used as input parameter)
  663. MOV ECX, [ESI]
  664. CPUID ; execute CPUID
  665. MOV ESI, [EBP+eax] ; copy EAX into eax;
  666. MOV [ESI], EAX
  667. MOV ESI, [EBP+ebx] ; copy EBX into ebx
  668. MOV [ESI], EBX
  669. MOV ESI, [EBP+ecx] ; copy ECX into ecx
  670. MOV [ESI], ECX
  671. MOV ESI, [EBP+edx] ; copy EDX into edx
  672. MOV [ESI], EDX
  673. END CPUID;
  674. (* If the CPUID instruction is supported, the ID flag (bit 21) of the EFLAGS register is r/w *)
  675. PROCEDURE CpuIdSupported*() : BOOLEAN;
  676. CODE {SYSTEM.i386}
  677. PUSHFD ; save EFLAGS
  678. POP EAX ; store EFLAGS in EAX
  679. MOV EBX, EAX ; save EBX for later testing
  680. XOR EAX, 00200000H ; toggle bit 21
  681. PUSH EAX ; push to stack
  682. POPFD ; save changed EAX to EFLAGS
  683. PUSHFD ; push EFLAGS to TOS
  684. POP EAX ; store EFLAGS in EAX
  685. CMP EAX, EBX ; see if bit 21 has changed
  686. SETNE AL; ; return TRUE if bit 21 has changed, FALSE otherwise
  687. END CpuIdSupported;
  688. (** Initialise current processor. Must be called by every processor. *)
  689. PROCEDURE InitProcessor*;
  690. BEGIN
  691. SetupFlags;
  692. Setup486Flags;
  693. Setup586Flags;
  694. DisableMathTaskEx;
  695. DisableEmulation;
  696. SetupFPU;
  697. SetupSSE2Ext
  698. END InitProcessor;
  699. (** Initialize APIC ID address. *)
  700. PROCEDURE InitAPICIDAdr* (adr: ADDRESS; CONST m: IDMap);
  701. VAR s: SET;
  702. BEGIN
  703. s := DisableInterrupts ();
  704. idAdr := adr; map := m;
  705. RestoreInterrupts (s)
  706. END InitAPICIDAdr;
  707. PROCEDURE InitBoot;
  708. VAR
  709. largestFunction, i: LONGINT;
  710. eax, ebx, ecx, edx : SET;
  711. logicalProcessorCount : LONGINT;
  712. u: ARRAY 8 OF CHAR; vendor : Vendor;
  713. PROCEDURE GetString(VAR string : ARRAY OF CHAR; offset : LONGINT; register : SET);
  714. BEGIN
  715. string[offset] :=CHR(SYSTEM.VAL(LONGINT, register * {0..7}));
  716. string[offset+1] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {8..15}, -8)));
  717. string[offset+2] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {16..23}, -16)));
  718. string[offset+3] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {24..31}, -24)));
  719. END GetString;
  720. BEGIN
  721. vendor := "Unknown"; features := {}; features2 := {};
  722. coresPerProcessor := 1; threadsPerCore := 1;
  723. IF CpuIdSupported() THEN
  724. (* Assume that all processors are the same *)
  725. (* CPUID standard function 0 returns: eax: largest CPUID standard function supported, ebx, edx, ecx: vendor string *)
  726. CPUID(0, eax, ebx, ecx, edx);
  727. largestFunction := SYSTEM.VAL(LONGINT, eax);
  728. ASSERT(LEN(vendor) >= 13);
  729. GetString(vendor, 0, ebx); GetString(vendor, 4, edx); GetString(vendor, 8, ecx); vendor[12] := 0X;
  730. IF (largestFunction >= 1) THEN
  731. (* CPUID standard function 1 returns: CPU features in ecx & edx *)
  732. CPUID(1, eax, ebx, ecx, edx);
  733. features := SYSTEM.VAL(SET, edx);
  734. features2 := SYSTEM.VAL(SET, ecx);
  735. (* The code below is used to determine the number of threads per processor core (hyperthreading). This is required
  736. since processors supporting hyperthreading are listed only once in the MP tables, so we need to know the
  737. exact number of threads per processor to start the processor correctly *)
  738. IF (HTT IN features) THEN (* multithreading supported by CPU *)
  739. (* logical processor count = number of cores * number of threads per core = total number of threads supported *)
  740. logicalProcessorCount := SYSTEM.VAL(LONGINT, LSH(ebx * {16..23}, -16));
  741. IF (vendor = "GenuineIntel") THEN
  742. IF (largestFunction >= 4) THEN
  743. (* CPUID standard function 4 returns: number of processor cores -1 on this die eax[26.31] *)
  744. ecx := SYSTEM.VAL(SET, 0); (* input parameter - must be set to 0 *)
  745. CPUID(4, eax, ebx, ecx, edx);
  746. coresPerProcessor := SYSTEM.VAL(LONGINT, LSH(eax * {26..31}, -26)) + 1;
  747. threadsPerCore := logicalProcessorCount DIV coresPerProcessor;
  748. ELSE
  749. threadsPerCore := logicalProcessorCount;
  750. END;
  751. ELSIF (vendor = "AuthenticAMD") THEN
  752. (* CPUID extended function 1 returns: largest extended function *)
  753. CPUID(80000000H, eax, ebx, ecx, edx);
  754. largestFunction := SYSTEM.VAL(LONGINT, eax - {31}); (* remove sign *)
  755. IF (largestFunction >= 8) THEN
  756. (* CPUID extended function 8 returns: *)
  757. CPUID(80000008H, eax, ebx, ecx, edx);
  758. coresPerProcessor := SYSTEM.VAL(LONGINT, ecx * {0..7}) + 1;
  759. threadsPerCore := logicalProcessorCount DIV coresPerProcessor;
  760. ELSIF (largestFunction >= 1) THEN
  761. (* CPUID extended function 1 returns CmpLegacy bit in ecx *)
  762. CPUID(80000001H, eax, ebx, ecx, edx);
  763. IF 1 IN ecx THEN (* CmpLegacy bit set -> no hyperthreading *)
  764. coresPerProcessor := logicalProcessorCount;
  765. threadsPerCore := 1;
  766. END;
  767. ELSE
  768. (* single-core, single-thread *)
  769. END;
  770. ELSE
  771. Trace.String("Machine: "); Trace.Yellow; Trace.String("Warning: Cannot detect hyperthreading, unknown CPU vendor ");
  772. Trace.String(vendor); Trace.Ln; Trace.Default;
  773. END;
  774. END;
  775. END;
  776. END;
  777. Trace.String("Machine: "); Trace.Int(coresPerProcessor, 0); Trace.String(" cores per physical package, ");
  778. Trace.Int(threadsPerCore, 0); Trace.String(" threads per core.");
  779. Trace.Ln;
  780. InitFPU;
  781. fcr := (FCR () - {0, 2, 3, 10, 11}) + {0 .. 5, 8, 9}; (* default FCR RC=00B *)
  782. bootID := 0; map[0] := 0;
  783. idAdr := ADDRESSOF (bootID);
  784. (* allow user to specify GetTimer rate, for tracing purposes *)
  785. GetConfig ("MHz", u);
  786. i := 0; mhz := StrToInt (i, u);
  787. END InitBoot;
  788. (** -- Configuration and bootstrapping -- *)
  789. (** Return the value of the configuration string specified by parameter name in parameter val. Returns val = "" if the string was not found, or has an empty value. *)
  790. PROCEDURE GetConfig* (CONST name: ARRAY OF CHAR; VAR val: ARRAY OF CHAR);
  791. VAR i, src: LONGINT; ch: CHAR;
  792. BEGIN
  793. ASSERT (name[0] # "="); (* no longer supported, use GetInit instead *)
  794. src := 0;
  795. LOOP
  796. ch := config[src];
  797. IF ch = 0X THEN EXIT END;
  798. i := 0;
  799. LOOP
  800. ch := config[src];
  801. IF (ch # name[i]) OR (name[i] = 0X) THEN EXIT END;
  802. INC (i); INC (src)
  803. END;
  804. IF (ch = 0X) & (name[i] = 0X) THEN (* found: (src^ = 0X) & (name[i] = 0X) *)
  805. i := 0;
  806. REPEAT
  807. INC (src); ch := config[src]; val[i] := ch; INC (i);
  808. IF i = LEN(val) THEN val[i - 1] := 0X; RETURN END (* val too short *)
  809. UNTIL ch = 0X;
  810. val[i] := 0X; RETURN
  811. ELSE
  812. WHILE ch # 0X DO (* skip to end of name *)
  813. INC (src); ch := config[src]
  814. END;
  815. INC (src);
  816. REPEAT (* skip to end of value *)
  817. ch := config[src]; INC (src)
  818. UNTIL ch = 0X
  819. END
  820. END;
  821. val[0] := 0X
  822. END GetConfig;
  823. (** Get CHS parameters of first two BIOS-supported hard disks. *)
  824. PROCEDURE GetDiskCHS* (d: LONGINT; VAR cyls, hds, spt: LONGINT);
  825. BEGIN
  826. cyls := chs[d].cyls; hds := chs[d].hds; spt := chs[d].spt
  827. END GetDiskCHS;
  828. (** Get parameter values from Init string. If n = 0, return val = ASH(bx, 16) + ax, and if n = 1, return val = ASH(dx, 16) + cx, where ax, bx, cx, dx are the register values after the OBL boot loader or noboot.exe have executed the 16-bit x86 code in the Init string. *)
  829. PROCEDURE GetInit* (n: LONGINT; VAR val: LONGINT);
  830. BEGIN
  831. val := initRegs[n]
  832. END GetInit;
  833. (** Convert a string to an integer. Parameter i specifies where in the string scanning should begin (usually 0 in the first call). Scanning stops at the first non-valid character, and i returns the updated position. Parameter s is the string to be scanned. The value is returned as result, or 0 if not valid. Syntax: number = ["-"] digit {digit} ["H" | "h"] . digit = "0" | ... "9" | "A" .. "F" | "a" .. "f" . If the number contains any hexdecimal letter, or if it ends in "H" or "h", it is interpreted as hexadecimal. *)
  834. PROCEDURE StrToInt* (VAR i: LONGINT; CONST s: ARRAY OF CHAR): LONGINT;
  835. VAR vd, vh, sgn, d: LONGINT; hex: BOOLEAN;
  836. BEGIN
  837. vd := 0; vh := 0; hex := FALSE;
  838. IF s[i] = "-" THEN sgn := -1; INC (i) ELSE sgn := 1 END;
  839. LOOP
  840. IF (s[i] >= "0") & (s[i] <= "9") THEN d := ORD (s[i])-ORD ("0")
  841. ELSIF (CAP (s[i]) >= "A") & (CAP (s[i]) <= "F") THEN d := ORD (CAP (s[i]))-ORD ("A") + 10; hex := TRUE
  842. ELSE EXIT
  843. END;
  844. vd := 10*vd + d; vh := 16*vh + d;
  845. INC (i)
  846. END;
  847. IF CAP (s[i]) = "H" THEN hex := TRUE; INC (i) END; (* optional H *)
  848. IF hex THEN vd := vh END;
  849. RETURN sgn * vd
  850. END StrToInt;
  851. (* Delay for IO *)
  852. PROCEDURE -Wait*;
  853. CODE {SYSTEM.i386}
  854. JMP 0
  855. JMP 0
  856. JMP 0
  857. END Wait;
  858. (* Reset processor by causing a double fault. *)
  859. PROCEDURE Reboot;
  860. CODE {SYSTEM.i386, SYSTEM.Privileged}
  861. PUSH 0
  862. PUSH 0
  863. LIDT [ESP]
  864. INT 3
  865. END Reboot;
  866. PROCEDURE -Cli*;
  867. CODE{SYSTEM.i386}
  868. CLI
  869. END Cli;
  870. PROCEDURE -Sti*;
  871. CODE{SYSTEM.i386}
  872. STI
  873. END Sti;
  874. (** Shut down the system. If parameter reboot is set, attempt to reboot the system. *)
  875. PROCEDURE Shutdown* (reboot: BOOLEAN);
  876. VAR i: LONGINT;
  877. BEGIN
  878. Cli;
  879. IF reboot THEN (* attempt reboot *)
  880. Portout8 (70H, 8FX); (* Reset type: p. 5-37 AT Tech. Ref. *)
  881. Wait; Portout8 (71H, 0X); (* Note: soft boot flag was set in InitMemory *)
  882. Wait; Portout8 (70H, 0DX);
  883. Wait; Portout8 (64H, 0FEX); (* reset CPU *)
  884. FOR i := 1 TO 10000 DO END;
  885. Reboot
  886. END;
  887. LOOP END
  888. END Shutdown;
  889. (* Get hard disk parameters. *)
  890. PROCEDURE GetPar (p: ADDRESS; ofs: LONGINT): LONGINT;
  891. VAR ch: CHAR;
  892. BEGIN
  893. SYSTEM.GET (p + 12 + ofs, ch);
  894. RETURN ORD (ch)
  895. END GetPar;
  896. (* Read boot table. *)
  897. PROCEDURE ReadBootTable (bt: ADDRESS);
  898. VAR i, p: ADDRESS; j, d, type, addr, size, heapSize: LONGINT; ch: CHAR;
  899. BEGIN
  900. heapSize := 0; lowTop := 0;
  901. p := bt; d := 0;
  902. LOOP
  903. SYSTEM.GET (p, type);
  904. IF type = -1 THEN
  905. EXIT (* end *)
  906. ELSIF type = 3 THEN (* boot memory/top of low memory *)
  907. SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size);
  908. lowTop := addr + size
  909. ELSIF type = 4 THEN (* free memory/extended memory size *)
  910. SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size);
  911. IF addr = HeapAdr THEN heapSize := size END
  912. ELSIF type = 5 THEN (* HD config *)
  913. IF d < MaxDisks THEN
  914. chs[d].cyls := GetPar (p, 0) + 100H * GetPar (p, 1);
  915. chs[d].hds := GetPar (p, 2); chs[d].spt := GetPar (p, 14);
  916. INC (d)
  917. END
  918. ELSIF type = 8 THEN (* config strings *)
  919. i := p + 8; j := 0; (* copy the config strings over *)
  920. LOOP
  921. SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j);
  922. IF ch = 0X THEN EXIT END;
  923. REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X; (* end of name *)
  924. REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X (* end of value *)
  925. END
  926. END;
  927. SYSTEM.GET (p + 4, size); INC (p, size)
  928. END;
  929. ASSERT((heapSize # 0) & (lowTop # 0));
  930. memTop := HeapAdr + heapSize
  931. END ReadBootTable;
  932. (** Read a byte from the non-volatile setup memory. *)
  933. PROCEDURE GetNVByte* (ofs: LONGINT): CHAR;
  934. VAR c: CHAR;
  935. BEGIN
  936. Portout8 (70H, CHR(ofs)); Wait; Portin8(71H, c);
  937. RETURN c
  938. END GetNVByte;
  939. (** Write a byte to the non-volatile setup memory. *)
  940. PROCEDURE PutNVByte* (ofs: LONGINT; val: CHAR);
  941. BEGIN
  942. Portout8 (70H, CHR(ofs)); Wait; Portout8 (71H, val)
  943. END PutNVByte;
  944. (** Compute a checksum for the Intel SMP spec floating pointer structure. *)
  945. PROCEDURE ChecksumMP* (adr: ADDRESS; size: SIZE): LONGINT;
  946. VAR sum: LONGINT; x: ADDRESS; ch: CHAR;
  947. BEGIN
  948. sum := 0;
  949. FOR x := adr TO adr + size-1 DO
  950. SYSTEM.GET (x, ch);
  951. sum := (sum + ORD(ch)) MOD 256
  952. END;
  953. RETURN sum
  954. END ChecksumMP;
  955. (* Search for MP floating pointer structure. *)
  956. PROCEDURE SearchMem (adr: ADDRESS; size: SIZE): ADDRESS;
  957. VAR x, len: LONGINT; ch: CHAR;
  958. BEGIN
  959. WHILE size > 0 DO
  960. SYSTEM.GET (adr, x);
  961. IF x = 05F504D5FH THEN (* "_MP_" found *)
  962. SYSTEM.GET (adr + 8, ch); len := ORD(ch)*16;
  963. IF len > 0 THEN
  964. SYSTEM.GET (adr + 9, ch);
  965. IF (ch = 1X) OR (ch >= 4X) THEN (* version 1.1 or 1.4 or higher *)
  966. IF ChecksumMP(adr, len) = 0 THEN
  967. RETURN adr (* found *)
  968. END
  969. END
  970. END
  971. END;
  972. INC (adr, 16); DEC (size, 16)
  973. END;
  974. RETURN NilAdr (* not found *)
  975. END SearchMem;
  976. (* Search for MP spec info. *)
  977. PROCEDURE SearchMP;
  978. VAR adr: ADDRESS;
  979. BEGIN
  980. adr := 0;
  981. SYSTEM.GET (040EH, SYSTEM.VAL (INTEGER, adr)); (* EBDA address *)
  982. adr := adr*16;
  983. IF adr < 100000H THEN adr := SearchMem(adr, 1024) (* 1. look in EBDA *)
  984. ELSE adr := NilAdr
  985. END;
  986. IF adr = NilAdr THEN (* 2. look in last kb of base memory *)
  987. adr := SearchMem(lowTop + (-lowTop) MOD 10000H - 1024, 1024);
  988. IF adr = NilAdr THEN (* 3. look at top of physical memory *)
  989. adr := SearchMem(memTop - 1024, 1024);
  990. IF adr = NilAdr THEN (* 4. look in BIOS ROM space *)
  991. adr := SearchMem(0E0000H, 20000H)
  992. END
  993. END
  994. END;
  995. IF adr = NilAdr THEN
  996. revMP := 0X; configMP := NilAdr
  997. ELSE
  998. SYSTEM.GET (adr + 9, revMP);
  999. SYSTEM.MOVE(adr + 11, ADDRESSOF(featureMP[0]), 5); (* feature bytes *)
  1000. configMP := SYSTEM.GET32 (adr + 4); (* physical address outside reported RAM (spec 1.4 p. 4-2) *)
  1001. IF configMP = 0 THEN configMP := NilAdr END
  1002. END
  1003. END SearchMP;
  1004. (* Allocate area for ISA DMA. *)
  1005. PROCEDURE AllocateDMA;
  1006. VAR old: ADDRESS;
  1007. BEGIN
  1008. old := lowTop;
  1009. dmaSize := DefaultDMASize*1024;
  1010. ASSERT((dmaSize >= 0) & (dmaSize <= 65536));
  1011. IF (lowTop-dmaSize) DIV 65536 # (lowTop-1) DIV 65536 THEN (* crosses 64KB boundary *)
  1012. DEC (lowTop, lowTop MOD 65536) (* round down to 64KB boundary *)
  1013. END;
  1014. DEC (lowTop, dmaSize); (* allocate memory *)
  1015. dmaSize := old - lowTop (* how much was allocated (including rounding) *)
  1016. END AllocateDMA;
  1017. (* Check if the specified address is RAM. *)
  1018. PROCEDURE IsRAM(adr: ADDRESS): BOOLEAN;
  1019. CONST Pattern1 = (0BEEFC0DEH); Pattern2 = (0AA55FF00H);
  1020. VAR save, x: ADDRESS; ok: BOOLEAN;
  1021. BEGIN
  1022. ok := FALSE;
  1023. SYSTEM.GET (adr, save);
  1024. SYSTEM.PUT (adr, Pattern1); (* attempt 1st write *)
  1025. x := Pattern2; (* write something else *)
  1026. SYSTEM.GET (adr, x); (* attempt 1st read *)
  1027. IF x = Pattern1 THEN (* first test passed *)
  1028. SYSTEM.PUT (adr, Pattern2); (* attempt 2nd write *)
  1029. x := Pattern1; (* write something else *)
  1030. SYSTEM.GET (adr, x); (* attempt 2nd read *)
  1031. ok := (x = Pattern2)
  1032. END;
  1033. SYSTEM.PUT (adr, save);
  1034. RETURN ok
  1035. END IsRAM;
  1036. (* Check amount of memory available and update memTop. *)
  1037. PROCEDURE CheckMemory;
  1038. CONST M = 100000H; ExtMemAdr = M; Step = M;
  1039. VAR s: ARRAY 16 OF CHAR; adr: ADDRESS; i: LONGINT;
  1040. BEGIN
  1041. GetConfig("ExtMemSize", s); (* in MB *)
  1042. IF s[0] # 0X THEN (* override detection *)
  1043. i := 0; memTop := ExtMemAdr + StrToInt(i, s) * M;
  1044. Trace.String("Machine: Memory: ");
  1045. ELSE
  1046. Trace.String("Machine: Detecting memory... ");
  1047. IF memTop >= 15*M THEN (* search for more memory (ignore aliasing) *)
  1048. adr := memTop-4;
  1049. WHILE (LSH(memTop, -12) < LSH(MaxMemTop, -12)) & IsRAM(adr) DO
  1050. memTop := adr + 4;
  1051. INC (adr, Step)
  1052. END;
  1053. IF (memTop <= 0) THEN memTop := 2047 * M ; END;
  1054. END
  1055. END;
  1056. Trace.Green; Trace.IntSuffix(memTop, 0, "B"); Trace.Ln; Trace.Default;
  1057. END CheckMemory;
  1058. (* Initialize locks. *)
  1059. PROCEDURE InitLocks;
  1060. VAR i: LONGINT; s: ARRAY 12 OF CHAR;
  1061. BEGIN
  1062. IF TimeCount # 0 THEN
  1063. GetConfig("LockTimeout", s);
  1064. i := 0; maxTime := StrToInt(i, s);
  1065. IF maxTime > MAX(LONGINT) DIV 1000000 THEN
  1066. maxTime := MAX(LONGINT)
  1067. ELSE
  1068. maxTime := maxTime * 1000000
  1069. END
  1070. END;
  1071. FOR i := 0 TO MaxCPU-1 DO
  1072. proc[i].locksHeld := {}; proc[i].preemptCount := 0
  1073. END;
  1074. FOR i := 0 TO MaxLocks-1 DO
  1075. lock[i].locked := FALSE
  1076. END
  1077. END InitLocks;
  1078. (* Return flags state. *)
  1079. PROCEDURE -GetFlags (): SET;
  1080. CODE {SYSTEM.i386}
  1081. PUSHFD
  1082. POP EAX
  1083. END GetFlags;
  1084. (* Set flags state. *)
  1085. PROCEDURE -SetFlags (s: SET);
  1086. CODE {SYSTEM.i386}
  1087. POPFD
  1088. END SetFlags;
  1089. PROCEDURE -PushFlags*;
  1090. CODE {SYSTEM.i386}
  1091. PUSHFD
  1092. END PushFlags;
  1093. PROCEDURE -PopFlags*;
  1094. CODE {SYSTEM.i386}
  1095. POPFD
  1096. END PopFlags;
  1097. (** Disable preemption on the current processor (increment the preemption counter). Returns the current processor ID as side effect. *)
  1098. PROCEDURE AcquirePreemption* (): LONGINT;
  1099. VAR id: LONGINT;
  1100. BEGIN
  1101. PushFlags; Cli;
  1102. id := ID ();
  1103. INC (proc[id].preemptCount);
  1104. PopFlags;
  1105. RETURN id
  1106. END AcquirePreemption;
  1107. (** Enable preemption on the current processor (decrement the preemption counter). *)
  1108. PROCEDURE ReleasePreemption*;
  1109. VAR id: LONGINT;
  1110. BEGIN
  1111. PushFlags; Cli;
  1112. id := ID ();
  1113. IF StrongChecks THEN
  1114. ASSERT(proc[id].preemptCount > 0)
  1115. END;
  1116. DEC (proc[id].preemptCount);
  1117. PopFlags
  1118. END ReleasePreemption;
  1119. (** Return the preemption counter of the current processor (specified in parameter). *)
  1120. PROCEDURE PreemptCount* (id: LONGINT): LONGINT;
  1121. BEGIN
  1122. IF StrongChecks THEN
  1123. (*ASSERT(~(9 IN GetFlags ()));*) (* interrupts off *) (* commented out because check is too strong *)
  1124. ASSERT(id = ID ()) (* caller must specify current processor *)
  1125. END;
  1126. RETURN proc[id].preemptCount
  1127. END PreemptCount;
  1128. (* Spin waiting for a lock. Return AL = 1X iff timed out. *)
  1129. PROCEDURE AcquireSpinTimeout(VAR locked: BOOLEAN; count: LONGINT; flags: SET): CHAR;
  1130. CODE {SYSTEM.i386}
  1131. MOV ESI, [EBP+flags] ; ESI := flags
  1132. MOV EDI, [EBP+count] ; EDI := count
  1133. MOV EBX, [EBP+locked] ; EBX := ADR(locked)
  1134. MOV AL, 1 ; AL := 1
  1135. CLI ; switch interrupts off before acquiring lock
  1136. test:
  1137. CMP [EBX], AL ; locked? { AL = 1 }
  1138. JE wait ; yes, go wait
  1139. XCHG [EBX], AL ; set and read the lock atomically. LOCK prefix implicit.
  1140. CMP AL, 1 ; was locked?
  1141. JNE exit ; no, we have it now, interrupts are off, and AL # 1
  1142. wait:
  1143. ; ASSERT(AL = 1)
  1144. XOR ECX, ECX ; just in case some processor interprets REP this way
  1145. REP NOP ; PAUSE instruction; see SpinHint
  1146. TEST ESI, 200H ; bit 9 - IF
  1147. JZ intoff
  1148. STI ; restore interrupt state quickly to allow pending interrupts (e.g. Processors.StopAll/Broadcast)
  1149. NOP ; NOP required, otherwise STI; CLI not interruptable
  1150. CLI ; disable interrupts
  1151. intoff:
  1152. DEC EDI ; counter
  1153. JNZ test ; not timed out yet
  1154. OR EDI, [EBP+count] ; re-fetch original value & set flags
  1155. JZ test ; if count = 0, retry forever
  1156. ; timed out (AL = 1)
  1157. exit:
  1158. END AcquireSpinTimeout;
  1159. (** Acquire a spin-lock and disable interrupts. *)
  1160. PROCEDURE Acquire* (level: LONGINT);
  1161. VAR id, i: LONGINT; flags: SET; start: HUGEINT;
  1162. BEGIN
  1163. id := AcquirePreemption ();
  1164. flags := GetFlags (); (* store state of interrupt flag *)
  1165. IF StrongChecks THEN
  1166. ASSERT(~(9 IN flags) OR (proc[id].locksHeld = {})); (* interrupts enabled => no locks held *)
  1167. ASSERT(~(level IN proc[id].locksHeld)) (* recursive locks not allowed *)
  1168. END;
  1169. IF (TimeCount = 0) OR (maxTime = 0) THEN
  1170. IF AcquireSpinTimeout(lock[level].locked, 0, flags) = 0X THEN END; (* {interrupts off} *)
  1171. ELSE
  1172. start := GetTimer ();
  1173. WHILE AcquireSpinTimeout(lock[level].locked, TimeCount, flags) = 1X DO
  1174. IF GetTimer () - start > maxTime THEN
  1175. trapState := proc;
  1176. trapLocksBusy := {};
  1177. FOR i := 0 TO MaxLocks-1 DO
  1178. IF lock[i].locked THEN INCL(trapLocksBusy, i) END
  1179. END;
  1180. HALT(1301) (* Lock timeout - see Traps *)
  1181. END
  1182. END
  1183. END;
  1184. IF proc[id].locksHeld = {} THEN
  1185. proc[id].state := flags
  1186. END;
  1187. INCL(proc[id].locksHeld, level); (* we now hold the lock *)
  1188. IF StrongChecks THEN (* no lower-level locks currently held by this processor *)
  1189. ASSERT((level = 0) OR (proc[id].locksHeld * {0..level-1} = {}))
  1190. END
  1191. END Acquire;
  1192. (** Release a spin-lock. Switch on interrupts when last lock released. *)
  1193. PROCEDURE Release* (level: LONGINT);
  1194. VAR id: LONGINT; flags: SET;
  1195. BEGIN (* {interrupts off} *)
  1196. id := ID ();
  1197. IF StrongChecks THEN
  1198. ASSERT(~(9 IN GetFlags ())); (* {interrupts off} *)
  1199. ASSERT(lock[level].locked);
  1200. ASSERT(level IN proc[id].locksHeld)
  1201. END;
  1202. EXCL(proc[id].locksHeld, level);
  1203. IF proc[id].locksHeld = {} THEN
  1204. flags := proc[id].state ELSE flags := GetFlags ()
  1205. END;
  1206. lock[level].locked := FALSE;
  1207. SetFlags(flags);
  1208. ReleasePreemption
  1209. END Release;
  1210. (** Acquire all locks. Only for exceptional cases. *)
  1211. PROCEDURE AcquireAll*;
  1212. VAR lock: LONGINT;
  1213. BEGIN
  1214. FOR lock := HighestLock TO LowestLock BY -1 DO Acquire(lock) END
  1215. END AcquireAll;
  1216. (** Release all locks. Reverse of AcquireAll. *)
  1217. PROCEDURE ReleaseAll*;
  1218. VAR lock: LONGINT;
  1219. BEGIN
  1220. FOR lock := LowestLock TO HighestLock DO Release(lock) END
  1221. END ReleaseAll;
  1222. (** Break all locks held by current processor (for exception handling). Returns levels released. *)
  1223. PROCEDURE BreakAll* (): SET;
  1224. VAR id, level: LONGINT; released: SET;
  1225. BEGIN
  1226. id := AcquirePreemption ();
  1227. PushFlags; Cli;
  1228. released := {};
  1229. FOR level := 0 TO MaxLocks-1 DO
  1230. IF level IN proc[id].locksHeld THEN
  1231. lock[level].locked := FALSE; (* break the lock *)
  1232. EXCL(proc[id].locksHeld, level);
  1233. INCL(released, level)
  1234. END
  1235. END;
  1236. IF proc[id].preemptCount > 1 THEN INCL(released, Preemption) END;
  1237. proc[id].preemptCount := 0; (* clear preemption flag *)
  1238. PopFlags;
  1239. RETURN released
  1240. END BreakAll;
  1241. (** Acquire a fine-grained lock on an active object. *)
  1242. PROCEDURE AcquireObject* (VAR locked: BOOLEAN);
  1243. CODE {SYSTEM.i386}
  1244. PUSHFD
  1245. MOV EBX, [EBP+locked] ; EBX := ADR(locked)
  1246. MOV AL, 1
  1247. test:
  1248. CMP [EBX], AL ; locked? { AL = 1 }
  1249. JNE try
  1250. XOR ECX, ECX ; just in case some processor interprets REP this way
  1251. STI
  1252. REP NOP ; PAUSE instruction; see SpinHint
  1253. CLI
  1254. JMP test
  1255. try:
  1256. XCHG [EBX], AL ; set and read the lock atomically. LOCK prefix implicit.
  1257. CMP AL, 1 ; was locked?
  1258. JE test ; yes, try again
  1259. POPFD
  1260. END AcquireObject;
  1261. (** Release an active object lock. *)
  1262. PROCEDURE ReleaseObject* (VAR locked: BOOLEAN);
  1263. CODE {SYSTEM.i386}
  1264. MOV EBX, [EBP+locked] ; EBX := ADR(locked)
  1265. MOV BYTE [EBX], 0
  1266. END ReleaseObject;
  1267. (* Load global descriptor table *)
  1268. PROCEDURE LoadGDT(base: ADDRESS; size: SIZE);
  1269. CODE {SYSTEM.i386, SYSTEM.Privileged}
  1270. SHL DWORD [EBP+size], 16
  1271. MOV EBX, 2
  1272. LGDT [EBP+EBX+size]
  1273. END LoadGDT;
  1274. (* Load segment registers *)
  1275. PROCEDURE LoadSegRegs(data: LONGINT);
  1276. CODE {SYSTEM.i386}
  1277. MOV EAX, [EBP+data]
  1278. MOV DS, AX
  1279. MOV ES, AX
  1280. XOR EAX, EAX
  1281. MOV FS, AX
  1282. MOV GS, AX
  1283. END LoadSegRegs;
  1284. (* Return CS. *)
  1285. PROCEDURE -CS* (): LONGINT;
  1286. CODE {SYSTEM.i386}
  1287. XOR EAX, EAX
  1288. MOV AX, CS
  1289. END CS;
  1290. (** -- Memory management -- *)
  1291. (* Allocate a physical page below 1M. Parameter adr returns physical and virtual address (or NilAdr).*)
  1292. PROCEDURE NewLowPage(VAR adr: ADDRESS);
  1293. BEGIN
  1294. adr := freeLowPage;
  1295. IF freeLowPage # NilAdr THEN
  1296. SYSTEM.GET (freeLowPage, freeLowPage); (* freeLowPage := freeLowPage.next *)
  1297. DEC(freeLowPages)
  1298. END
  1299. END NewLowPage;
  1300. (* Allocate a directly-mapped page. Parameter adr returns physical and virtual address (or NilAdr). *)
  1301. PROCEDURE NewDirectPage(VAR adr: ADDRESS);
  1302. BEGIN
  1303. IF pageHeapAdr # heapEndAdr THEN
  1304. DEC(pageHeapAdr, PS); adr := pageHeapAdr;
  1305. DEC(freeHighPages)
  1306. ELSE
  1307. adr := NilAdr
  1308. END
  1309. END NewDirectPage;
  1310. (* Allocate a physical page. *)
  1311. PROCEDURE NewPage(VAR physAdr: ADDRESS);
  1312. VAR sp, prev: ADDRESS;
  1313. BEGIN
  1314. SYSTEM.GET(pageStackAdr + NodeSP, sp);
  1315. ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *)
  1316. IF sp > MinSP THEN (* stack not empty, pop entry *)
  1317. DEC(sp, AddressSize);
  1318. SYSTEM.GET (pageStackAdr+sp, physAdr);
  1319. SYSTEM.PUT (pageStackAdr+NodeSP, sp);
  1320. SYSTEM.GET (pageStackAdr+NodePrev, prev);
  1321. IF (sp = MinSP) & (prev # NilAdr) THEN
  1322. pageStackAdr := prev
  1323. END;
  1324. DEC(freeHighPages)
  1325. ELSE
  1326. NewDirectPage(physAdr)
  1327. END
  1328. END NewPage;
  1329. (* Deallocate a physical page. *)
  1330. PROCEDURE DisposePage(physAdr: ADDRESS);
  1331. VAR sp, next, newAdr: ADDRESS;
  1332. BEGIN
  1333. SYSTEM.GET (pageStackAdr + NodeSP, sp);
  1334. ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *)
  1335. IF sp = MaxSP THEN (* current stack full *)
  1336. SYSTEM.GET (pageStackAdr + NodeNext, next);
  1337. IF next # NilAdr THEN (* next stack exists, make it current *)
  1338. pageStackAdr := next;
  1339. SYSTEM.GET (pageStackAdr+NodeSP, sp);
  1340. ASSERT(sp = MinSP) (* must be empty *)
  1341. ELSE (* allocate next stack *)
  1342. NewDirectPage(newAdr);
  1343. IF newAdr = NilAdr THEN
  1344. NewLowPage(newAdr); (* try again from reserve *)
  1345. IF newAdr = NilAdr THEN
  1346. IF Stats THEN INC(NlostPages) END;
  1347. RETURN (* give up (the disposed page is lost) *)
  1348. ELSE
  1349. IF Stats THEN INC(NreservePagesUsed) END
  1350. END
  1351. END;
  1352. sp := MinSP; (* will be written to NodeSP below *)
  1353. SYSTEM.PUT (newAdr + NodeNext, next);
  1354. SYSTEM.PUT (newAdr + NodePrev, pageStackAdr);
  1355. pageStackAdr := newAdr
  1356. END
  1357. END;
  1358. (* push entry on current stack *)
  1359. SYSTEM.PUT (pageStackAdr + sp, physAdr);
  1360. SYSTEM.PUT (pageStackAdr + NodeSP, sp + AddressSize);
  1361. INC(freeHighPages)
  1362. END DisposePage;
  1363. (* Allocate virtual address space for mapping. Parameter size must be multiple of page size. Parameter virtAdr returns virtual address or NilAdr on failure. *)
  1364. PROCEDURE NewVirtual(VAR virtAdr: ADDRESS; size: SIZE);
  1365. BEGIN
  1366. ASSERT(size MOD PS = 0);
  1367. IF mapTop+size > MapAreaAdr+MapAreaSize THEN
  1368. virtAdr := NilAdr (* out of virtual space *)
  1369. ELSE
  1370. virtAdr := mapTop;
  1371. INC(mapTop, size)
  1372. END
  1373. END NewVirtual;
  1374. PROCEDURE DisposeVirtual(virtAdr: ADDRESS; size: SIZE);
  1375. (* to do *)
  1376. END DisposeVirtual;
  1377. (* Map a physical page into the virtual address space. Parameter virtAdr is mapped address and phys is mapping value. Returns TRUE iff mapping successful. *)
  1378. PROCEDURE MapPage(virtAdr, phys: ADDRESS): BOOLEAN;
  1379. VAR i, pt: ADDRESS;
  1380. BEGIN
  1381. i := virtAdr DIV RS MOD PTEs;
  1382. SYSTEM.GET (kernelPD + AddressSize*i, pt);
  1383. IF ODD(pt) THEN (* pt present *)
  1384. DEC(pt, pt MOD PS)
  1385. ELSE
  1386. NewPage(pt);
  1387. IF pt = NilAdr THEN RETURN FALSE END;
  1388. SYSTEM.PUT (kernelPD + AddressSize*i, pt + UserPage);
  1389. Fill32(pt, PTEs*AddressSize, PageNotPresent)
  1390. END;
  1391. SYSTEM.PUT (pt + AddressSize*(virtAdr DIV PS MOD PTEs), phys);
  1392. RETURN TRUE
  1393. END MapPage;
  1394. (* Return mapped page address for a given virtual address (ODD if mapped) *)
  1395. PROCEDURE MappedPage(virtAdr: ADDRESS): ADDRESS;
  1396. VAR pt: ADDRESS;
  1397. BEGIN
  1398. SYSTEM.GET (kernelPD + AddressSize*(virtAdr DIV RS MOD PTEs), pt);
  1399. IF ODD(pt) THEN (* pt present *)
  1400. SYSTEM.GET (pt - pt MOD PS + AddressSize*(virtAdr DIV PS MOD PTEs), pt);
  1401. RETURN pt
  1402. ELSE
  1403. RETURN 0 (* ~ODD *)
  1404. END
  1405. END MappedPage;
  1406. (* Unmap a page and return the previous mapping, like MappedPage (). Caller must flush TLB. *)
  1407. PROCEDURE UnmapPage(virtAdr: ADDRESS): ADDRESS;
  1408. VAR t, pt: ADDRESS;
  1409. BEGIN
  1410. SYSTEM.GET (kernelPD + AddressSize*(virtAdr DIV RS MOD PTEs), pt);
  1411. IF ODD(pt) THEN (* pt present *)
  1412. pt := pt - pt MOD PS + AddressSize*(virtAdr DIV PS MOD PTEs);
  1413. SYSTEM.GET (pt, t);
  1414. SYSTEM.PUT (pt, NIL); (* unmap *)
  1415. (* could use INVLPG here, but it is not supported equally on all processors *)
  1416. RETURN t
  1417. ELSE
  1418. RETURN 0 (* ~ODD *)
  1419. END
  1420. END UnmapPage;
  1421. (* Map area [virtAdr..virtAdr+size) directly to area [Adr(phys)..Adr(phys)+size). Returns TRUE iff successful. *)
  1422. PROCEDURE MapDirect(virtAdr: ADDRESS; size: SIZE; phys: ADDRESS): BOOLEAN;
  1423. BEGIN
  1424. (*
  1425. Trace.String("MapDirect "); Trace.Address (virtAdr); Trace.Char(' '); Trace.Address (phys); Trace.Char (' '); Trace.Int (size, 0);
  1426. Trace.Int(size DIV PS, 8); Trace.Ln;
  1427. *)
  1428. ASSERT((virtAdr MOD PS = 0) & (size MOD PS = 0));
  1429. WHILE size # 0 DO
  1430. IF ~ODD(MappedPage(virtAdr)) THEN
  1431. IF ~MapPage(virtAdr, phys) THEN RETURN FALSE END
  1432. END;
  1433. INC(virtAdr, PS); INC(phys, PS); DEC(size, PS)
  1434. END;
  1435. RETURN TRUE
  1436. END MapDirect;
  1437. (* Policy decision for heap expansion. NewBlock for the same block has failed try times. *)
  1438. PROCEDURE ExpandNow(try: LONGINT): BOOLEAN;
  1439. VAR size: SIZE;
  1440. BEGIN
  1441. size := LSH(memBlockTail.endBlockAdr - memBlockHead.beginBlockAdr, -10); (* heap size in KB *)
  1442. RETURN (~ODD(try) OR (size < heapMinKB)) & (size < heapMaxKB)
  1443. END ExpandNow;
  1444. (* Try to expand the heap by at least "size" bytes *)
  1445. PROCEDURE ExpandHeap*(try: LONGINT; size: SIZE; VAR memBlock: MemoryBlock; VAR beginBlockAdr, endBlockAdr: ADDRESS);
  1446. BEGIN
  1447. IF ExpandNow(try) THEN
  1448. IF size < expandMin THEN size := expandMin END;
  1449. beginBlockAdr := memBlockHead.endBlockAdr;
  1450. endBlockAdr := beginBlockAdr;
  1451. INC(endBlockAdr, size);
  1452. SetHeapEndAdr(endBlockAdr); (* in/out parameter *)
  1453. memBlock := memBlockHead;
  1454. (* endBlockAdr of memory block is set by caller after free block has been set in memory block - this process is part of lock-free heap expansion *)
  1455. ELSE
  1456. beginBlockAdr := memBlockHead.endBlockAdr;
  1457. endBlockAdr := memBlockHead.endBlockAdr;
  1458. memBlock := NIL
  1459. END
  1460. END ExpandHeap;
  1461. (* Set memory block end address *)
  1462. PROCEDURE SetMemoryBlockEndAddress*(memBlock: MemoryBlock; endBlockAdr: ADDRESS);
  1463. BEGIN
  1464. ASSERT(endBlockAdr >= memBlock.beginBlockAdr);
  1465. memBlock.endBlockAdr := endBlockAdr
  1466. END SetMemoryBlockEndAddress;
  1467. (* Free unused memory block *)
  1468. PROCEDURE FreeMemBlock*(memBlock: MemoryBlock);
  1469. BEGIN
  1470. HALT(515) (* impossible to free heap in I386 native A2 version *)
  1471. END FreeMemBlock;
  1472. (** Attempt to set the heap end address to the specified address. The returned value is the actual new end address (never smaller than previous value). *)
  1473. PROCEDURE SetHeapEndAdr(VAR endAdr: ADDRESS);
  1474. VAR n, m: SIZE;
  1475. BEGIN
  1476. Acquire(Memory);
  1477. n := LSH(endAdr+(PS-1), -PSlog2) - LSH(heapEndAdr, -PSlog2); (* pages requested *)
  1478. m := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2) - ReservedPages; (* max pages *)
  1479. IF n > m THEN n := m END;
  1480. IF n > 0 THEN INC(heapEndAdr, n*PS); DEC(freeHighPages, n) END;
  1481. endAdr := heapEndAdr;
  1482. Release(Memory)
  1483. END SetHeapEndAdr;
  1484. (** Map a physical memory area (physAdr..physAdr+size-1) into the virtual address space. Parameter virtAdr returns the virtual address of mapped region, or NilAdr on failure. *)
  1485. PROCEDURE MapPhysical*(physAdr: ADDRESS; size: SIZE; VAR virtAdr: ADDRESS);
  1486. VAR ofs: ADDRESS;
  1487. BEGIN
  1488. IF (LSH(physAdr, -PSlog2) <= topPageNum) &
  1489. (LSH(physAdr+size-1, -PSlog2) <= topPageNum) &
  1490. (LSH(physAdr, -PSlog2) >= LSH(LowAdr, -PSlog2)) THEN
  1491. virtAdr := physAdr (* directly mapped *)
  1492. ELSE
  1493. ofs := physAdr MOD PS;
  1494. DEC(physAdr, ofs); INC(size, ofs); (* align start to page boundary *)
  1495. INC(size, (-size) MOD PS); (* align end to page boundary *)
  1496. Acquire(Memory);
  1497. NewVirtual(virtAdr, size);
  1498. IF virtAdr # NilAdr THEN
  1499. IF ~MapDirect(virtAdr, size, physAdr + UserPage) THEN
  1500. DisposeVirtual(virtAdr, size);
  1501. virtAdr := NilAdr
  1502. END
  1503. END;
  1504. Release(Memory);
  1505. IF TraceVerbose THEN
  1506. Acquire (TraceOutput);
  1507. Trace.String("Mapping ");
  1508. Trace.IntSuffix(size, 1, "B"); Trace.String(" at ");
  1509. Trace.Address (physAdr); Trace.String (" - "); Trace.Address (physAdr+size-1);
  1510. IF virtAdr = NilAdr THEN
  1511. Trace.String(" failed")
  1512. ELSE
  1513. Trace.String (" to "); Trace.Address (virtAdr);
  1514. IF ofs # 0 THEN Trace.String (", offset "); Trace.Int(ofs, 0) END
  1515. END;
  1516. Trace.Ln;
  1517. Release (TraceOutput);
  1518. END;
  1519. IF virtAdr # NilAdr THEN INC(virtAdr, ofs) END (* adapt virtual address to correct offset *)
  1520. END
  1521. END MapPhysical;
  1522. (** Unmap an area previously mapped with MapPhysical. *)
  1523. PROCEDURE UnmapPhysical*(virtAdr: ADDRESS; size: SIZE);
  1524. (* to do *)
  1525. END UnmapPhysical;
  1526. (** Return the physical address of the specified range of memory, or NilAdr if the range is not contiguous. It is the caller's responsibility to assure the range remains allocated during the time it is in use. *)
  1527. PROCEDURE PhysicalAdr*(adr: ADDRESS; size: SIZE): ADDRESS;
  1528. VAR physAdr, mapped, expected: ADDRESS;
  1529. BEGIN
  1530. IF (LSH(adr, -PSlog2) <= topPageNum) & (LSH(adr+size-1, -PSlog2) <= topPageNum) THEN
  1531. RETURN adr (* directly mapped *)
  1532. ELSE
  1533. Acquire(Memory);
  1534. mapped := MappedPage(adr);
  1535. Release(Memory);
  1536. IF ODD(mapped) & (size > 0) THEN (* mapped, and range not empty or too big *)
  1537. physAdr := mapped - mapped MOD PS + adr MOD PS; (* strip paging bits and add page offset *)
  1538. (* now check if whole range is physically contiguous *)
  1539. DEC(size, PS - adr MOD PS); (* subtract distance to current page end *)
  1540. IF size > 0 THEN (* range crosses current page end *)
  1541. expected := LSH(mapped, -PSlog2)+1; (* expected physical page *)
  1542. LOOP
  1543. INC(adr, PS); (* step to next page *)
  1544. Acquire(Memory);
  1545. mapped := MappedPage(adr);
  1546. Release(Memory);
  1547. IF ~ODD(mapped) OR (LSH(mapped, -PSlog2) # expected) THEN
  1548. physAdr := NilAdr; EXIT
  1549. END;
  1550. DEC(size, PS);
  1551. IF size <= 0 THEN EXIT END; (* ok *)
  1552. INC(expected)
  1553. END
  1554. ELSE
  1555. (* ok, skip *)
  1556. END
  1557. ELSE
  1558. physAdr := NilAdr
  1559. END;
  1560. RETURN physAdr
  1561. END
  1562. END PhysicalAdr;
  1563. (** Translate a virtual address range to num ranges of physical address. num returns 0 on error. *)
  1564. PROCEDURE TranslateVirtual*(virtAdr: ADDRESS; size: SIZE; VAR num: LONGINT; VAR physAdr: ARRAY OF Range);
  1565. VAR ofs, phys1: ADDRESS; size1: SIZE;
  1566. BEGIN
  1567. Acquire(Memory);
  1568. num := 0;
  1569. LOOP
  1570. IF size = 0 THEN EXIT END;
  1571. IF num = LEN(physAdr) THEN num := 0; EXIT END; (* index check *)
  1572. ofs := virtAdr MOD PS; (* offset in page *)
  1573. size1 := PS - ofs; (* distance to next page boundary *)
  1574. IF size1 > size THEN size1 := size END;
  1575. phys1 := MappedPage(virtAdr);
  1576. IF ~ODD(phys1) THEN num := 0; EXIT END; (* page not present *)
  1577. physAdr[num].adr := phys1 - phys1 MOD PS + ofs;
  1578. physAdr[num].size := size1; INC(num);
  1579. INC(virtAdr, size1); DEC(size, size1)
  1580. END;
  1581. IF num = 0 THEN physAdr[0].adr := NilAdr; physAdr[0].size := 0 END;
  1582. Release(Memory)
  1583. END TranslateVirtual;
  1584. (** Return information on free memory in Kbytes. *)
  1585. PROCEDURE GetFreeK*(VAR total, lowFree, highFree: SIZE);
  1586. CONST KperPage = PS DIV 1024;
  1587. BEGIN
  1588. Acquire(Memory);
  1589. total := totalPages * KperPage;
  1590. lowFree := freeLowPages * KperPage;
  1591. highFree := freeHighPages * KperPage;
  1592. Release(Memory)
  1593. END GetFreeK;
  1594. (** -- Stack -- *)
  1595. (** Extend the stack to include the specified address, if possible. Returns TRUE iff ok. *)
  1596. PROCEDURE ExtendStack*(VAR s: Stack; virtAdr: ADDRESS): BOOLEAN;
  1597. VAR phys: ADDRESS; ok: BOOLEAN;
  1598. BEGIN
  1599. Acquire(Memory);
  1600. ok := FALSE;
  1601. IF (virtAdr < s.high) & (virtAdr >= s.low) THEN
  1602. DEC(virtAdr, virtAdr MOD PS); (* round down to page boundary *)
  1603. IF Stats & (virtAdr < s.adr-PS) THEN INC(Nbigskips) END;
  1604. IF ODD(MappedPage(virtAdr)) THEN (* already mapped *)
  1605. ok := TRUE
  1606. ELSE
  1607. NewPage(phys);
  1608. IF phys # NilAdr THEN
  1609. IF MapPage(virtAdr, phys + UserPage) THEN
  1610. IF virtAdr < s.adr THEN
  1611. s.adr := virtAdr
  1612. ELSE
  1613. IF Stats THEN INC(Nfilled) END
  1614. END;
  1615. ok := TRUE
  1616. ELSE
  1617. DisposePage(phys)
  1618. END
  1619. END
  1620. END
  1621. END;
  1622. Release(Memory);
  1623. RETURN ok
  1624. END ExtendStack;
  1625. (** Allocate a stack. Parameter initSP returns initial stack pointer value. *)
  1626. PROCEDURE NewStack*(VAR s: Stack; process: ANY; VAR initSP: ADDRESS);
  1627. VAR adr, phys: ADDRESS; old: LONGINT; free: SET;
  1628. BEGIN
  1629. ASSERT(InitUserStackSize = PS); (* for now *)
  1630. Acquire(Memory);
  1631. IF Stats THEN INC(NnewStacks) END;
  1632. old := freeStackIndex;
  1633. LOOP
  1634. IF Stats THEN INC(NnewStackLoops) END;
  1635. free := freeStack[freeStackIndex];
  1636. IF free # {} THEN
  1637. adr := 0; WHILE ~(adr IN free) DO INC(adr) END; (* BTW: BSF instruction is not faster *)
  1638. IF Stats THEN INC(NnewStackInnerLoops, adr+1) END;
  1639. EXCL(freeStack[freeStackIndex], SIZE(adr));
  1640. adr := StackAreaAdr + (freeStackIndex*SetSize + adr)*MaxUserStackSize;
  1641. EXIT
  1642. END;
  1643. INC(freeStackIndex);
  1644. IF freeStackIndex = LEN(freeStack) THEN freeStackIndex := 0 END;
  1645. IF freeStackIndex = old THEN HALT(1503) END (* out of stack space *)
  1646. END;
  1647. NewPage(phys); ASSERT(phys # NilAdr); (* allocate one physical page at first *)
  1648. s.high := adr + MaxUserStackSize; s.low := adr + UserStackGuardSize;
  1649. s.adr := s.high - InitUserStackSize; (* at the top of the virtual area *)
  1650. initSP := s.high-AddressSize;
  1651. IF ~MapPage(s.adr, phys + UserPage) THEN HALT(99) END;
  1652. SYSTEM.PUT (initSP, process);
  1653. Release(Memory)
  1654. END NewStack;
  1655. (** Return the process pointer set when the current user stack was created (must be running on user stack). *)
  1656. PROCEDURE -GetProcessPtr* (): ANY;
  1657. CONST Mask = -MaxUserStackSize; Ofs = MaxUserStackSize-4;
  1658. CODE {SYSTEM.i386}
  1659. MOV EAX, Mask
  1660. AND EAX, ESP
  1661. MOV EAX, [EAX+Ofs]
  1662. POP EBX ; pointers are generally passed via stack
  1663. MOV [EBX], EAX
  1664. END GetProcessPtr;
  1665. (** True iff current process works on a kernel stack *)
  1666. PROCEDURE WorkingOnKernelStack* (): BOOLEAN;
  1667. VAR id: LONGINT; sp: ADDRESS;
  1668. BEGIN
  1669. ASSERT(KernelStackSize # MaxUserStackSize - UserStackGuardSize); (* detection does only work with this assumption *)
  1670. sp := CurrentSP ();
  1671. id := ID ();
  1672. RETURN (sp >= procm[id].stack.low) & (sp <= procm[id].stack.high)
  1673. END WorkingOnKernelStack;
  1674. (** Deallocate a stack. Current thread should not dispose its own stack. Uses privileged instructions. *)
  1675. PROCEDURE DisposeStack*(CONST s: Stack);
  1676. VAR adr, phys: ADDRESS;
  1677. BEGIN
  1678. (* First make sure there are no references to virtual addresses of the old stack in the TLBs. This is required because we are freeing the pages, and they could be remapped later at different virtual addresses. DisposeStack will only be called from the thread finalizer, which ensures that the user will no longer be referencing this memory. Therefore we can make this upcall from outside the locked region, avoiding potential deadlock. *)
  1679. GlobalFlushTLB; (* finalizers are only called after Processors has initialized this upcall *)
  1680. Acquire(Memory);
  1681. IF Stats THEN INC(NdisposeStacks) END;
  1682. adr := s.adr; (* unmap and deallocate all pages of stack *)
  1683. REPEAT
  1684. phys := UnmapPage(adr); (* TLB was flushed and no intermediate references possible to unreachable stack *)
  1685. IF ODD(phys) THEN DisposePage(phys - phys MOD PS) END;
  1686. INC(adr, PS)
  1687. UNTIL adr = s.high;
  1688. adr := (adr - MaxUserStackSize - StackAreaAdr) DIV MaxUserStackSize;
  1689. INCL(freeStack[adr DIV 32], SIZE(adr MOD 32));
  1690. Release(Memory)
  1691. END DisposeStack;
  1692. (** Check if the specified stack is valid. *)
  1693. PROCEDURE ValidStack*(CONST s: Stack; sp: ADDRESS): BOOLEAN;
  1694. VAR valid: BOOLEAN;
  1695. BEGIN
  1696. Acquire(Memory);
  1697. valid := (sp MOD 4 = 0) & (sp >= s.adr) & (sp <= s.high);
  1698. WHILE valid & (sp < s.high) DO
  1699. valid := ODD(MappedPage(sp));
  1700. INC(sp, PS)
  1701. END;
  1702. Release(Memory);
  1703. RETURN valid
  1704. END ValidStack;
  1705. (** Update the stack snapshot of the current processor. (for Processors) *)
  1706. PROCEDURE UpdateState*;
  1707. VAR id: LONGINT;
  1708. BEGIN
  1709. ASSERT(CS () MOD 4 = 0); (* to get kernel stack pointer *)
  1710. id := ID ();
  1711. ASSERT(procm[id].stack.high # 0); (* current processor stack has been assigned *)
  1712. procm[id].sp := CurrentBP () (* instead of ESP, just fetch EBP of current procedure (does not contain pointers) *)
  1713. END UpdateState;
  1714. (** Get kernel stack regions for garbage collection. (for Heaps) *)
  1715. PROCEDURE GetKernelStacks*(VAR stack: ARRAY OF Stack);
  1716. VAR i: LONGINT;
  1717. BEGIN (* {UpdateState has been called by each processor} *)
  1718. FOR i := 0 TO MaxCPU-1 DO
  1719. stack[i].adr := procm[i].sp;
  1720. stack[i].high := procm[i].stack.high
  1721. END
  1722. END GetKernelStacks;
  1723. (* Init page tables (paging still disabled until EnableMM is called). *)
  1724. PROCEDURE InitPages;
  1725. VAR i, j, phys, lTop, mTop: ADDRESS;
  1726. BEGIN
  1727. (* get top of high and low memory *)
  1728. mTop := memTop;
  1729. DEC(mTop, mTop MOD PS); (* mTop MOD PS = 0 *)
  1730. topPageNum := LSH(mTop-1, -PSlog2);
  1731. lTop := lowTop;
  1732. DEC(lTop, lTop MOD PS); (* lTop MOD PS = 0 *)
  1733. (* initialize NewDirectPage and SetHeapEndAdr (get kernel range) *)
  1734. (*SYSTEM.GET (LinkAdr + EndBlockOfs, heapEndAdr);*)
  1735. heapEndAdr := 0;
  1736. (* ug *) (*
  1737. SYSTEM.PUT (heapEndAdr, NIL); (* set tag to NIL *)
  1738. INC(heapEndAdr, AddressSize); (* space for NIL *)
  1739. *)
  1740. (* ug: not needed, extension of heap done in GetStaticHeap anyway
  1741. INC(heapEndAdr, K); (* space for free heap block descriptor of type Heaps.HeapBlockDesc at heapEndAdr, initialization is done in Heaps *)
  1742. INC(heapEndAdr, (-heapEndAdr) MOD PS); (* round up to page size *)
  1743. *)
  1744. pageHeapAdr := mTop;
  1745. freeHighPages := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2);
  1746. IF TraceVerbose THEN
  1747. Trace.String("Kernel: "); Trace.Address (LinkAdr); Trace.String(" .. ");
  1748. Trace.Address (heapEndAdr-1); Trace.Ln;
  1749. Trace.String ("High: "); Trace.Address (heapEndAdr); Trace.String(" .. ");
  1750. Trace.Address (pageHeapAdr-1); Trace.String(" = "); Trace.Int (freeHighPages, 0);
  1751. Trace.StringLn (" free pages")
  1752. END;
  1753. (* initialize empty free page stack *)
  1754. NewDirectPage(pageStackAdr); ASSERT(pageStackAdr # NilAdr);
  1755. SYSTEM.PUT (pageStackAdr+NodeSP, SYSTEM.VAL (ADDRESS, MinSP));
  1756. SYSTEM.PUT (pageStackAdr+NodeNext, SYSTEM.VAL (ADDRESS, NilAdr));
  1757. SYSTEM.PUT (pageStackAdr+NodePrev, SYSTEM.VAL (ADDRESS, NilAdr));
  1758. (* free low pages *)
  1759. freeLowPage := NilAdr; freeLowPages := 0;
  1760. i := lTop DIV PS; j := LowAdr DIV PS;
  1761. IF TraceVerbose THEN
  1762. Trace.String("Low: "); Trace.Address (j*PS); Trace.String (".."); Trace.Address (i*PS-1)
  1763. END;
  1764. REPEAT
  1765. DEC(i); phys := i*PS;
  1766. SYSTEM.PUT (phys, freeLowPage); (* phys.next := freeLowPage *)
  1767. freeLowPage := phys; INC(freeLowPages)
  1768. UNTIL i = j;
  1769. IF TraceVerbose THEN
  1770. Trace.String(" = "); Trace.Int(freeLowPages, 1); Trace.StringLn (" free pages")
  1771. END;
  1772. totalPages := LSH(memTop - M + lowTop + dmaSize + PS, -PSlog2); (* what BIOS gave us *)
  1773. (* stacks *)
  1774. ASSERT((StackAreaAdr MOD MaxUserStackSize = 0) & (StackAreaSize MOD MaxUserStackSize = 0));
  1775. FOR i := 0 TO LEN(freeStack)-1 DO freeStack[i] := {0..SetSize-1} END;
  1776. FOR i := MaxUserStacks TO LEN(freeStack)*SetSize-1 DO EXCL(freeStack[i DIV SetSize], SIZE(i MOD SetSize)) END;
  1777. freeStackIndex := 0;
  1778. (* mappings *)
  1779. mapTop := MapAreaAdr;
  1780. (* create the address space *)
  1781. NewPage(kernelPD); ASSERT(kernelPD # NilAdr);
  1782. Fill32(kernelPD, PTEs*4, PageNotPresent);
  1783. IF ~MapDirect(LowAdr, mTop-LowAdr, LowAdr + UserPage) THEN HALT(99) END (* map heap direct *)
  1784. END InitPages;
  1785. (* Generate a memory segment descriptor. type IN {0..7} & dpl IN {0..3}.
  1786. type
  1787. 0 data, expand-up, read-only
  1788. 1 data, expand-up, read-write
  1789. 2 data, expand-down, read-only
  1790. 3 data, expand-down, read-write
  1791. 4 code, non-conforming, execute-only
  1792. 5 code, non-conforming, execute-read
  1793. 6 code, conforming, execute-only
  1794. 7 code, conforming, execute-read
  1795. *)
  1796. PROCEDURE GenMemSegDesc(type, base, limit, dpl: LONGINT; page: BOOLEAN; VAR sd: SegDesc);
  1797. VAR s: SET;
  1798. BEGIN
  1799. sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H;
  1800. s := SYSTEM.VAL (SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1801. ASH(dpl, 13) + ASH(type, 9) + ASH(base, -16) MOD 100H);
  1802. s := s + {12, 15, 22}; (* code/data=1, present=1, 32-bit=1, A=0, AVL=0 *)
  1803. IF page THEN INCL(s, 23) END; (* page granularity *)
  1804. sd.high := SYSTEM.VAL (LONGINT, s)
  1805. END GenMemSegDesc;
  1806. (* Generate a TSS descriptor. *)
  1807. PROCEDURE GenTSSDesc(base: ADDRESS; limit, dpl: LONGINT; VAR sd: SegDesc);
  1808. VAR s: SET;
  1809. BEGIN
  1810. sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H;
  1811. s := SYSTEM.VAL (SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1812. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1813. s := s + {8, 11, 15}; (* type=non-busy TSS, present=1, AVL=0, 32-bit=0 *)
  1814. sd.high := SYSTEM.VAL (LONGINT, s)
  1815. END GenTSSDesc;
  1816. (* Initialize segmentation. *)
  1817. PROCEDURE InitSegments;
  1818. VAR i: LONGINT;
  1819. BEGIN
  1820. (* GDT 0: Null segment *)
  1821. gdt[0].low := 0; gdt[0].high := 0;
  1822. (* GDT 1: Kernel code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1823. GenMemSegDesc(5, 0, M-1, 0, TRUE, gdt[1]);
  1824. (* GDT 2: Kernel stack: expand-up, read-write, base 0, limit 4G, PL 0 *)
  1825. GenMemSegDesc(1, 0, M-1, 0, TRUE, gdt[2]);
  1826. (* GDT 3: User code: conforming, execute-read, base 0, limit 4G, PL 0 *)
  1827. GenMemSegDesc(7, 0, M-1, 0, TRUE, gdt[3]);
  1828. (* GDT 4: User/Kernel data: expand-up, read-write, base 0, limit 4G, PL 3 *)
  1829. GenMemSegDesc(1, 0, M-1, 3, TRUE, gdt[4]);
  1830. (* GDT 5: User stack: expand-down, read-write, base 0, limit 1M, PL 3 *)
  1831. GenMemSegDesc(3, 0, M DIV PS, 3, TRUE, gdt[5]);
  1832. (* GDT TSSOfs..n: Kernel TSS *)
  1833. FOR i := 0 TO MaxCPU-1 DO
  1834. GenTSSDesc(ADDRESSOF(procm[i].tss), SIZEOF(TSSDesc)-1, 0, gdt[TSSOfs+i]);
  1835. procm[i].sp := 0; procm[i].stack.high := 0
  1836. END
  1837. END InitSegments;
  1838. (* Enable segmentation on the current processor. *)
  1839. PROCEDURE EnableSegments;
  1840. BEGIN
  1841. LoadGDT(ADDRESSOF(gdt[0]), SIZEOF(GDT)-1);
  1842. LoadSegRegs(DataSel)
  1843. END EnableSegments;
  1844. (* Allocate a kernel stack. *)
  1845. PROCEDURE NewKernelStack(VAR stack: Stack);
  1846. VAR phys, virt: ADDRESS; size: SIZE;
  1847. BEGIN
  1848. size := KernelStackSize;
  1849. NewVirtual(virt, size + PS); (* add one page for overflow protection *)
  1850. ASSERT(virt # NilAdr, 1502);
  1851. INC(virt, PS); (* leave page open at bottom *)
  1852. stack.low := virt;
  1853. stack.adr := virt; (* return stack *)
  1854. REPEAT
  1855. NewPage(phys); ASSERT(phys # NilAdr);
  1856. IF ~MapPage(virt, phys + KernelPage) THEN HALT(99) END;
  1857. DEC(size, PS); INC(virt, PS)
  1858. UNTIL size = 0;
  1859. stack.high := virt
  1860. END NewKernelStack;
  1861. (* Set task register *)
  1862. PROCEDURE -SetTR(tr: ADDRESS);
  1863. CODE {SYSTEM.i386, SYSTEM.Privileged}
  1864. POP EAX
  1865. LTR AX
  1866. END SetTR;
  1867. (* Enable memory management and switch to new stack in virtual space.
  1868. Stack layout:
  1869. caller1 return
  1870. caller1 EBP <-- caller0 EBP
  1871. [caller0 locals]
  1872. 04 caller0 return
  1873. 00 caller0 EBP <-- EBP
  1874. locals <-- ESP
  1875. *)
  1876. PROCEDURE -EnableMM(pd, esp: ADDRESS);
  1877. CODE {SYSTEM.Pentium, SYSTEM.Privileged}
  1878. POP EBX ; esp
  1879. POP EAX ; pd
  1880. MOV CR3, EAX ; page directory ptr
  1881. MOV ECX, [EBP+4] ; caller0 return
  1882. MOV EDX, [EBP] ; caller0 EBP
  1883. MOV EDX, [EDX+4] ; caller1 return
  1884. MOV EAX, CR0
  1885. OR EAX, 80000000H ; set PG bit
  1886. MOV CR0, EAX ; enable virtual addressing (old stack no longer usable)
  1887. JMP 0 ; flush queue
  1888. WBINVD
  1889. MOV DWORD [EBX-4], 0 ; not UserStackSel (cf. GetUserStack)
  1890. MOV [EBX-8], EDX ; caller1 return on new stack
  1891. MOV DWORD [EBX-12], 0 ; caller1 EBP on new stack
  1892. LEA EBP, [EBX-12] ; new stack top
  1893. MOV ESP, EBP
  1894. JMP ECX ; back to caller0 (whose locals are now inaccessible!)
  1895. END EnableMM;
  1896. (** -- Initialization -- *)
  1897. (** Initialize memory management.
  1898. o every processor calls this once during initialization
  1899. o mutual exclusion with other processors must be guaranteed by the caller
  1900. o interrupts must be off
  1901. o segmentation and paging is enabled
  1902. o return is on the new stack => caller must have no local variables
  1903. *)
  1904. PROCEDURE InitMemory*;
  1905. VAR id: LONGINT;
  1906. BEGIN
  1907. EnableSegments;
  1908. (* allocate stack *)
  1909. id := ID ();
  1910. NewKernelStack(procm[id].stack);
  1911. procm[id].sp := 0;
  1912. (* initialize TSS *)
  1913. Fill32(ADDRESSOF(procm[id].tss), SIZEOF(TSSDesc), 0);
  1914. procm[id].tss.ESP0 := procm[id].stack.high; (* kernel stack org *)
  1915. procm[id].tss.ESS0 := KernelStackSel;
  1916. procm[id].tss.IOBitmapOffset := -1; (* no bitmap *)
  1917. (* enable paging and switch stack *)
  1918. SetTR(KernelTR + id*8);
  1919. EnableMM(kernelPD, procm[id].tss.ESP0)
  1920. END InitMemory;
  1921. (** Initialize a boot page for MP booting. Parameter physAdr returns the physical address of a low page. *)
  1922. PROCEDURE InitBootPage*(start: Startup; VAR physAdr: ADDRESS);
  1923. CONST BootOfs = 800H;
  1924. VAR adr, a: ADDRESS;
  1925. BEGIN
  1926. Acquire(Memory);
  1927. NewLowPage(physAdr);
  1928. Release(Memory);
  1929. ASSERT((physAdr # NilAdr) & (physAdr >= 0) & (physAdr < M) & (physAdr MOD PS = 0));
  1930. adr := physAdr + BootOfs;
  1931. a := adr; (* from SMP.Asm - generated with BinToCode.Kernel smp.bin 800H *)
  1932. SYSTEM.PUT32(a, 0100012EBH); INC(a, 4); SYSTEM.PUT32(a, 000080000H); INC(a, 4);
  1933. SYSTEM.PUT32(a, 000000000H); INC(a, 4); SYSTEM.PUT32(a, 000170000H); INC(a, 4);
  1934. SYSTEM.PUT32(a, 000000000H); INC(a, 4); SYSTEM.PUT32(a, 0010F2EFAH); INC(a, 4);
  1935. SYSTEM.PUT32(a, 02E08081EH); INC(a, 4); SYSTEM.PUT32(a, 00E16010FH); INC(a, 4);
  1936. SYSTEM.PUT32(a, 0E0010F08H); INC(a, 4); SYSTEM.PUT32(a, 0010F010CH); INC(a, 4);
  1937. SYSTEM.PUT32(a, 0B800EBF0H); INC(a, 4); SYSTEM.PUT32(a, 0D08E0010H); INC(a, 4);
  1938. SYSTEM.PUT32(a, 0C08ED88EH); INC(a, 4); SYSTEM.PUT32(a, 00800BC66H); INC(a, 4);
  1939. SYSTEM.PUT32(a, 033660000H); INC(a, 4); SYSTEM.PUT32(a, 0FF2E66C0H); INC(a, 4);
  1940. SYSTEM.PUT32(a, 09008022EH); INC(a, 4);
  1941. (* these offsets are from the last two dwords in SMP.Asm *)
  1942. SYSTEM.PUT32(adr+2, SYSTEM.VAL (LONGINT, start)); (* not a method *)
  1943. SYSTEM.PUT32(adr+16, ADDRESSOF(gdt[0]));
  1944. (* jump at start *)
  1945. SYSTEM.PUT8(physAdr, 0EAX); (* jmp far *)
  1946. SYSTEM.PUT32(physAdr + 1, ASH(physAdr, 16-4) + BootOfs) (* seg:ofs *)
  1947. END InitBootPage;
  1948. (** The BP in a MP system calls this to map the APIC physical address directly. *)
  1949. PROCEDURE InitAPICArea*(adr: ADDRESS; size: SIZE);
  1950. BEGIN
  1951. ASSERT((size = PS) & (adr >= IntelAreaAdr) & (adr+size-1 < IntelAreaAdr+IntelAreaSize));
  1952. IF ~MapDirect(adr, size, adr + UserPage) THEN HALT(99) END
  1953. END InitAPICArea;
  1954. (* Set machine-dependent parameters gcThreshold, expandMin, heapMinKB and heapMaxKB *)
  1955. PROCEDURE SetGCParams*;
  1956. VAR size, t: SIZE;
  1957. BEGIN
  1958. GetFreeK(size, t, t); (* size is total memory size in KB *)
  1959. heapMinKB := size * HeapMin DIV 100;
  1960. heapMaxKB := size * HeapMax DIV 100;
  1961. expandMin := size * ExpandRate DIV 100 * 1024;
  1962. IF expandMin < 0 THEN expandMin := MAX(LONGINT) END;
  1963. gcThreshold := size * Threshold DIV 100 * 1024;
  1964. IF gcThreshold < 0 THEN gcThreshold := MAX(LONGINT) END
  1965. END SetGCParams;
  1966. (** Get first memory block and first free address, heap area in first memory block is automatically expanded to account for the first
  1967. few calls to NEW *)
  1968. PROCEDURE GetStaticHeap*(VAR beginBlockAdr, endBlockAdr, freeBlockAdr: ADDRESS);
  1969. BEGIN
  1970. beginBlockAdr := initialMemBlock.beginBlockAdr;
  1971. endBlockAdr := initialMemBlock.endBlockAdr;
  1972. freeBlockAdr := beginBlockAdr;
  1973. END GetStaticHeap;
  1974. PROCEDURE InModuleHeap(p: ADDRESS): BOOLEAN;
  1975. BEGIN
  1976. RETURN (p >= SYSTEM.VAL(ADDRESS, FirstAddress)) & (p <= SYSTEM.VAL(ADDRESS, LastAddress));
  1977. END InModuleHeap;
  1978. (* returns if an address is a currently allocated heap address *)
  1979. PROCEDURE ValidHeapAddress*(p: ADDRESS): BOOLEAN;
  1980. BEGIN
  1981. RETURN
  1982. (p >= memBlockHead.beginBlockAdr) & (p <= memBlockTail.endBlockAdr)
  1983. OR InModuleHeap(p);
  1984. END ValidHeapAddress;
  1985. (** Jump from kernel to user mode. Every processor calls this during initialization. *)
  1986. PROCEDURE JumpToUserLevel*(userEBP: ADDRESS);
  1987. CODE {SYSTEM.i386}
  1988. PUSH UserStackSel ; SS3
  1989. PUSH DWORD [EBP+userEBP] ; ESP3
  1990. PUSHFD ; EFLAGS3
  1991. PUSH UserCodeSel ; CS3
  1992. CALL L1 ; PUSH L1 (EIP3)
  1993. L1:
  1994. ADD DWORD [ESP], BYTE 5; adjust EIP3 to L2 (L2-L1 = 5)
  1995. IRETD ; switch to level 3 and continue at following instruction
  1996. L2:
  1997. POP EBP ; from level 3 stack (refer to Objects.NewProcess)
  1998. RET ; jump to body of first active object
  1999. END JumpToUserLevel;
  2000. PROCEDURE Ensure32BitAddress*(adr: ADDRESS): LONGINT;
  2001. BEGIN
  2002. RETURN adr
  2003. END Ensure32BitAddress;
  2004. PROCEDURE Is32BitAddress*(adr: ADDRESS): BOOLEAN;
  2005. BEGIN RETURN SYSTEM.VAL (Address32, adr) = adr;
  2006. END Is32BitAddress;
  2007. (**
  2008. * Flush Data Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  2009. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  2010. * left empty on Intel architecture.
  2011. *)
  2012. PROCEDURE FlushDCacheRange * (adr: ADDRESS; len: LONGINT);
  2013. END FlushDCacheRange;
  2014. (**
  2015. * Invalidate Data Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  2016. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  2017. * left empty on Intel architecture.
  2018. *)
  2019. PROCEDURE InvalidateDCacheRange * (adr: ADDRESS; len: LONGINT);
  2020. END InvalidateDCacheRange;
  2021. (**
  2022. * Invalidate Instruction Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  2023. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  2024. * left empty on Intel architecture.
  2025. *)
  2026. PROCEDURE InvalidateICacheRange * (adr: ADDRESS; len: LONGINT);
  2027. END InvalidateICacheRange;
  2028. (* Unexpected - Default interrupt handler *)
  2029. PROCEDURE Unexpected(VAR state: State);
  2030. VAR int: LONGINT; isr, irr: CHAR;
  2031. BEGIN
  2032. int := state.INT;
  2033. IF HandleSpurious & ((int >= IRQ0) & (int <= MaxIRQ) OR (int = MPSPU)) THEN (* unexpected IRQ, get more info *)
  2034. IF (int >= IRQ8) & (int <= IRQ15) THEN
  2035. Portout8 (IntB0, 0BX); Portin8(IntB0, isr);
  2036. Portout8 (IntB0, 0AX); Portin8(IntB0, irr)
  2037. ELSIF (int >= IRQ0) & (int <= IRQ7) THEN
  2038. Portout8 (IntA0, 0BX); Portin8(IntA0, isr);
  2039. Portout8 (IntA0, 0AX); Portin8(IntA0, irr)
  2040. ELSE
  2041. isr := 0X; irr := 0X
  2042. END;
  2043. IF TraceSpurious THEN
  2044. Acquire (TraceOutput);
  2045. Trace.String("INT"); Trace.Int(int, 1);
  2046. Trace.Hex(ORD(isr), -3); Trace.Hex(ORD(irr), -2); Trace.Ln;
  2047. Release (TraceOutput);
  2048. END
  2049. ELSE
  2050. Acquire (TraceOutput);
  2051. Trace.StringLn ("Unexpected interrupt");
  2052. Trace.Memory(ADDRESSOF(state), SIZEOF(State)-4*4); (* exclude last 4 fields *)
  2053. IF int = 3 THEN (* was a HALT or ASSERT *)
  2054. (* It seems that no trap handler is installed (Traps not linked), so wait endlessly, while holding trace lock. This should quiten down the system, although other processors may possibly still run processes. *)
  2055. LOOP END
  2056. ELSE
  2057. Release (TraceOutput);
  2058. SetEAX(int);
  2059. HALT(1801) (* unexpected interrupt *)
  2060. END
  2061. END
  2062. END Unexpected;
  2063. (* InEnableIRQ - Enable a hardware interrupt (caller must hold module lock). *)
  2064. PROCEDURE -InEnableIRQ (int: LONGINT);
  2065. CODE {SYSTEM.i386}
  2066. POP EBX
  2067. CMP EBX, IRQ7
  2068. JG cont2
  2069. IN AL, IntA1
  2070. SUB EBX, IRQ0
  2071. BTR EAX, EBX
  2072. OUT IntA1, AL
  2073. JMP end
  2074. cont2:
  2075. IN AL, IntB1
  2076. SUB EBX, IRQ8
  2077. BTR EAX, EBX
  2078. OUT IntB1, AL
  2079. end:
  2080. END InEnableIRQ;
  2081. (* InDisableIRQ - Disable a hardware interrupt (caller must hold module lock). *)
  2082. PROCEDURE -InDisableIRQ (int: LONGINT);
  2083. CODE {SYSTEM.i386}
  2084. POP EBX
  2085. CMP EBX, IRQ7
  2086. JG cont2
  2087. IN AL, IntA1
  2088. SUB EBX, IRQ0
  2089. BTS EAX, EBX
  2090. OUT IntA1, AL
  2091. JMP end
  2092. cont2:
  2093. IN AL, IntB1
  2094. SUB EBX, IRQ8
  2095. BTS EAX, EBX
  2096. OUT IntB1, AL
  2097. end:
  2098. END InDisableIRQ;
  2099. (** EnableIRQ - Enable a hardware interrupt (also done automatically by InstallHandler). *)
  2100. PROCEDURE EnableIRQ* (int: LONGINT);
  2101. BEGIN
  2102. ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2));
  2103. Acquire(Interrupts); (* protect interrupt mask register *)
  2104. InEnableIRQ(int);
  2105. Release(Interrupts)
  2106. END EnableIRQ;
  2107. (** DisableIRQ - Disable a hardware interrupt. *)
  2108. PROCEDURE DisableIRQ* (int: LONGINT);
  2109. BEGIN
  2110. ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2));
  2111. Acquire(Interrupts); (* protect interrupt mask register *)
  2112. InDisableIRQ(int);
  2113. Release(Interrupts)
  2114. END DisableIRQ;
  2115. (** InstallHandler - Install interrupt handler & enable IRQ if necessary.
  2116. On entry to h interrupts are disabled and may be enabled with Sti. After handling the interrupt
  2117. the state of interrupts are restored. The acknowledgement of a hardware interrupt is done automatically.
  2118. IRQs are mapped from IRQ0 to MaxIRQ. *)
  2119. PROCEDURE InstallHandler* (h: Handler; int: LONGINT);
  2120. VAR (* n: HandlerList; *) i: LONGINT; unexpected: Handler;
  2121. BEGIN
  2122. ASSERT(default.valid); (* initialized *)
  2123. ASSERT(int # IRQ2); (* IRQ2 is used for cascading and remapped to IRQ9 *)
  2124. Acquire(Interrupts);
  2125. (* FieldInterrupt may traverse list while it is being modified *)
  2126. i := 0;
  2127. unexpected := Unexpected;
  2128. IF intHandler[int, 0].handler # unexpected THEN
  2129. WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO
  2130. INC(i)
  2131. END;
  2132. IF i < MaxNumHandlers - 1 THEN
  2133. intHandler[int, i].valid := TRUE;
  2134. intHandler[int, i].handler := h;
  2135. ELSE
  2136. Acquire(TraceOutput);
  2137. Trace.String("Machine.InstallHandler: handler could not be installed for interrupt "); Trace.Int(int, 0);
  2138. Trace.String(" - too many handlers per interrupt number"); Trace.Ln;
  2139. Release(TraceOutput)
  2140. END
  2141. ELSE
  2142. intHandler[int, 0].handler := h;
  2143. IF (int >= IRQ0) & (int <= IRQ15) THEN InEnableIRQ(int) END
  2144. END;
  2145. Release(Interrupts)
  2146. END InstallHandler;
  2147. (** RemoveHandler - Uninstall interrupt handler & disable IRQ if necessary *)
  2148. PROCEDURE RemoveHandler* (h: Handler; int: LONGINT);
  2149. VAR (* p, c: HandlerList; *) i, j, foundIndex: LONGINT;
  2150. BEGIN
  2151. ASSERT(default.valid); (* initialized *)
  2152. Acquire(Interrupts);
  2153. (* find h *)
  2154. i := 0;
  2155. foundIndex := -1;
  2156. WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO
  2157. IF intHandler[int, i].handler = h THEN foundIndex := i END;
  2158. INC(i)
  2159. END;
  2160. IF foundIndex # -1 THEN
  2161. (* h found -> copy interrupt handlers higher than foundIndex *)
  2162. FOR j := foundIndex TO i - 2 DO
  2163. intHandler[int, j] := intHandler[int, j + 1]
  2164. END
  2165. END;
  2166. IF ~intHandler[int, 0].valid THEN
  2167. (* handler h was the only interrupt handler for interrupt int -> install the default handler *)
  2168. intHandler[int, 0] := default;
  2169. IF (int >= IRQ0) & (int <= IRQ15) THEN DisableIRQ(int) END
  2170. END;
  2171. Release(Interrupts)
  2172. END RemoveHandler;
  2173. (*
  2174. PROCEDURE ListIntHandlers*;
  2175. VAR i, j, highest: LONGINT; handler: Handler;
  2176. BEGIN
  2177. highest := 0;
  2178. FOR i := 0 TO IDTSize - 1 DO
  2179. j := 0;
  2180. WHILE (j < MaxNumHandlers - 1) & intHandler[i, j].valid DO INC(j) END;
  2181. Trace.String("int = "); Trace.Int(i, 3); Trace.String(" # installed handlers = "); Trace.Int(j, 0);
  2182. IF j = 1 THEN
  2183. handler := Unexpected;
  2184. IF intHandler[i, 0].handler = handler THEN
  2185. Trace.String(" default handler installed")
  2186. END
  2187. END;
  2188. Trace.Ln;
  2189. IF j > highest THEN highest := j END;
  2190. END;
  2191. Trace.String("highest # installed handlers = "); Trace.Int(highest, 0); Trace.Ln
  2192. END ListIntHandlers;
  2193. *)
  2194. (* Get control registers. *)
  2195. PROCEDURE GetCR0to4(VAR cr: ARRAY OF LONGINT);
  2196. CODE {SYSTEM.Pentium, SYSTEM.Privileged}
  2197. MOV EDI, [EBP+cr]
  2198. MOV EAX, CR0
  2199. XOR EBX, EBX ; CR1 is not documented
  2200. MOV ECX, CR2
  2201. MOV EDX, CR3
  2202. MOV [EDI], EAX
  2203. MOV [EDI+4], EBX
  2204. MOV [EDI+8], ECX
  2205. MOV [EDI+12], EDX
  2206. MOV EAX, CR4 ; Pentium only
  2207. MOV [EDI+16], EAX
  2208. END GetCR0to4;
  2209. (* GetDR0to7 - Get debug registers. *)
  2210. PROCEDURE GetDR0to7(VAR dr: ARRAY OF LONGINT);
  2211. CODE {SYSTEM.i386, SYSTEM.Privileged}
  2212. MOV EDI, [EBP+dr]
  2213. MOV EAX, DR0
  2214. MOV EBX, DR1
  2215. MOV ECX, DR2
  2216. MOV EDX, DR3
  2217. MOV [EDI], EAX
  2218. MOV [EDI+4], EBX
  2219. MOV [EDI+8], ECX
  2220. MOV [EDI+12], EDX
  2221. XOR EAX, EAX ; DR4 is not documented
  2222. XOR EBX, EBX ; DR5 is not documented
  2223. MOV ECX, DR6
  2224. MOV EDX, DR7
  2225. MOV [EDI+16], EAX
  2226. MOV [EDI+20], EBX
  2227. MOV [EDI+24], ECX
  2228. MOV [EDI+28], EDX
  2229. END GetDR0to7;
  2230. (* GetSegments - Get segment registers. *)
  2231. PROCEDURE GetSegments(VAR ss, es, ds, fs, gs: LONGINT);
  2232. CODE {SYSTEM.i386}
  2233. XOR EAX, EAX
  2234. MOV EBX, [EBP+ss]
  2235. MOV AX, SS
  2236. MOV [EBX], EAX
  2237. MOV EBX, [EBP+es]
  2238. MOV AX, ES
  2239. MOV [EBX], EAX
  2240. MOV EBX, [EBP+ds]
  2241. MOV AX, DS
  2242. MOV [EBX], EAX
  2243. MOV EBX, [EBP+fs]
  2244. MOV AX, FS
  2245. MOV [EBX], EAX
  2246. MOV EBX, [EBP+gs]
  2247. MOV AX, GS
  2248. MOV [EBX], EAX
  2249. END GetSegments;
  2250. (* CLTS - Clear task-switched flag. *)
  2251. PROCEDURE -CLTS;
  2252. CODE {SYSTEM.i386, SYSTEM.Privileged}
  2253. CLTS
  2254. END CLTS;
  2255. (* GetFPU - Store floating-point environment (28 bytes) and mask all floating-point exceptions. *)
  2256. PROCEDURE -GetFPU(adr: ADDRESS);
  2257. CODE {SYSTEM.i386, SYSTEM.FPU}
  2258. POP EBX
  2259. FNSTENV [EBX] ; also masks all exceptions
  2260. FWAIT
  2261. END GetFPU;
  2262. (* CR2 - Get page fault address. *)
  2263. PROCEDURE -CR2* (): ADDRESS;
  2264. CODE {SYSTEM.i386, SYSTEM.Privileged}
  2265. MOV EAX, CR2
  2266. END CR2;
  2267. (** GetExceptionState - Get exception state from interrupt state (and switch on interrupts). *)
  2268. PROCEDURE GetExceptionState* (VAR int: State; VAR exc: ExceptionState);
  2269. VAR id: LONGINT; level0: BOOLEAN;
  2270. BEGIN
  2271. (* save all state information while interrupts are still disabled *)
  2272. exc.halt := -int.INT; id := ID ();
  2273. IF int.INT = PF THEN exc.pf := CR2 () ELSE exc.pf := 0 END;
  2274. GetCR0to4(exc.CR);
  2275. GetDR0to7(exc.DR);
  2276. CLTS; (* ignore task switch flag *)
  2277. IF int.INT = MF THEN
  2278. GetFPU(ADDRESSOF(exc.FPU[0]));
  2279. int.PC := SYSTEM.VAL (ADDRESS, exc.FPU[3]); (* modify PC according to FPU info *)
  2280. (* set halt code according to FPU info *)
  2281. IF 2 IN exc.FPU[1] THEN exc.halt := -32 (* division by 0 *)
  2282. ELSIF 3 IN exc.FPU[1] THEN exc.halt := -33 (* overflow *)
  2283. ELSIF 0 IN exc.FPU[1] THEN exc.halt := -34 (* operation invalid *)
  2284. ELSIF 6 IN exc.FPU[1] THEN exc.halt := -35 (* stack fault *)
  2285. ELSIF 1 IN exc.FPU[1] THEN exc.halt := -36 (* denormalized *)
  2286. ELSIF 4 IN exc.FPU[1] THEN exc.halt := -37 (* underflow *)
  2287. ELSIF 5 IN exc.FPU[1] THEN exc.halt := -38 (* precision loss *)
  2288. ELSE (* {exc.halt = -16} *)
  2289. END
  2290. ELSE
  2291. Fill32(ADDRESSOF(exc.FPU[0]), LEN(exc.FPU)*SIZEOF(SET), 0)
  2292. END;
  2293. SetupFPU;
  2294. level0 := (int.CS MOD 4 = KernelLevel);
  2295. IF int.INT = BP THEN (* breakpoint (HALT) *)
  2296. IF level0 THEN
  2297. exc.halt := int.SP (* get halt code *)
  2298. (* if HALT(MAX(INTEGER)), leave halt code on stack when returning, but not serious problem.*)
  2299. ELSE
  2300. SYSTEM.GET (int.SP, exc.halt); (* get halt code from outer stack *)
  2301. IF exc.halt >= MAX(INTEGER) THEN INC (int.SP, AddressSize) END (* pop halt code from outer stack *)
  2302. END;
  2303. IF exc.halt < MAX(INTEGER) THEN DEC (int.PC) END; (* point to the INT 3 instruction (assume 0CCX, not 0CDX 3X) *)
  2304. ELSIF int.INT = OVF THEN (* overflow *)
  2305. DEC (int.PC) (* point to the INTO instruction (assume 0CEX, not 0CDX 4X) *)
  2306. ELSIF int.INT = PF THEN (* page fault *)
  2307. IF int.PC = 0 THEN (* reset PC to return address of indirect CALL to 0 *)
  2308. IF level0 THEN int.PC := int.SP (* ret adr *) ELSE SYSTEM.GET (int.SP, int.PC) END
  2309. END
  2310. END;
  2311. (* get segment registers *)
  2312. GetSegments(exc.SS, exc.ES, exc.DS, exc.FS, exc.GS);
  2313. IF level0 THEN (* from same level, no ESP, SS etc. on stack *)
  2314. exc.SP := ADDRESSOF(int.SP) (* stack was here when interrupt happened *)
  2315. ELSE (* from outer level *)
  2316. exc.SP := int.SP; exc.SS := int.SS
  2317. END
  2318. END GetExceptionState;
  2319. (* FieldInterrupt and FieldIRQ *)
  2320. (*
  2321. At entry to a Handler procedure the stack is as follows:
  2322. 72 -- .GS
  2323. 68 -- .FS
  2324. 64 -- .DS
  2325. 60 -- .ES ; or haltcode
  2326. -- if (VMBit IN .FLAGS) --
  2327. 56 -- .SS
  2328. 52 -- .ESP ; or haltcode
  2329. -- (VMBit IN .EFLAGS) OR (CS MOD 4 < .CS MOD 4) --
  2330. 48 -- .EFLAGS
  2331. 44 -- .CS
  2332. 40 -- .EIP ; rest popped by IRETD
  2333. 36 -- .ERR/EBP ; pushed by processor or glue code, popped by POP EBP
  2334. 32 -- .INT <-- .ESP0 ; pushed by glue code, popped by POP EBP
  2335. 28 -- .EAX
  2336. 24 -- .ECX
  2337. 20 -- .EDX
  2338. 16 -- .EBX
  2339. 12 -- .ESP0
  2340. 08 -- .BP/ERR ; exchanged by glue code
  2341. 04 -- .ESI
  2342. 00 24 .EDI <--- state: State
  2343. -- 20 ptr
  2344. -- 16 object pointer for DELEGATE
  2345. -- 12 TAG(state)
  2346. -- 08 ADR(state)
  2347. -- 04 EIP' (RET to FieldInterrupt)
  2348. -- 00 EBP' <-- EBP
  2349. -- -- locals <-- ESP
  2350. *)
  2351. PROCEDURE FieldInterrupt;
  2352. CODE {SYSTEM.i386} ; 3 bytes implicit code skipped: PUSH EBP; MOV EBP, ESP
  2353. entry:
  2354. PUSHAD ; save all registers (EBP = error code)
  2355. LEA EBP, [ESP+36] ; procedure link (for correct tracing of interrupt procedures)
  2356. MOV EBX, [ESP+32] ; EBX = int number
  2357. IMUL EBX, EBX, MaxNumHandlers
  2358. IMUL EBX, EBX, 12
  2359. LEA EAX, intHandler
  2360. ADD EAX, EBX ; address of intHandler[int, 0]
  2361. loop: ; call all handlers for the interrupt
  2362. MOV ECX, ESP
  2363. PUSH EAX ; save ptr for linked list
  2364. PUSH DWORD [EAX+8] ; delegate
  2365. PUSH stateTag ; TAG(state)
  2366. PUSH ECX ; ADR(state)
  2367. CALL DWORD [EAX+4] ; call handler
  2368. ADD ESP, 12
  2369. CLI ; handler may have re-enabled interrupts
  2370. POP EAX
  2371. ADD EAX, 12
  2372. MOV EBX, [EAX]
  2373. CMP EBX, 0
  2374. JNE loop
  2375. POPAD ; now EBP = error code
  2376. POP EBP ; now EBP = INT
  2377. POP EBP ; now EBP = caller EBP
  2378. IRETD
  2379. END FieldInterrupt;
  2380. PROCEDURE FieldIRQ;
  2381. CODE {SYSTEM.i386} ; 3 bytes implicit code skipped: PUSH EBP; MOV EBP, ESP
  2382. entry:
  2383. PUSHAD ; save all registers (EBP = error code)
  2384. LEA EBP, [ESP+36] ; procedure link (for correct tracing of interrupt procedures)
  2385. ; PUSH [ESP+32] ; int number
  2386. ; CALL traceInterruptIn
  2387. MOV EBX, [ESP+32] ; EBX = int number
  2388. CMP BL, IRQ0 + 7 ; if irq=7 then check for spurious interrupt on master
  2389. JNE skip1
  2390. MOV AL, 0BH
  2391. OUT IntA0, AL
  2392. IN AL, IntA0
  2393. BT AX, 7
  2394. JNC end
  2395. skip1:
  2396. CMP BL, IRQ8 + 7 ; if irq=15 then check for spurious interrupt on slave
  2397. JNE skip2
  2398. MOV AL, 0BH
  2399. OUT IntB0, AL
  2400. IN AL, IntB0
  2401. BT AX, 7
  2402. MOV AL, 20H
  2403. JNC irq0 ; acknowledge IRQ on master
  2404. skip2:
  2405. IMUL EBX, EBX, MaxNumHandlers
  2406. IMUL EBX, EBX, 12
  2407. LEA EAX, intHandler
  2408. ADD EAX, EBX ; address of intHandler[int, 0]
  2409. loop: ; call all handlers for the interrupt
  2410. MOV ECX, ESP
  2411. PUSH EAX ; save ptr for linked list
  2412. PUSH DWORD [EAX+8] ; delegate
  2413. PUSH stateTag ; TAG(state)
  2414. PUSH ECX ; ADR(state)
  2415. CALL DWORD [EAX+4] ; call handler
  2416. ADD ESP, 12
  2417. CLI ; handler may have re-enabled interrupts
  2418. POP EAX
  2419. ADD EAX, 12
  2420. MOV EBX, [EAX]
  2421. CMP EBX, 0
  2422. JNE loop
  2423. ; PUSH [ESP+32] ; int number
  2424. ; CALL traceInterruptOut
  2425. ; ack interrupt
  2426. MOV AL, 20H ; undoc PC ed. 2 p. 1018
  2427. CMP BYTE [ESP+32], IRQ8
  2428. JB irq0
  2429. OUT IntB0, AL ; 2nd controller
  2430. irq0:
  2431. OUT IntA0, AL ; 1st controller
  2432. end:
  2433. POPAD ; now EBP = error code
  2434. POP EBP ; now EBP = INT
  2435. POP EBP ; now EBP = caller EBP
  2436. IRETD
  2437. END FieldIRQ;
  2438. (* LoadIDT - Load interrupt descriptor table *)
  2439. PROCEDURE LoadIDT(base: ADDRESS; size: SIZE);
  2440. CODE {SYSTEM.i386, SYSTEM.Privileged}
  2441. SHL DWORD [EBP+size], 16
  2442. MOV EBX, 2
  2443. LIDT [EBP+EBX+size]
  2444. END LoadIDT;
  2445. (** Init - Initialize interrupt handling. Called once during initialization. Uses NEW. *)
  2446. (*
  2447. The glue code is:
  2448. entry0: ; entry point for interrupts without error code
  2449. PUSH 0 ; fake error code
  2450. entry1: ; entry point for interrupts with error code
  2451. XCHG [ESP], EBP ; exchange error code and caller EBP
  2452. PUSH int ; interrupt number
  2453. JMP FieldInterrupt:entry
  2454. *)
  2455. PROCEDURE InitInterrupts*;
  2456. VAR a: ADDRESS; o, i: LONGINT; p: PROCEDURE; mask: SET;
  2457. BEGIN
  2458. stateTag := SYSTEM.TYPECODE(State);
  2459. (* initialise 8259 interrupt controller chips *)
  2460. Portout8 (IntA0, 11X); Portout8 (IntA1, CHR(IRQ0));
  2461. Portout8 (IntA1, 4X); Portout8 (IntA1, 1X); Portout8 (IntA1, 0FFX);
  2462. Portout8 (IntB0, 11X); Portout8 (IntB1, CHR(IRQ8));
  2463. Portout8 (IntB1, 2X); Portout8 (IntB1, 1X); Portout8 (IntB1, 0FFX);
  2464. (* enable interrupts from second interrupt controller, chained to line 2 of controller 1 *)
  2465. Portin8(IntA1, SYSTEM.VAL (CHAR, mask));
  2466. EXCL(mask, IRQ2-IRQ0);
  2467. Portout8 (IntA1, SYSTEM.VAL (CHAR, mask));
  2468. (*
  2469. NEW(default); default.next := NIL; default.handler := Unexpected;
  2470. *)
  2471. (*
  2472. newrec (SYSTEM.VAL (ANY, default), SYSTEM.TYPECODE (HandlerList));
  2473. *)
  2474. (* default.next := NIL; default.handler := Unexpected; *)
  2475. default.valid := TRUE; default.handler := Unexpected;
  2476. FOR i := 0 TO IDTSize-1 DO (* set up glue code *)
  2477. intHandler[i, 0] := default; o := 0;
  2478. (* PUSH error code, int num & regs *)
  2479. glue[i][o] := 6AX; INC (o); glue[i][o] := 0X; INC (o); (* PUSH 0 ; {o = 2} *)
  2480. glue[i][o] := 87X; INC (o); glue[i][o] := 2CX; INC (o); glue[i][o] := 24X; INC (o); (* XCHG [ESP], EBP *)
  2481. glue[i][o] := 6AX; INC (o); glue[i][o] := CHR(i); INC (o); (* PUSH i *)
  2482. IF (i >= IRQ0) & (i <= IRQ15) THEN p := FieldIRQ ELSE p := FieldInterrupt END;
  2483. a := SYSTEM.VAL (ADDRESS, p) + 3 - (ADDRESSOF(glue[i][o]) + 5);
  2484. glue[i][o] := 0E9X; INC (o); (* JMP FieldInterrupt.entry *)
  2485. SYSTEM.PUT32 (ADDRESSOF(glue[i][o]), a);
  2486. (* set up IDT entry *)
  2487. IF (i > 31) OR ~(i IN {8, 10..14, 17}) THEN a := ADDRESSOF(glue[i][0]) (* include PUSH 0 *)
  2488. ELSE a := ADDRESSOF(glue[i][2]) (* skip PUSH 0, processor supplies error code *)
  2489. END;
  2490. idt[i].offsetBits0to15 := INTEGER(a MOD 10000H);
  2491. (* IRQ0 must be at level 0 because time slicing in Objects needs to set interrupted process' ESP *)
  2492. (* all irq's are handled at level 0, because of priority experiment in Objects.FieldIRQ *)
  2493. IF TRUE (* (i < IRQ0) OR (i > IRQ15) OR (i = IRQ0) OR (i = IRQ0 + 1)*) THEN
  2494. idt[i].selector := KernelCodeSel; (* gdt[1] -> non-conformant segment => level 0 *)
  2495. idt[i].gateType := SYSTEM.VAL (INTEGER, 0EE00H) (* present, DPL 3, system, 386 interrupt *)
  2496. ELSE (* {IRQ0..IRQ15} - {IRQ0 + 1} *)
  2497. idt[i].selector := UserCodeSel; (* gdt[3] -> conformant segment => level 0 or 3 *)
  2498. idt[i].gateType := SYSTEM.VAL (INTEGER, 08E00H) (* present, DPL 0, system, 386 interrupt *)
  2499. END;
  2500. idt[i].offsetBits16to31 := INTEGER(a DIV 10000H)
  2501. END
  2502. END InitInterrupts;
  2503. (** Start - Start handling interrupts. Every processor calls this once during initialization. *)
  2504. PROCEDURE Start*;
  2505. BEGIN
  2506. ASSERT(default.valid); (* initialized *)
  2507. LoadIDT(ADDRESSOF(idt[0]), SIZEOF(IDT)-1);
  2508. Sti
  2509. END Start;
  2510. (* Return current instruction pointer *)
  2511. PROCEDURE CurrentPC* (): ADDRESS;
  2512. CODE {SYSTEM.i386}
  2513. MOV EAX, [EBP+4]
  2514. END CurrentPC;
  2515. (* Return current frame pointer *)
  2516. PROCEDURE -CurrentBP* (): ADDRESS;
  2517. CODE {SYSTEM.i386}
  2518. MOV EAX, EBP
  2519. END CurrentBP;
  2520. (* Set current frame pointer *)
  2521. PROCEDURE -SetBP* (bp: ADDRESS);
  2522. CODE {SYSTEM.i386}
  2523. POP EBP
  2524. END SetBP;
  2525. (* Return current stack pointer *)
  2526. PROCEDURE -CurrentSP* (): ADDRESS;
  2527. CODE {SYSTEM.i386}
  2528. MOV EAX, ESP
  2529. END CurrentSP;
  2530. (* Set current stack pointer *)
  2531. PROCEDURE -SetSP* (sp: ADDRESS);
  2532. CODE {SYSTEM.i386}
  2533. POP ESP
  2534. END SetSP;
  2535. (* Save minimal FPU state (for synchronous process switches). *)
  2536. (* saving FPU state takes 108 bytes memory space, no alignment required *)
  2537. PROCEDURE -FPUSaveMin* (VAR state: SSEState);
  2538. CODE {SYSTEM.i386, SYSTEM.FPU}
  2539. POP EAX
  2540. FNSTCW [EAX] ; control word is at state[0]
  2541. FWAIT
  2542. END FPUSaveMin;
  2543. (* Restore minimal FPU state. *)
  2544. PROCEDURE -FPURestoreMin* (VAR state: SSEState);
  2545. CODE {SYSTEM.i386, SYSTEM.FPU}
  2546. POP EAX
  2547. FLDCW [EAX] ; control word is at state[0]
  2548. END FPURestoreMin;
  2549. (* Save full FPU state (for asynchronous process switches). *)
  2550. PROCEDURE -FPUSaveFull* (VAR state: SSEState);
  2551. CODE {SYSTEM.i386, SYSTEM.FPU}
  2552. POP EAX
  2553. FSAVE [EAX]
  2554. END FPUSaveFull;
  2555. (* Restore full FPU state. *)
  2556. PROCEDURE -FPURestoreFull* (VAR state: SSEState);
  2557. CODE {SYSTEM.i386, SYSTEM.FPU}
  2558. POP EAX
  2559. FRSTOR [EAX]
  2560. END FPURestoreFull;
  2561. (* stateAdr must be the address of a 16-byte aligned memory area of at least 512 bytes *)
  2562. PROCEDURE -SSESaveFull* (stateAdr: ADDRESS);
  2563. CODE {SYSTEM.P2, SYSTEM.FPU, SYSTEM.SSE2}
  2564. POP EAX
  2565. FXSAVE [EAX]
  2566. FWAIT
  2567. FNINIT
  2568. END SSESaveFull;
  2569. PROCEDURE -SSERestoreFull* (stateAdr: ADDRESS);
  2570. CODE {SYSTEM.P2, SYSTEM.FPU, SYSTEM.SSE2}
  2571. POP EAX
  2572. FXRSTOR [EAX]
  2573. END SSERestoreFull;
  2574. PROCEDURE -SSESaveMin* (stateAdr: ADDRESS);
  2575. CODE {SYSTEM.i386, SYSTEM.FPU, SYSTEM.SSE2}
  2576. POP EAX
  2577. FNSTCW [EAX]
  2578. FWAIT
  2579. STMXCSR [EAX+24]
  2580. END SSESaveMin;
  2581. PROCEDURE -SSERestoreMin* (stateAdr: ADDRESS);
  2582. CODE {SYSTEM.i386, SYSTEM.FPU, SYSTEM.SSE2}
  2583. POP EAX
  2584. FLDCW [EAX]
  2585. LDMXCSR [EAX+24]
  2586. END SSERestoreMin;
  2587. (* Helper functions for SwitchTo. *)
  2588. PROCEDURE -PushState* (CONST state: State);
  2589. CODE {SYSTEM.i386}
  2590. POP EAX ; ADR (state)
  2591. POP EBX ; TYPECODE (state), ignored
  2592. PUSH DWORD [EAX+48] ; FLAGS
  2593. PUSH DWORD [EAX+44] ; CS
  2594. PUSH DWORD [EAX+40] ; PC
  2595. PUSH DWORD [EAX+28] ; EAX
  2596. PUSH DWORD [EAX+24] ; ECX
  2597. PUSH DWORD [EAX+20] ; EDX
  2598. PUSH DWORD [EAX+16] ; EBX
  2599. PUSH DWORD 0 ; ignored
  2600. PUSH DWORD [EAX+36] ; BP
  2601. PUSH DWORD [EAX+4] ; ESI
  2602. PUSH DWORD [EAX+0] ; EDI
  2603. END PushState;
  2604. PROCEDURE -JumpState*;
  2605. CODE {SYSTEM.i386}
  2606. POPAD
  2607. IRETD
  2608. END JumpState;
  2609. PROCEDURE -CallLocalIPC*;
  2610. CODE {SYSTEM.i386}
  2611. INT MPIPCLocal
  2612. END CallLocalIPC;
  2613. PROCEDURE -HLT*;
  2614. CODE {SYSTEM.i386, SYSTEM.Privileged}
  2615. STI ; (* required according to ACPI 2.0 spec section 8.2.2 *)
  2616. HLT
  2617. END HLT;
  2618. PROCEDURE -GetEAX*(): LONGINT;
  2619. CODE{SYSTEM.i386}
  2620. END GetEAX;
  2621. PROCEDURE -GetECX*(): LONGINT;
  2622. CODE{SYSTEM.i386}
  2623. MOV EAX,ECX
  2624. END GetECX;
  2625. PROCEDURE -GetESI*(): LONGINT;
  2626. CODE{SYSTEM.i386}
  2627. MOV EAX,ESI
  2628. END GetESI;
  2629. PROCEDURE -GetEDI*(): LONGINT;
  2630. CODE{SYSTEM.i386}
  2631. MOV EAX,EDI
  2632. END GetEDI;
  2633. PROCEDURE -SetEAX*(n: LONGINT);
  2634. CODE{SYSTEM.i386} POP EAX
  2635. END SetEAX;
  2636. PROCEDURE -SetEBX*(n: LONGINT);
  2637. CODE{SYSTEM.i386}
  2638. POP EBX
  2639. END SetEBX;
  2640. PROCEDURE -SetECX*(n: LONGINT);
  2641. CODE{SYSTEM.i386}
  2642. POP ECX
  2643. END SetECX;
  2644. PROCEDURE -SetEDX*(n: LONGINT);
  2645. CODE{SYSTEM.i386}
  2646. POP EDX
  2647. END SetEDX;
  2648. PROCEDURE -SetESI*(n: LONGINT);
  2649. CODE{SYSTEM.i386}
  2650. POP ESI
  2651. END SetESI;
  2652. PROCEDURE -SetEDI*(n: LONGINT);
  2653. CODE{SYSTEM.i386}
  2654. POP EDI
  2655. END SetEDI;
  2656. PROCEDURE Portin8*(port: LONGINT; VAR val: CHAR);
  2657. CODE{SYSTEM.i386}
  2658. MOV EDX,[EBP+port]
  2659. IN AL, DX
  2660. MOV ECX, [EBP+val]
  2661. MOV [ECX], AL
  2662. END Portin8;
  2663. PROCEDURE Portin16*(port: LONGINT; VAR val: INTEGER);
  2664. CODE{SYSTEM.i386}
  2665. MOV EDX,[EBP+port]
  2666. IN AX, DX
  2667. MOV ECX, [EBP+val]
  2668. MOV [ECX], AX
  2669. END Portin16;
  2670. PROCEDURE Portin32*(port: LONGINT; VAR val: LONGINT);
  2671. CODE{SYSTEM.i386}
  2672. MOV EDX,[EBP+port]
  2673. IN EAX, DX
  2674. MOV ECX, [EBP+val]
  2675. MOV [ECX], EAX
  2676. END Portin32;
  2677. PROCEDURE Portout8*(port: LONGINT; val: CHAR);
  2678. CODE{SYSTEM.i386}
  2679. MOV AL,[EBP+val]
  2680. MOV EDX,[EBP+port]
  2681. OUT DX,AL
  2682. END Portout8;
  2683. PROCEDURE Portout16*(port: LONGINT; val: INTEGER);
  2684. CODE{SYSTEM.i386}
  2685. MOV AX,[EBP+val]
  2686. MOV EDX,[EBP+port]
  2687. OUT DX,AX
  2688. END Portout16;
  2689. PROCEDURE Portout32*(port: LONGINT; val: LONGINT);
  2690. CODE{SYSTEM.i386}
  2691. MOV EAX,[EBP+val]
  2692. MOV EDX,[EBP+port]
  2693. OUT DX,EAX
  2694. END Portout32;
  2695. (* Kernel mode upcall to perform global processor halt. *)
  2696. PROCEDURE KernelCallHLT*;
  2697. CODE {SYSTEM.i386}
  2698. MOV EAX, 2
  2699. INT MPKC
  2700. END KernelCallHLT;
  2701. (* Parse processor entry in MP config table. *)
  2702. PROCEDURE CPUID1*(): LONGINT;
  2703. CODE {SYSTEM.i386, SYSTEM.Pentium}
  2704. MOV EAX, 1
  2705. CPUID
  2706. MOV EAX, EBX
  2707. END CPUID1;
  2708. (** -- Atomic operations -- *)
  2709. (** Atomic INC(x). *)
  2710. PROCEDURE -AtomicInc*(VAR x: LONGINT);
  2711. CODE {SYSTEM.i386}
  2712. POP EAX
  2713. LOCK
  2714. INC DWORD [EAX]
  2715. END AtomicInc;
  2716. (** Atomic DEC(x). *)
  2717. PROCEDURE -AtomicDec*(VAR x: LONGINT);
  2718. CODE {SYSTEM.i386}
  2719. POP EAX
  2720. LOCK
  2721. DEC DWORD [EAX]
  2722. END AtomicDec;
  2723. (** Atomic EXCL. *)
  2724. PROCEDURE AtomicExcl* (VAR s: SET; bit: LONGINT);
  2725. CODE {SYSTEM.i386}
  2726. MOV EAX, [EBP+bit]
  2727. MOV EBX, [EBP+s]
  2728. LOCK
  2729. BTR [EBX], EAX
  2730. END AtomicExcl;
  2731. (** Atomic INC(x, y). *)
  2732. PROCEDURE -AtomicAdd*(VAR x: LONGINT; y: LONGINT);
  2733. CODE {SYSTEM.i386}
  2734. POP EBX
  2735. POP EAX
  2736. LOCK
  2737. ADD DWORD [EAX], EBX
  2738. END AtomicAdd;
  2739. (** Atomic test-and-set. Set x = TRUE and return old value of x. *)
  2740. PROCEDURE -AtomicTestSet*(VAR x: BOOLEAN): BOOLEAN;
  2741. CODE {SYSTEM.i386}
  2742. POP EBX
  2743. MOV AL, 1
  2744. XCHG [EBX], AL
  2745. END AtomicTestSet;
  2746. (* Atomic compare-and-swap. Set x = new if x = old and return old value of x *)
  2747. PROCEDURE -AtomicCAS* (VAR x: LONGINT; old, new: LONGINT): LONGINT;
  2748. CODE {SYSTEM.i386}
  2749. POP EBX ; new
  2750. POP EAX ; old
  2751. POP ECX ; address of x
  2752. DB 0F0X, 00FX, 0B1X, 019X ; LOCK CMPXCHG [ECX], EBX; atomicly compare x with old and set it to new if equal
  2753. END AtomicCAS;
  2754. PROCEDURE CopyState* (CONST from: State; VAR to: State);
  2755. BEGIN
  2756. to.EDI := from.EDI; to.ESI := from.ESI;
  2757. to.EBX := from.EBX; to.EDX := from.EDX;
  2758. to.ECX := from.ECX; to.EAX := from.EAX;
  2759. to.BP := from.BP; to.PC := from.PC;
  2760. to.CS := from.CS; to.FLAGS := from.FLAGS;
  2761. to.SP := from.SP
  2762. END CopyState;
  2763. (* function returning the number of processors that are available to Aos *)
  2764. PROCEDURE NumberOfProcessors*( ): LONGINT;
  2765. BEGIN
  2766. RETURN numberOfProcessors
  2767. END NumberOfProcessors;
  2768. (*! non portable code, for native Aos only *)
  2769. PROCEDURE SetNumberOfProcessors*(num: LONGINT);
  2770. BEGIN
  2771. numberOfProcessors := num;
  2772. END SetNumberOfProcessors;
  2773. (* function for changing byte order *)
  2774. PROCEDURE ChangeByteOrder* (n: LONGINT): LONGINT;
  2775. CODE { SYSTEM.Pentium }
  2776. MOV EAX, [EBP+n] ; load n in eax
  2777. BSWAP EAX ; swap byte order
  2778. END ChangeByteOrder;
  2779. (* Write a value to the APIC. *)
  2780. PROCEDURE ApicPut(ofs: SIZE; val: SET);
  2781. BEGIN
  2782. IF TraceApic THEN
  2783. Acquire(TraceOutput);
  2784. Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" := "); Trace.Hex(SYSTEM.VAL (LONGINT, val), 9); Trace.Ln;
  2785. Release(TraceOutput);
  2786. END;
  2787. SYSTEM.PUT(localAPIC+ofs, SYSTEM.VAL (LONGINT, val))
  2788. END ApicPut;
  2789. (* Read a value from the APIC. *)
  2790. PROCEDURE ApicGet(ofs: SIZE): SET;
  2791. VAR val: SET;
  2792. BEGIN
  2793. SYSTEM.GET(localAPIC+ofs, SYSTEM.VAL (LONGINT, val));
  2794. IF TraceApic THEN
  2795. Acquire(TraceOutput);
  2796. Trace.String(" ("); Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" = ");
  2797. Trace.Hex(SYSTEM.VAL(LONGINT, val), 9); Trace.StringLn (")");
  2798. Release(TraceOutput);
  2799. END;
  2800. RETURN val
  2801. END ApicGet;
  2802. (* Handle interprocessor interrupt. During upcall interrupts are off and processor is at kernel level. *)
  2803. PROCEDURE HandleIPC(VAR state: State);
  2804. VAR id: LONGINT;
  2805. BEGIN
  2806. id := ID();
  2807. IF ~TraceProcessor OR (id IN allProcessors) THEN
  2808. IF FrontBarrier IN ipcFlags THEN
  2809. AtomicExcl(ipcFrontBarrier, id);
  2810. WHILE ipcFrontBarrier # {} DO SpinHint END (* wait for all *)
  2811. END;
  2812. ipcHandler(id, state, ipcMessage); (* interrupts off and at kernel level *)
  2813. IF BackBarrier IN ipcFlags THEN
  2814. AtomicExcl(ipcBackBarrier, id);
  2815. WHILE ipcBackBarrier # {} DO SpinHint END (* wait for all *)
  2816. END;
  2817. AtomicExcl(ipcBusy, id) (* ack - after this point we do not access shared variables for this broadcast *)
  2818. END;
  2819. IF state.INT = MPIPC THEN
  2820. ApicPut(0B0H, {}) (* EOI (not needed for NMI or local call, see 7.4.10.6) *)
  2821. END
  2822. END HandleIPC;
  2823. (* Handle MP error interrupt. *)
  2824. PROCEDURE HandleError(VAR state: State);
  2825. VAR esr: SET; (* int: LONGINT; *)
  2826. BEGIN
  2827. (* int := state.INT; *) esr := ApicGet(280H);
  2828. ApicPut(0B0H, {}); (* EOI *)
  2829. HALT(2302) (* SMP error *)
  2830. END HandleError;
  2831. (* Interprocessor broadcasting. Lock level SMP. *)
  2832. PROCEDURE LocalBroadcast(h: BroadcastHandler; msg: Message; flags: SET);
  2833. BEGIN
  2834. IF Self IN flags THEN ipcBusy := allProcessors
  2835. ELSE ipcBusy := allProcessors - {ID()}
  2836. END;
  2837. ipcFrontBarrier := ipcBusy; ipcBackBarrier := ipcBusy;
  2838. ipcHandler := h; ipcMessage := msg; ipcFlags := flags;
  2839. IF numProcessors > 1 THEN (* ICR: Fixed, Physical, Edge, All Excl. Self, INT IPC *)
  2840. ApicPut(300H, {18..19} + SYSTEM.VAL (SET, MPIPC));
  2841. (*REPEAT UNTIL ~(12 IN ApicGet(300H))*) (* wait for send to finish *)
  2842. END;
  2843. IF Self IN flags THEN CallLocalIPC END; (* "send" to self also *)
  2844. WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack before we release locks *)
  2845. ipcHandler := NIL; ipcMessage := NIL (* no race, because we have IPC lock *)
  2846. END LocalBroadcast;
  2847. (** Broadcast an operation to all processors. *)
  2848. PROCEDURE Broadcast* (h: BroadcastHandler; msg: Message; flags: SET);
  2849. BEGIN
  2850. Acquire(Processors);
  2851. LocalBroadcast(h, msg, flags);
  2852. Release(Processors)
  2853. END Broadcast;
  2854. (* Start all halted processors. *) (* Lock level Processors. *)
  2855. PROCEDURE StartAll*;
  2856. BEGIN
  2857. Acquire(Processors); (* wait for any pending Stops to finish, and disallow further Stops *)
  2858. ASSERT(stopped & (ipcBusy = {}));
  2859. ipcBusy := allProcessors - {ID()};
  2860. stopped := FALSE;
  2861. WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack *)
  2862. Release(Processors)
  2863. END StartAll;
  2864. PROCEDURE HandleFlushTLB(id: LONGINT; CONST state: State; msg: Message);
  2865. CODE {SYSTEM.i386, SYSTEM.Privileged}
  2866. MOV EAX, CR3
  2867. MOV CR3, EAX
  2868. END HandleFlushTLB;
  2869. (** Flush the TLBs on all processors (multiprocessor-safe). *)
  2870. PROCEDURE GlobalFlushTLB;
  2871. BEGIN
  2872. Acquire(Processors);
  2873. LocalBroadcast(HandleFlushTLB, NIL, {Self, FrontBarrier, BackBarrier});
  2874. Release(Processors)
  2875. END GlobalFlushTLB;
  2876. PROCEDURE HandleFlushCache(id: LONGINT; CONST state: State; msg: Message);
  2877. CODE {SYSTEM.Pentium, SYSTEM.Privileged}
  2878. WBINVD ; write back and invalidate internal cache and initiate write back and invalidation of external caches
  2879. END HandleFlushCache;
  2880. (** Flush the caches on all processors (multiprocessor-safe). *)
  2881. PROCEDURE GlobalFlushCache;
  2882. BEGIN
  2883. Acquire(Processors);
  2884. LocalBroadcast(HandleFlushCache, NIL, {Self, FrontBarrier, BackBarrier});
  2885. Release(Processors)
  2886. END GlobalFlushCache;
  2887. (* Activate the garbage collector in single-processor mode. Lock level ALL. *)
  2888. PROCEDURE HandleKernelCall(VAR state: State);
  2889. BEGIN (* level 0 *)
  2890. IF IFBit IN state.FLAGS THEN
  2891. Sti (* re-enable interrupts *)
  2892. END;
  2893. CASE state.EAX OF (* see KernelCall* *)
  2894. |2: (* HLT *)
  2895. IF IFBit IN state.FLAGS THEN
  2896. HLT
  2897. END
  2898. END
  2899. END HandleKernelCall;
  2900. (*
  2901. (** Activate the garbage collector immediately (multiprocessor-safe). *)
  2902. PROCEDURE GlobalGC*;
  2903. BEGIN
  2904. Acquire(Processors);
  2905. gcBarrier := allProcessors;
  2906. LocalBroadcast(HandleGC, NIL, {Self, BackBarrier});
  2907. Release(Processors);
  2908. END GlobalGC;
  2909. *)
  2910. PROCEDURE HandleGetTimestamp(id: LONGINT; CONST state: State; msg: Message);
  2911. BEGIN
  2912. time[id] := GetTimer()
  2913. END HandleGetTimestamp;
  2914. (** Get timestamp on all processors (for testing). *)
  2915. PROCEDURE GlobalGetTimestamp;
  2916. VAR t: TimeArray; i: LONGINT; mean, var, n: HUGEINT;
  2917. BEGIN
  2918. Acquire(Processors);
  2919. LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier});
  2920. LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier});
  2921. t := time;
  2922. Release(Processors);
  2923. Acquire (TraceOutput);
  2924. FOR i := 0 TO numProcessors-1 DO Trace.HIntHex(t[i], 17) END;
  2925. IF numProcessors > 1 THEN
  2926. mean := 0;
  2927. n := numProcessors;
  2928. FOR i := 0 TO numProcessors-1 DO
  2929. INC (mean, t[i])
  2930. END;
  2931. mean := DivH(mean, n);
  2932. var := 0;
  2933. FOR i := 0 TO numProcessors-1 DO
  2934. n := t[i] - mean;
  2935. INC (var, MulH(n, n))
  2936. END;
  2937. var := DivH(var, numProcessors - 1);
  2938. Trace.String(" mean="); Trace.HIntHex(mean, 16);
  2939. Trace.String(" var="); Trace.HIntHex(var, 16);
  2940. Trace.String(" var="); Trace.Int(SHORT (var), 1);
  2941. Trace.String(" diff:");
  2942. FOR i := 0 TO numProcessors-1 DO
  2943. Trace.Int(SHORT (t[i] - mean), 1); Trace.Char(" ")
  2944. END
  2945. END;
  2946. Release (TraceOutput);
  2947. END GlobalGetTimestamp;
  2948. PROCEDURE ParseProcessor(adr: ADDRESS);
  2949. VAR id, idx, signature, family, feat, ver, log: LONGINT; flags: SET; string : ARRAY 8 OF CHAR;
  2950. BEGIN
  2951. SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, flags));
  2952. id := ASH(SYSTEM.VAL (LONGINT, flags * {8..15}), -8);
  2953. ver := ASH(SYSTEM.VAL (LONGINT, flags * {16..23}), -16);
  2954. SYSTEM.GET (adr+4, signature);
  2955. family := ASH(signature, -8) MOD 10H;
  2956. SYSTEM.GET (adr+8, feat);
  2957. idx := -1;
  2958. IF (family # 0) & (signature MOD 1000H # 0FFFH) & (24 IN flags) & (id < LEN(idMap)) & (idMap[id] = -1) THEN
  2959. IF 25 IN flags THEN idx := 0 (* boot processor *)
  2960. ELSIF numProcessors < maxProcessors THEN idx := numProcessors; INC(numProcessors)
  2961. ELSE (* skip *)
  2962. END
  2963. END;
  2964. IF idx # -1 THEN apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx)) END;
  2965. Trace.String(" Processor "); Trace.Int(id, 1);
  2966. Trace.String(", APIC"); Trace.Hex(ver, -3);
  2967. Trace.String(", ver "); Trace.Int(family, 1);
  2968. Trace.Char("."); Trace.Int(ASH(signature, -4) MOD 10H, 1);
  2969. Trace.Char("."); Trace.Int(signature MOD 10H, 1);
  2970. Trace.String(", features "); Trace.Hex(feat, 9);
  2971. Trace.String(", ID "); Trace.Int(idx, 1);
  2972. IF (threadsPerCore > 1) THEN Trace.String(" ("); Trace.Int(threadsPerCore, 0); Trace.String(" threads)"); END;
  2973. Trace.Ln;
  2974. IF (threadsPerCore > 1) THEN
  2975. GetConfig("DisableHyperthreading", string);
  2976. IF (string = "1") THEN
  2977. Trace.String("Machine: Hyperthreading disabled."); Trace.Ln;
  2978. RETURN;
  2979. END;
  2980. log := (LSH(CPUID1(), -16) MOD 256);
  2981. WHILE log > 1 DO
  2982. INC(id); DEC(log);
  2983. IF numProcessors < maxProcessors THEN
  2984. idx := numProcessors; INC(numProcessors);
  2985. apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx))
  2986. END
  2987. END
  2988. END
  2989. END ParseProcessor;
  2990. (* Parse MP configuration table. *)
  2991. PROCEDURE ParseMPConfig;
  2992. VAR adr, x: ADDRESS; i: LONGINT; entries: INTEGER; ch: CHAR; s: SET; str: ARRAY 8 OF CHAR;
  2993. BEGIN
  2994. localAPIC := 0; numProcessors := 1; allProcessors := {0};
  2995. FOR i := 0 TO LEN(idMap)-1 DO idMap[i] := -1 END; (* all unassigned *)
  2996. FOR i := 0 TO MaxCPU-1 DO started[i] := FALSE END;
  2997. adr := configMP;
  2998. GetConfig("MaxProcs", str);
  2999. i := 0; maxProcessors := StrToInt(i, str);
  3000. IF maxProcessors = 0 THEN maxProcessors := MaxCPU END;
  3001. IF (maxProcessors > 0) & (adr # NilAdr) THEN (* MP config table present, possible multi-processor *)
  3002. Trace.String("Machine: Intel MP Spec "); Trace.Int(ORD(revMP) DIV 10H + 1, 1);
  3003. Trace.Char("."); Trace.Int(ORD(revMP) MOD 10H, 1); Trace.Ln;
  3004. IF TraceVerbose THEN
  3005. IF ODD(ASH(ORD(featureMP[1]), -7)) THEN
  3006. Trace.StringLn (" PIC mode");
  3007. (* to do: enable SymIO *)
  3008. ELSE
  3009. Trace.StringLn (" Virtual wire mode");
  3010. END
  3011. END;
  3012. IF featureMP[0] # 0X THEN (* pre-defined configuration *)
  3013. Trace.String(" Default config "); Trace.Int(ORD(featureMP[0]), 1); Trace.Ln;
  3014. localAPIC := 0FEE00000H;
  3015. apicVer[0] := 0; apicVer[1] := 0
  3016. ELSE (* configuration defined in table *)
  3017. MapPhysical(adr, 68*1024, adr); (* 64K + 4K header *)
  3018. SYSTEM.GET (adr, x); ASSERT(x = 504D4350H); (* check signature *)
  3019. SYSTEM.GET (adr+4, x); (* length *)
  3020. ASSERT(ChecksumMP(adr, x MOD 10000H) = 0);
  3021. IF TraceVerbose THEN
  3022. Trace.String(" ID: ");
  3023. FOR x := adr+8 TO adr+27 DO
  3024. SYSTEM.GET (x, ch); Trace.Char(ch);
  3025. IF x = adr+15 THEN Trace.Char(" ") END
  3026. END;
  3027. Trace.Ln
  3028. END;
  3029. localAPIC := 0; SYSTEM.GET(adr+36, SYSTEM.VAL (LONGINT, localAPIC));
  3030. IF TraceVerbose THEN Trace.String(" Local APIC:"); Trace.Address (localAPIC); Trace.Ln END;
  3031. SYSTEM.GET (adr+34, entries);
  3032. INC(adr, 44); (* skip header *)
  3033. WHILE entries > 0 DO
  3034. SYSTEM.GET (adr, ch); (* type *)
  3035. CASE ORD(ch) OF
  3036. 0: (* processor *)
  3037. ParseProcessor(adr);
  3038. INC(adr, 20)
  3039. |1: (* bus *)
  3040. IF TraceVerbose THEN
  3041. SYSTEM.GET (adr+1, ch);
  3042. Trace.String(" Bus "); Trace.Int(ORD(ch), 1); Trace.String(": ");
  3043. FOR x := adr+2 TO adr+7 DO SYSTEM.GET (x, ch); Trace.Char(ch) END;
  3044. Trace.Ln
  3045. END;
  3046. INC(adr, 8)
  3047. |2: (* IO APIC *)
  3048. IF TraceVerbose THEN
  3049. SYSTEM.GET (adr+1, ch); Trace.String(" IO APIC ID:"); Trace.Hex(ORD(ch), -3);
  3050. SYSTEM.GET (adr+2, ch); Trace.String(", version "); Trace.Int(ORD(ch), 1);
  3051. SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, s)); IF ~(24 IN s) THEN Trace.String(" (disabled)") END;
  3052. Trace.Ln
  3053. END;
  3054. INC(adr, 8)
  3055. |3: (* IO interrupt assignment *)
  3056. INC(adr, 8)
  3057. |4: (* Local interrupt assignment *)
  3058. INC(adr, 8)
  3059. END; (* CASE *)
  3060. DEC(entries)
  3061. END
  3062. END
  3063. END;
  3064. IF localAPIC = 0 THEN (* single processor *)
  3065. Trace.StringLn ("Machine: Single-processor");
  3066. apicVer[0] := 0
  3067. END;
  3068. started[0] := TRUE;
  3069. FOR i := 0 TO MaxCPU-1 DO revIDmap[i] := -1 END;
  3070. FOR i := 0 TO LEN(idMap)-1 DO
  3071. x := idMap[i];
  3072. IF x # -1 THEN
  3073. ASSERT(revIDmap[x] = -1); (* no duplicate APIC ids *)
  3074. revIDmap[x] := SHORT(SHORT(i))
  3075. END
  3076. END;
  3077. (* timer configuration *)
  3078. GetConfig("TimerRate", str);
  3079. i := 0; timerRate := StrToInt(i, str);
  3080. IF timerRate = 0 THEN timerRate := 1000 END;
  3081. IF TraceProcessor THEN
  3082. GetConfig("TraceProc", str);
  3083. i := 0; traceProcessor := StrToInt(i, str) # 0
  3084. END
  3085. END ParseMPConfig;
  3086. (* Return the current average measured bus clock speed in Hz. *)
  3087. PROCEDURE GetBusClockRate(): LONGINT;
  3088. VAR timer: LONGINT; t: LONGINT;
  3089. BEGIN
  3090. t := ticks;
  3091. REPEAT UNTIL ticks # t; (* wait for edge *)
  3092. timer := ticks + ClockRateDelay;
  3093. ApicPut(380H, SYSTEM.VAL (SET, MAX(LONGINT))); (* initial count *)
  3094. REPEAT UNTIL timer - ticks <= 0;
  3095. t := MAX(LONGINT) - SYSTEM.VAL (LONGINT, ApicGet(390H)); (* current count *)
  3096. IF t <= MAX(LONGINT) DIV 1000 THEN
  3097. RETURN 1000 * t DIV ClockRateDelay
  3098. ELSE
  3099. RETURN t DIV ClockRateDelay * 1000
  3100. END
  3101. END GetBusClockRate;
  3102. (* Initialize APIC timer for timeslicing. *)
  3103. PROCEDURE InitMPTimer;
  3104. VAR rate: LONGINT;
  3105. BEGIN
  3106. IF timerRate > 0 THEN
  3107. ApicPut(3E0H, {0,1,3}); (* divide by 1 *)
  3108. ApicPut(320H, {16} + SYSTEM.VAL (SET, MPTMR)); (* masked, one-shot *)
  3109. rate := GetBusClockRate();
  3110. busHz0[ID()] := rate;
  3111. rate := (rate+500000) DIV 1000000 * 1000000; (* round to nearest MHz *)
  3112. busHz1[ID()] := rate;
  3113. ApicPut(320H, {17} + SYSTEM.VAL (SET, MPTMR)); (* unmasked, periodic *)
  3114. ApicPut(380H, SYSTEM.VAL (SET, rate DIV timerRate)) (* initial count *)
  3115. END
  3116. END InitMPTimer;
  3117. (* Handle multiprocessor timer interrupt. *)
  3118. PROCEDURE HandleMPTimer(VAR state: State);
  3119. BEGIN (* {interrupts off} *)
  3120. timer(ID(), state);
  3121. Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *)
  3122. Timeslice(state);
  3123. ApicPut(0B0H, {}); (* EOI *)
  3124. END HandleMPTimer;
  3125. (* Handle uniprocessor timer interrupt. *)
  3126. PROCEDURE HandleUPTimer(VAR state: State);
  3127. BEGIN (* {interrupts off} *)
  3128. timer(0, state);
  3129. Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *)
  3130. Timeslice(state)
  3131. END HandleUPTimer;
  3132. PROCEDURE DummyEvent(id: LONGINT; CONST state: State);
  3133. END DummyEvent;
  3134. (** Install a processor timer event handler. *)
  3135. PROCEDURE InstallEventHandler* (h: EventHandler);
  3136. BEGIN
  3137. IF h # NIL THEN timer := h ELSE timer := DummyEvent END
  3138. END InstallEventHandler;
  3139. (* Initialize APIC for current processor. *)
  3140. PROCEDURE InitAPIC;
  3141. BEGIN
  3142. (* enable APIC, set focus checking & set spurious interrupt handler *)
  3143. ASSERT(MPSPU MOD 16 = 15); (* low 4 bits set, p. 7-29 *)
  3144. ApicPut(0F0H, {8} + SYSTEM.VAL (SET, MPSPU));
  3145. (* set error interrupt handler *)
  3146. ApicPut(370H, SYSTEM.VAL (SET, MPERR));
  3147. InitMPTimer
  3148. END InitAPIC;
  3149. (* Start processor activity. *)
  3150. PROCEDURE StartMP;
  3151. VAR id: LONGINT; state: State;
  3152. BEGIN (* running at kernel level with interrupts on *)
  3153. InitAPIC;
  3154. id := ID(); (* timeslicing is disabled, as we are running at kernel level *)
  3155. Acquire (TraceOutput);
  3156. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" running");
  3157. Release (TraceOutput);
  3158. IF TraceProcessor & traceProcessor & (id = numProcessors-1) THEN
  3159. DEC(numProcessors) (* exclude from rest of activity *)
  3160. ELSE
  3161. INCL(allProcessors, id)
  3162. END;
  3163. (* synchronize with boot processor - end of mutual exclusion *)
  3164. started[id] := TRUE;
  3165. IF TraceProcessor & ~(id IN allProcessors) THEN
  3166. Acquire (TraceOutput);
  3167. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" tracing");
  3168. Release (TraceOutput);
  3169. LOOP
  3170. IF traceProcessorProc # NIL THEN traceProcessorProc(id, state) END;
  3171. SpinHint
  3172. END
  3173. END;
  3174. (* wait until woken up *)
  3175. WHILE stopped DO SpinHint END;
  3176. (* now fully functional, including storage allocation *)
  3177. AtomicExcl(ipcBusy, id); (* ack *)
  3178. Acquire (TraceOutput);
  3179. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn(" scheduling");
  3180. Release (TraceOutput);
  3181. ASSERT(id = ID()); (* still running on same processor *)
  3182. start;
  3183. END StartMP;
  3184. (* Subsequent processors start executing here. *)
  3185. PROCEDURE EnterMP;
  3186. (* no local variables allowed, because stack is switched. *)
  3187. BEGIN (* running at kernel level with interrupts off *)
  3188. InitProcessor;
  3189. InitMemory; (* switch stack *)
  3190. Start;
  3191. StartMP
  3192. END EnterMP;
  3193. (* Start another processor. *)
  3194. PROCEDURE StartProcessor(phys: ADDRESS; apicid: LONGINT; startup: BOOLEAN);
  3195. VAR j, k: LONGINT; s: SET; timer: LONGINT;
  3196. BEGIN
  3197. (* clear APIC errors *)
  3198. ApicPut(280H, {}); s := ApicGet(280H);
  3199. (* assert INIT *)
  3200. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3201. ApicPut(300H, {8, 10, 14, 15}); (* set Dest, INIT, Phys, Assert, Level *)
  3202. timer := ticks + 5; (* > 200us *)
  3203. REPEAT UNTIL timer - ticks <= 0;
  3204. (* deassert INIT *)
  3205. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3206. ApicPut(300H, {8, 10, 15}); (* set Dest, INIT, Deassert, Phys, Level *)
  3207. IF startup THEN (* send STARTUP if required *)
  3208. j := 0; k := 2;
  3209. WHILE j # k DO
  3210. ApicPut(280H, {});
  3211. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3212. (* set Dest, Startup, Deassert, Phys, Edge *)
  3213. ApicPut(300H, {9, 10} + SYSTEM.VAL (SET, phys DIV 4096 MOD 256));
  3214. timer := ticks + 10; (* ~10ms *)
  3215. REPEAT UNTIL timer - ticks <= 0;
  3216. IF ~(12 IN ApicGet(300H)) THEN (* idle *)
  3217. IF ApicGet(280H) * {0..3, 5..7} = {} THEN k := j (* ESR success, exit *)
  3218. ELSE INC(j) (* retry *)
  3219. END
  3220. ELSE INC(j) (* retry *)
  3221. END
  3222. END
  3223. END
  3224. END StartProcessor;
  3225. (* Boot other processors, one at a time. *)
  3226. PROCEDURE BootMP;
  3227. VAR phys, page0Adr: ADDRESS; i: LONGINT; timer: LONGINT;
  3228. BEGIN
  3229. stopped := TRUE; ipcBusy := {}; (* other processors can be woken with StartAll *)
  3230. InitBootPage(EnterMP, phys);
  3231. MapPhysical(0, 4096, page0Adr); (* map in BIOS data area *)
  3232. Acquire(TraceOutput); Trace.String("Machine: Booting processors... "); Trace.Ln; Release(TraceOutput);
  3233. FOR i := 1 TO numProcessors-1 DO
  3234. (* set up booting for old processor types that reset on INIT & don't understand STARTUP *)
  3235. SYSTEM.PUT (page0Adr + 467H, ASH(phys, 16-4));
  3236. PutNVByte(15, 0AX); (* shutdown status byte *)
  3237. (* attempt to start another processor *)
  3238. Acquire(TraceOutput); Trace.String(" P0 starting P"); Trace.Int(i, 1); Trace.Ln; Release(TraceOutput);
  3239. StartProcessor(phys, revIDmap[i], apicVer[i] >= 10H); (* try booting processor i *)
  3240. (* wait for CPU to become active *)
  3241. timer := ticks + 5000; (* ~5s timeout *)
  3242. REPEAT SpinHint UNTIL started[i] OR (timer - ticks <= 0);
  3243. (* end of mutual exclusion *)
  3244. Acquire(TraceOutput);
  3245. IF started[i] THEN
  3246. Trace.String(" P0 recognized P"); Trace.Int(i, 1);
  3247. ELSE
  3248. Trace.String(" P0 timeout on P"); Trace.Int(i, 1);
  3249. END;
  3250. Trace.Ln;
  3251. Release(TraceOutput);
  3252. END;
  3253. SYSTEM.PUT (page0Adr + 467H, SYSTEM.VAL (LONGINT, 0));
  3254. UnmapPhysical(page0Adr, 4096);
  3255. PutNVByte(15, 0X) (* restore shutdown status *)
  3256. END BootMP;
  3257. (* Timer interrupt handler. *)
  3258. PROCEDURE TimerInterruptHandler(VAR state: State);
  3259. BEGIN
  3260. INC(ticks);
  3261. DEC(eventCount);
  3262. IF eventCount = 0 THEN
  3263. eventCount := eventMax; event(state)
  3264. END
  3265. END TimerInterruptHandler;
  3266. PROCEDURE Dummy(VAR state: State);
  3267. END Dummy;
  3268. PROCEDURE InitTicks;
  3269. CONST Div = (2*TimerClock + Second) DIV (2*Second); (* timer clock divisor *)
  3270. BEGIN
  3271. eventCount := 0; eventMax := 0; event := Dummy;
  3272. (* initialize timer hardware *)
  3273. ASSERT(Div <= 65535);
  3274. Portout8(43H, 34X); Wait; (* mode 2, rate generator *)
  3275. Portout8(40H, CHR(Div MOD 100H)); Wait;
  3276. Portout8(40H, CHR(ASH(Div, -8)));
  3277. InstallHandler(TimerInterruptHandler, IRQ0)
  3278. END InitTicks;
  3279. (* Set timer upcall. The handler procedure will be called at a rate of Second/divisor Hz. *)
  3280. PROCEDURE InstallTickHandler(handler: Handler; divisor: LONGINT);
  3281. BEGIN
  3282. eventMax := divisor; event := handler;
  3283. eventCount := eventMax
  3284. END InstallTickHandler;
  3285. (* Initialize processors *)
  3286. PROCEDURE InitProcessors*;
  3287. BEGIN
  3288. traceProcessor := FALSE; traceProcessorProc := NIL;
  3289. ASSERT(Second = 1000); (* use of Machine.ticks *)
  3290. InitTicks;
  3291. timer := DummyEvent;
  3292. ParseMPConfig;
  3293. InstallHandler(HandleIPC, MPIPCLocal);
  3294. IF localAPIC # 0 THEN (* APIC present *)
  3295. InitAPICArea(localAPIC, 4096);
  3296. InitAPICIDAdr(localAPIC+20H, idMap);
  3297. ASSERT(MPSPU MOD 16 = 15); (* use default handler (see 7.4.11.1) *)
  3298. InstallHandler(HandleError, MPERR);
  3299. InstallHandler(HandleMPTimer, MPTMR);
  3300. InstallHandler(HandleIPC, MPIPC);
  3301. InitAPIC;
  3302. IF numProcessors > 1 THEN BootMP END
  3303. ELSE
  3304. IF timerRate > 0 THEN
  3305. InstallTickHandler(HandleUPTimer, Second DIV timerRate)
  3306. END
  3307. END;
  3308. InstallHandler(HandleKernelCall, MPKC);
  3309. END InitProcessors;
  3310. VAR scrollLines: LONGINT;
  3311. (* Send and print character *)
  3312. PROCEDURE TraceChar (c: CHAR);
  3313. VAR status: SHORTINT;
  3314. (* Scroll the screen by one line. *)
  3315. PROCEDURE Scroll;
  3316. VAR adr: ADDRESS; off: SIZE; i,j: LONGINT;
  3317. BEGIN
  3318. IF (traceDelay > 0) & (scrollLines MOD TraceHeight = 0) THEN
  3319. FOR i := 0 TO traceDelay-1 DO
  3320. FOR j := 0 TO 1000000 DO END;
  3321. END;
  3322. END;
  3323. INC(scrollLines);
  3324. adr := traceBase + TraceLen;
  3325. SYSTEM.MOVE (adr, adr - TraceLen, TraceSize - TraceLen);
  3326. adr := traceBase + TraceSize - TraceLen;
  3327. FOR off := 0 TO TraceLen - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (adr + off, 100H * 7H + 32) END
  3328. END Scroll;
  3329. BEGIN
  3330. IF TraceV24 IN traceMode THEN
  3331. REPEAT (* wait until port is ready to accept a character *)
  3332. Portin8 (SHORT(tracePort + 5), SYSTEM.VAL(CHAR,status))
  3333. UNTIL ODD (status DIV 20H); (* THR empty *)
  3334. Portout8 (SHORT(tracePort), c);
  3335. END;
  3336. IF TraceScreen IN traceMode THEN
  3337. IF c = 9X THEN c := 20X END;
  3338. IF c = 0DX THEN (* CR *)
  3339. DEC (tracePos, tracePos MOD TraceLen)
  3340. ELSIF c = 0AX THEN (* LF *)
  3341. IF tracePos < TraceSize THEN
  3342. INC (tracePos, TraceLen) (* down to next line *)
  3343. ELSE
  3344. Scroll
  3345. END
  3346. ELSE
  3347. IF tracePos >= TraceSize THEN
  3348. Scroll;
  3349. DEC (tracePos, TraceLen)
  3350. END;
  3351. SYSTEM.PUT16 (traceBase + tracePos, 100H * traceColor + ORD (c));
  3352. INC (tracePos, SIZEOF(INTEGER))
  3353. END
  3354. END
  3355. END TraceChar;
  3356. (* Change color *)
  3357. PROCEDURE TraceColor (c: SHORTINT);
  3358. BEGIN traceColor := c;
  3359. END TraceColor;
  3360. VAR traceDelay: LONGINT;
  3361. (* Initialise tracing. *)
  3362. PROCEDURE InitTrace;
  3363. CONST MaxPorts = 8;
  3364. VAR i, p, bps: LONGINT; off: SIZE; s, name: ARRAY 32 OF CHAR;
  3365. baselist: ARRAY MaxPorts OF LONGINT;
  3366. BEGIN
  3367. GetConfig ("TraceMode", s);
  3368. p := 0; traceMode := SYSTEM.VAL (SET, StrToInt (p, s));
  3369. IF TraceScreen IN traceMode THEN
  3370. GetConfig ("TraceMem", s);
  3371. p := 0; traceBase := SYSTEM.VAL (ADDRESS, StrToInt (p, s));
  3372. IF traceBase = 0 THEN traceBase := 0B8000H END; (* default screen buffer *)
  3373. FOR off := 0 TO TraceSize - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (traceBase + off, 100H * 7H + 32) END;
  3374. tracePos := 0;
  3375. Portout8(3D4H, 0EX);
  3376. Portout8(3D5H, CHR((TraceWidth*TraceHeight) DIV 100H));
  3377. Portout8(3D4H, 0FX);
  3378. Portout8(3D5H, CHR((TraceWidth*TraceHeight) MOD 100H));
  3379. GetConfig("TraceDelay", s);
  3380. p := 0; traceDelay := StrToInt(p, s);
  3381. END;
  3382. IF TraceV24 IN traceMode THEN
  3383. FOR i := 0 TO MaxPorts - 1 DO
  3384. COPY ("COMx", name); name[3] := CHR (ORD ("1") + i);
  3385. GetConfig (name, s); p := 0; baselist[i] := StrToInt (p, s);
  3386. END;
  3387. IF baselist[0] = 0 THEN baselist[0] := 3F8H END; (* COM1 port default values *)
  3388. IF baselist[1] = 0 THEN baselist[1] := 2F8H END; (* COM2 port default values *)
  3389. GetConfig("TracePort", s); p := 0; p := StrToInt(p, s); DEC(p);
  3390. IF (p >= 0) & (p < MaxPorts) THEN tracePort := baselist[p] ELSE tracePort := baselist[0] END;
  3391. ASSERT(tracePort > 0);
  3392. GetConfig("TraceBPS", s); p := 0; bps := StrToInt(p, s);
  3393. IF bps <= 0 THEN bps := 38400 END;
  3394. Portout8 (SHORT(tracePort + 3), 80X); (* Set the Divisor Latch Bit - DLAB = 1 *)
  3395. bps := 115200 DIV bps; (* compiler DIV/PORTOUT bug workaround *)
  3396. Portout8 (SHORT(tracePort + 1), CHR (bps DIV 100H)); (* Set the Divisor Latch MSB *)
  3397. Portout8 (SHORT(tracePort), CHR (bps MOD 100H)); (* Set the Divisor Latch LSB *)
  3398. Portout8 (SHORT(tracePort + 3), 3X); (* 8N1 *)
  3399. Portout8 (SHORT(tracePort + 4), 3X); (* Set DTR, RTS on in the MCR *)
  3400. Portout8 (SHORT(tracePort + 1), 0X); (* Disable receive interrupts *)
  3401. END;
  3402. traceColor := 7; Trace.Char := TraceChar; Trace.Color := TraceColor;
  3403. END InitTrace;
  3404. (* The following procedure is linked as the first block in the bootfile *)
  3405. PROCEDURE {NOPAF, FIXED(0100000H)} FirstAddress;
  3406. (* ; RELOCATION HAS BECOME VOID WITH NEW RELOCATING BOOTLOADER
  3407. ; ; relocate the bootfile from 0x1000 to target address 0x100000
  3408. ; PUSHAD
  3409. ; MOV ESI,1000H
  3410. ; MOV EDI,100000H
  3411. ; MOV ECX, LastAddress
  3412. ; SUB ECX, EDI
  3413. ; CLD
  3414. ; REP MOVSB
  3415. ; POPAD
  3416. ;
  3417. ; ; continue in relocated bootfile
  3418. ; JMP DWORD 100000H - 1000H + Skip
  3419. ;Skip:
  3420. *)
  3421. CODE{SYSTEM.i386}
  3422. ; save arguments passed by bootloader
  3423. MOV bootFlag, EAX
  3424. MOV initRegs0,ESI
  3425. MOV initRegs1, EDI
  3426. END FirstAddress;
  3427. (* empty section allocated at end of bootfile *)
  3428. PROCEDURE {NOPAF, ALIGNED(32)} LastAddress;
  3429. CODE {SYSTEM.i386}
  3430. END LastAddress;
  3431. (* Init code called from OBL. EAX = boot table offset. ESI, EDI=initRegs. 2k stack is available. No trap handling. *)
  3432. (* must be called from module caller chain *)
  3433. PROCEDURE Init*;
  3434. BEGIN
  3435. initRegs[0] := initRegs0;
  3436. initRegs[1] := initRegs1;
  3437. (* registers 6 and 7 get converted to 32 bit, cf. PCB.Assigne
  3438. SYSTEM.GETREG(6, initRegs[0]); SYSTEM.GETREG(7, initRegs[1]); (* initRegs0 & initRegs1 *)
  3439. *)
  3440. SYSTEM.PUT16(0472H, 01234H); (* soft boot flag, for when we reboot *)
  3441. ReadBootTable(bootFlag);
  3442. InitTrace;
  3443. Trace.String("Machine: "); Trace.Blue;Trace.StringLn (Version); Trace.Default;
  3444. CheckMemory;
  3445. SearchMP;
  3446. AllocateDMA; (* must be called after SearchMP, as lowTop is modified *)
  3447. version := Version;
  3448. InitBoot;
  3449. InitProcessor;
  3450. InitLocks;
  3451. NmaxUserStacks := MaxUserStacks;
  3452. ASSERT(ASH(1, PSlog2) = PS);
  3453. Trace.String("Machine: Enabling MMU... ");
  3454. InitSegments; (* enable flat segments *)
  3455. InitPages; (* create page tables *)
  3456. InitMemory; (* switch on segmentation, paging and switch stack *)
  3457. Trace.Green; Trace.StringLn("Ok"); Trace.Default;
  3458. (* allocate empty memory block with enough space for at least one free block *)
  3459. memBlockHead := SYSTEM.VAL (MemoryBlock, ADDRESSOF (initialMemBlock));
  3460. memBlockTail := memBlockHead;
  3461. initialMemBlock.beginBlockAdr := SYSTEM.VAL (ADDRESS, LastAddress);
  3462. initialMemBlock.endBlockAdr := initialMemBlock.beginBlockAdr + StaticBlockSize;
  3463. initialMemBlock.size := initialMemBlock.endBlockAdr - initialMemBlock.beginBlockAdr;
  3464. FOR i := 0 TO IDTSize - 1 DO
  3465. FOR j := 0 TO MaxNumHandlers - 1 DO
  3466. intHandler[i, j].valid := FALSE;
  3467. intHandler[i, j].handler := NIL
  3468. END
  3469. END;
  3470. default.valid := FALSE; (* initialized later *)
  3471. END Init;
  3472. BEGIN
  3473. END Machine.
  3474. (*
  3475. 03.03.1998 pjm First version
  3476. 30.06.1999 pjm ProcessorID moved to AosProcessor
  3477. *)
  3478. (**
  3479. Notes
  3480. This module defines an interface to the boot environment of the system. The facilities provided here are only intended for the lowest levels of the system, and should never be directly imported by user modules (exceptions are noted below). They are highly specific to the system hardware and firmware architecture.
  3481. Typically a machine has some type of firmware that performs initial testing and setup of the system. The firmware initiates the operating system bootstrap loader, which loads the boot file. This module is the first module in the statically linked boot file that gets control.
  3482. There are two more-or-less general procedures in this module: GetConfig and StrToInt. GetConfig is used to query low-level system settings, e.g., the location of the boot file system. StrToInt is a utility procedure that parses numeric strings.
  3483. Config strings:
  3484. ExtMemSize Specifies size of extended memory (above 1MB) in MB. This value is not checked for validity. Setting it false may cause the system to fail, possible after running for some time. The memory size is usually detected automatically, but if the detection does not work for some reason, or if you want to limit the amount of memory detected, this string can be set. For example, if the machine has 64MB of memory, this value can be set as ExtMemSize="63".
  3485. *)