AMD64.Machine.Mod 121 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971
  1. MODULE Machine; (** AUTHOR "pjm"; PURPOSE "Bootstrapping, configuration and machine interface"; *)
  2. (* The code of this module body must be the first in the statically linked boot file. *)
  3. IMPORT SYSTEM, Trace;
  4. CONST
  5. Version = "A2 Revision 2958 (26.02.2010)";
  6. MaxCPU* = 8; (** maximum number of processors (up to 16) *)
  7. DefaultObjectFileExtension* = ".Abx";
  8. (** bits in features variable *)
  9. MTTR* = 12; MMX* = 23; HTT* = 28;
  10. MaxDisks = 2; (* maximum number of disks with BIOS parameters *)
  11. HeapAdr = 100000H;
  12. MaxMemTop = 4000000H * 4000000H; (* maximal 52bit wide physical address (architectural limit) *)
  13. DefaultDMASize = 20; (* default size of ISA DMA area in KB *)
  14. CONST
  15. StrongChecks = FALSE; (* perform strong checks *)
  16. Stats* = FALSE; (* acquire statistics *)
  17. TimeCount = 0 (* 100000 *); (* number of lock tries before checking timeout - 0 to disable *)
  18. (** standard lock levels (in order) *) (* also refer to Traps.Show *)
  19. TraceOutput* = 0; (* Trace output *)
  20. Memory* = 1; (* Virtual memory management, stack and page allocation *)
  21. Heaps* = 2; (* Storage allocation and Garbage collection *)
  22. Interrupts* = 3 ; (* Interrupt handling. *)
  23. Modules* = 4; (* Module list *)
  24. Objects* = 5; (* Ready queue *)
  25. Processors* = 6; (* Interprocessor interrupts *)
  26. KernelLog* = 7; (* Atomic output *)
  27. (** highest level is all object locks *)
  28. Preemption* = 31; (** flag for BreakAll *)
  29. MaxLocks = 8; (* { <= 32 } *)
  30. LowestLock = 0; HighestLock = MaxLocks-1;
  31. CONST
  32. TraceVerbose = FALSE; (* write out verbose trace info *)
  33. AddressSize = SIZEOF(ADDRESS);
  34. SetSize = MAX (SET) + 1;
  35. (** error codes *)
  36. Ok* = 0;
  37. (* standard multipliers *)
  38. K = 1024; M = 100000H; (* 1K, 1M *)
  39. (* paging sizes *)
  40. PS = 4096; (* page size in bytes *)
  41. PSlog2 = 12; (* ASH(1, PSlog2) = PS *)
  42. TPS = 4096; (* translation page size *)
  43. PTEs = TPS DIV AddressSize; (* number of entries per translation page table *)
  44. RS = PTEs * PS; (* region covered by a page table in bytes *)
  45. ReservedPages = 8; (* pages reserved on page heap (not for normal heap use) *)
  46. NilAdr* = -1; (** nil value for addresses (not same as pointer NIL value) *)
  47. (* free page stack page node layout *)
  48. NodeSP = 0;
  49. NodeNext = AddressSize;
  50. NodePrev = AddressSize*2;
  51. MinSP = AddressSize*3; MaxSP = PS;
  52. (*
  53. 0 sp
  54. AddressSize nextAdr
  55. AddressSize*2 prevAdr
  56. AddressSize*3 first entry
  57. 4092 last entry
  58. *)
  59. (* virtual memory layout. no area will cross the 2G boundary, to avoid LONGINT sign problems. *)
  60. MapAreaAdr = (80000000H); (* dynamic mappings: bottom part of 2G..4G *)
  61. MapAreaSize = 64*M;
  62. IntelAreaAdr = (0FEE00000H); (* reserved by Intel for APIC: 4G-18M..4G-18M+4K *)
  63. IntelAreaSize = 00001000H;
  64. StackAreaAdr = MapAreaAdr+MapAreaSize; (* stacks: middle part of 2G..4G *)
  65. StackAreaSize = IntelAreaAdr-StackAreaAdr;
  66. (* stack sizes *)
  67. KernelStackSize = 2*PS; (* multiple of PS *)
  68. MaxUserStackSize = 128*K; (* multiple of PS *)
  69. InitUserStackSize = PS; (* must be PS (or change NewStack) *)
  70. UserStackGuardSize = PS; (* multiple of PS left unallocated at bottom of stack virtual area *)
  71. MaxUserStacks = StackAreaSize DIV MaxUserStackSize;
  72. (* physical memory layout *)
  73. LowAdr = PS; (* lowest physical address used *)
  74. LinkAdr = M; (* address where kernel is linked, also address where heap begins *)
  75. StaticBlockSize = 32; (* static heap block size *)
  76. BlockHeaderSize = 2 * AddressSize;
  77. RecordDescSize = 3 * AddressSize; (* needs to be adapted in case Heaps.RecordDesc is changed *)
  78. (* gdt indices *)
  79. TSSOfs = 8; (* offset in GDT of TSSs *)
  80. StackOfs = TSSOfs + MaxCPU; (* offset in GDT of stacks *)
  81. GDTSize = TSSOfs + MaxCPU * 2; (* TSS descriptors need 16 bytes each *)
  82. (* gdt selectors *)
  83. Kernel32CodeSel = 1*8; (* selector 1 in gdt, RPL 0 *)
  84. Kernel64CodeSel = 2*8; (* selector 2 in gdt, RPL 0 *)
  85. User32CodeSel = 3*8 + 3; (* selector 3 in gdt, RPL 3 *)
  86. User64CodeSel = 4*8 + 3; (* selector 4 in gdt, RPL 3 *)
  87. KernelStackSel = 5*8; (* selector 5 in gdt, RPL 0 *)
  88. UserStackSel = 6*8 + 3; (* selector 6 in gdt, RPL 3 *)
  89. DataSel = 7*8; (* selector 7 in gdt, RPL 0 *)
  90. KernelTR = TSSOfs*8; (* selector in gdt, RPL 0 *)
  91. (* paging flags *)
  92. PageNotPresent = 0; (* not present page *)
  93. KernelPage = 3; (* supervisor, present, r/w *)
  94. UserPage = 7; (* user, present, r/w *)
  95. HeapMin = 50; (* "minimum" heap size as percentage of total memory size (used for heap expansion in scope of GC ) *)
  96. HeapMax = 95; (* "maximum" heap size as percentage of total memory size (used for heap expansion in scope of GC) *)
  97. ExpandRate = 1; (* always extend heap with at least this percentage of total memory size *)
  98. Threshold = 10; (* periodic GC initiated when this percentage of total memory size bytes has "passed through" NewBlock *)
  99. InitialHeapIncrement = 4096;
  100. HeaderSize = 40H; (* cf. Linker0 *)
  101. EndBlockOfs = 38H; (* cf. Linker0 *)
  102. MemoryBlockOfs = BlockHeaderSize + RecordDescSize + BlockHeaderSize; (* memory block (including header) starts at offset HeaderSize *)
  103. CONST
  104. (** pre-defined interrupts 0-31, used with InstallHandler *)
  105. DE* = 0; DB* = 1; NMI* = 2; BP* = 3; OVF* = 4; BR* = 5; UD* = 6; NM* = 7;
  106. DF* = 8; TS* = 10; NP* = 11; SSF* = 12; GP* = 13; PF* = 14; MF*= 16; AC*= 17; MC* = 18;
  107. IRQ0* = 32; (* {IRQ0 MOD 8 = 0} *)
  108. IRQ2 = IRQ0 + 2;
  109. IRQ7 = IRQ0 + 7;
  110. IRQ8 = IRQ0 + 8;
  111. IRQ15 = 47;
  112. MaxIRQ* = IRQ15; (** hardware interrupt numbers *)
  113. MPKC* = 49; (** SMP: kernel call *)
  114. SoftInt* = 58; (** temporary software interrupt *)
  115. MPIPCLocal* = 59; (** SMP: local interprocessor interrupt *)
  116. MPTMR* = 60; (** SMP: timer interrupt *)
  117. MPIPC* = 61; (** SMP: interprocessor interrupt *)
  118. MPERR* = 62; (** SMP: error interrupt *)
  119. MPSPU* = 63; (** SMP: spurious interrupt {MOD 16 = 15} *)
  120. IDTSize = 64;
  121. MaxNumHandlers = 16;
  122. TraceSpurious = FALSE; (* no message on spurious hardware interrupts *)
  123. HandleSpurious = TRUE OR TraceSpurious; (* do not trap on spurious interrupts *)
  124. IntA0 = 020H; IntA1 = 021H; (* Interrupt Controller 1 *)
  125. IntB0 = 0A0H; IntB1 = 0A1H; (* Interrupt Controller 2 *)
  126. (** RFLAGS bits *)
  127. IFBit* = 9; VMBit* = 17;
  128. KernelLevel* = 0; UserLevel* = 3; (** CS MOD 4 *)
  129. Second* = 1000; (* frequency of ticks increments in Hz *)
  130. CONST
  131. Self* = 0; FrontBarrier* = 1; BackBarrier* = 2; (** Broadcast flags. *)
  132. TraceApic = FALSE;
  133. TraceProcessor = FALSE; (* remove this hack! *)
  134. ClockRateDelay = 50; (* ms - delay when timing bus clock rate *)
  135. TimerClock = 1193180; (* timer clock is 1.19318 MHz *)
  136. CONST
  137. (* low level tracing *)
  138. TraceV24 = 2; TraceScreen = 0;
  139. TraceWidth = 80; TraceHeight = 25;
  140. TraceLen = TraceWidth * SIZEOF (INTEGER);
  141. TraceSize = TraceLen * TraceHeight;
  142. TYPE
  143. Vendor* = ARRAY 13 OF CHAR;
  144. IDMap* = ARRAY 16 OF SHORTINT;
  145. TYPE
  146. Stack* = RECORD (** values are read-only *)
  147. low: ADDRESS; (* lowest virtual address that may be allocated for stack *)
  148. adr*: ADDRESS; (* lowest address on allocated stack *) (* exported for Objects only *)
  149. high*: ADDRESS; (* next virtual address after stack *) (* exported for Objects only *)
  150. END;
  151. (* task state segment *)
  152. TSSDesc = RECORD (* 1, p. 485 and p. 612 for required fields *)
  153. Reserved1: LONGINT;
  154. RSP0 {ALIGNED(4)}, RSP1{ALIGNED(4)}, RSP2{ALIGNED(4)}: HUGEINT;
  155. Reserved2, Reserved3: LONGINT;
  156. IST1 {ALIGNED(4)}, IST2 {ALIGNED(4)}, IST3 {ALIGNED(4)}, IST4{ALIGNED(4)}, IST5{ALIGNED(4)}, IST6{ALIGNED(4)}, IST7{ALIGNED(4)}: HUGEINT;
  157. Reserved4, Reserved5: LONGINT;
  158. Reserved6, IOMapBaseAddress: INTEGER;
  159. (* Implicit: IOBitmap: ARRAY 8192 DIV 4 OF SET *)
  160. END;
  161. Startup* = PROCEDURE; (** can not be a method *)
  162. (* global descriptor table *)
  163. SegDesc = RECORD
  164. low, high: LONGINT
  165. END;
  166. GDT = ARRAY GDTSize OF SegDesc;
  167. Range* = RECORD
  168. adr*: ADDRESS; size*: SIZE;
  169. END;
  170. TYPE
  171. (** processor state, ordering of record fields is predefined! *)
  172. State* = RECORD (* offsets used in FieldInterrupt, FieldIRQ and Objects.RestoreState *)
  173. R15*, R14*, R13*, R12*, R11*, R10*, R9*, R8*: HUGEINT;
  174. RDI*, RSI*, ERR*, RSP0*, RBX*, RDX*, RCX*, RAX*: HUGEINT; (** RSP0 = ADR(s.INT) *)
  175. INT*, BP*, PC*, CS*: HUGEINT; (* RBP and ERR are exchanged by glue code, for procedure link *)
  176. FLAGS*: SET;
  177. SP*, SS*: HUGEINT;
  178. END;
  179. (** exception state, ordering of record fields is predefined! *)
  180. ExceptionState* = RECORD
  181. halt*: ADDRESS; (** halt code *)
  182. pf*: ADDRESS; (** page fault address *)
  183. locks*: SET; (** active locks *)
  184. SP*: ADDRESS; (** actual RSP value at time of interrupt *)
  185. CR*: ARRAY 16 OF HUGEINT; (** control registers *)
  186. DR*: ARRAY 16 OF HUGEINT; (** debug registers *)
  187. FPU*: ARRAY 7 OF SET (** floating-point state *)
  188. END;
  189. Handler* = PROCEDURE {DELEGATE} (VAR state: State);
  190. HandlerRec = RECORD
  191. valid: BOOLEAN; (* offset 0 *)
  192. handler {ALIGNED(4)}: Handler (* offset 4 *)
  193. END;
  194. GateDescriptor = RECORD
  195. offsetBits0to15: INTEGER;
  196. selector: INTEGER;
  197. gateType: INTEGER;
  198. offsetBits16to31: INTEGER;
  199. offsetBits32to63: LONGINT;
  200. reserved: LONGINT;
  201. END;
  202. IDT = ARRAY IDTSize OF GateDescriptor;
  203. SSEState* = ARRAY (512+16) OF CHAR;
  204. TYPE
  205. MemoryBlock* = POINTER TO MemoryBlockDesc;
  206. MemoryBlockDesc* = RECORD
  207. next- {UNTRACED}: MemoryBlock;
  208. startAdr-: ADDRESS; (* unused field for I386 *)
  209. size-: SIZE; (* unused field for I386 *)
  210. beginBlockAdr-, endBlockAdr-: ADDRESS
  211. END;
  212. TYPE
  213. EventHandler = PROCEDURE (id: LONGINT; CONST state: State);
  214. Message* = POINTER TO RECORD END; (** Broadcast message. *)
  215. BroadcastHandler = PROCEDURE (id: LONGINT; CONST state: State; msg: Message);
  216. TimeArray = ARRAY MaxCPU OF HUGEINT;
  217. Address32* = LONGINT;
  218. VAR
  219. lowTop*: ADDRESS; (** top of low memory *)
  220. memTop*: ADDRESS; (** top of memory *)
  221. dmaSize*: SIZE; (** size of ISA dma area, above lowTop (for use in Aos.Diskettes) *)
  222. configMP: ADDRESS; (** MP spec config table physical address (outside reported RAM) *)
  223. revMP: CHAR; (** MP spec revision *)
  224. featureMP: ARRAY 5 OF CHAR; (** MP spec feature bytes 1-5 *)
  225. version-: ARRAY 64 OF CHAR; (** Aos version *)
  226. SSESupport-: BOOLEAN;
  227. SSE2Support-: BOOLEAN;
  228. features-, features2-: SET; (** processor features *)
  229. fcr*: SET; (** default floating-point control register value (default rounding mode is towards -infinity, for ENTIER) *)
  230. mhz*: HUGEINT; (** clock rate of GetTimer in MHz, or 0 if not known *)
  231. chs: ARRAY MaxDisks OF RECORD cyls, hds, spt: LONGINT END;
  232. initRegs0, initRegs1: HUGEINT;
  233. initRegs: ARRAY 2 OF HUGEINT; (* kernel parameters *)
  234. config: ARRAY 2048 OF CHAR; (* config strings *)
  235. bootFlag: ADDRESS;
  236. idAdr: ADDRESS; (* address of processor ID register *)
  237. map: IDMap;
  238. bootID: LONGINT; (* ID of boot processor (0) *)
  239. numberOfProcessors: LONGINT; (* number of processors installed during start up *)
  240. coresPerProcessor : LONGINT; (* number of cores per physical package *)
  241. threadsPerCore : LONGINT; (* number of threads per core *)
  242. CONST
  243. CacheLineSize = 128;
  244. TYPE
  245. (* Synchronization variables should reside in own cache line. This data structure should be aligned to CacheLineSize. *)
  246. Lock = RECORD
  247. locked : BOOLEAN;
  248. filler : ARRAY CacheLineSize - 1 OF CHAR;
  249. END;
  250. VAR
  251. lock: ARRAY MaxLocks OF Lock; (** all locks *)
  252. (*
  253. Every element in the proc array belongs to one processor. It is therefore sufficient to disable interrupts to protect the consistency of these elements. Race conditions with interrupts handled on the same processor are avoided by disabling interrupts for the entire time that a lock is held (using locksHeld & state). The data structures are padded to CacheLineSize to separate the locks out on cache lines of their own, to avoid false sharing.
  254. *)
  255. proc-, trapState-: ARRAY MaxCPU OF RECORD
  256. locksHeld-: SET; (** locks held by a processor *)
  257. state-: SET; (** processor flags (interrupt state) at entry to its first lock *)
  258. preemptCount-: LONGINT; (** if 0, preemption is allowed *)
  259. padding : ARRAY CacheLineSize - 20 OF CHAR;
  260. END;
  261. (* the data structures above should be aligned to CacheLineSize *)
  262. padding : ARRAY 92 OF CHAR;
  263. trapLocksBusy-: SET;
  264. maxTime: HUGEINT;
  265. VAR
  266. gdt: GDT; (* global descriptor table *)
  267. procm: ARRAY MaxCPU OF RECORD (* indexed by ID () *)
  268. tss: TSSDesc;
  269. sp: ADDRESS; (* snapshot for GC *)
  270. stack: Stack
  271. END;
  272. kernelPML4: ADDRESS; (* physical address of page directory *)
  273. freeLowPage: ADDRESS; (* free low page stack pointer (link at offset 0 in page). All addresses physical. NIL = -1 *)
  274. freeLowPages, freeHighPages, totalPages: HUGEINT; (* number of free pages and total number of pages *)
  275. mapTop: ADDRESS; (* virtual address of end of memory mapping area *)
  276. heapEndAdr: ADDRESS; (* virtual address of end of heap (page aligned) *)
  277. topPageNum: HUGEINT; (* page containing byte memTop-1 *)
  278. pageHeapAdr: ADDRESS; (* address (physical and virtual) of bottom of page heap area *)
  279. pageStackAdr: ADDRESS; (* virtual address of top page of free page stack *)
  280. freeStack: ARRAY (MaxUserStacks+SetSize-1) DIV SetSize OF SET; (* free stack bitmap *)
  281. freeStackIndex: HUGEINT; (* current position in bitmap (rotates) *)
  282. Nbigskips-: LONGINT; (* number of times a stack was extended leaving a hole *)
  283. Nfilled-: LONGINT; (* number of times a "hole" in a stack was filled *)
  284. NnewStacks-, NnewStackLoops-, NnewStackInnerLoops-, NdisposeStacks-,
  285. NlostPages-, NreservePagesUsed-, NmaxUserStacks-: HUGEINT;
  286. VAR
  287. idt: IDT; (* interrupt descriptor table *)
  288. glue: ARRAY IDTSize OF ARRAY 15 OF CHAR; (* code *)
  289. intHandler: ARRAY IDTSize, MaxNumHandlers OF HandlerRec; (* array of handlers for interrupts, the table is only filled up to MaxNumHandlers - 1, the last element in each row acts as a sentinel *)
  290. stateTag: ADDRESS;
  291. default: HandlerRec;
  292. i, j, ticks*: LONGINT; (** timer ticks. Use Kernel.GetTicks() to read, don't write *)
  293. VAR
  294. ipcBusy, ipcFlags, ipcFrontBarrier, ipcBackBarrier: SET;
  295. ipcHandler: BroadcastHandler;
  296. ipcMessage: Message;
  297. numProcessors-: LONGINT; (* number of processors we attempted to boot (some may have failed) *)
  298. maxProcessors: LONGINT; (* max number of processors we are allowed to boot (-1 for uni) *)
  299. allProcessors-: SET; (* IDs of all successfully booted processors *)
  300. localAPIC: ADDRESS; (* address of local APIC, 0 if not present *)
  301. apicVer: ARRAY MaxCPU OF LONGINT; (* APIC version *)
  302. started: ARRAY MaxCPU OF BOOLEAN; (* CPU started successfully / CPU halted *)
  303. busHz0, busHz1: ARRAY MaxCPU OF LONGINT; (* unrounded and rounded bus speed in Hz *)
  304. timer: EventHandler;
  305. timerRate: LONGINT; (* Hz - rate at which CPU timers run - for timeslicing and profiling *)
  306. stopped: BOOLEAN; (* StopAll was called *)
  307. idMap: IDMap;
  308. revIDmap: ARRAY MaxCPU OF SHORTINT;
  309. time: TimeArray;
  310. eventCount, eventMax: LONGINT;
  311. event: Handler;
  312. expandMin, heapMinKB, heapMaxKB : SIZE;
  313. gcThreshold-: SIZE;
  314. memBlockHead-{UNTRACED}, memBlockTail-{UNTRACED}: MemoryBlock; (* refer to the same memory block for I386, not traced by GC *)
  315. initialMemBlock: MemoryBlockDesc;
  316. traceProcessorProc*: EventHandler; (** temp tracing *)
  317. traceProcessor: BOOLEAN;
  318. Timeslice*: Handler;
  319. start*: PROCEDURE;
  320. VAR
  321. traceMode: SET; (* tracing mode: Screen or V24 *)
  322. traceBase: ADDRESS; (* screen buffer base address *)
  323. tracePos: SIZE; (* current screen cursor *)
  324. tracePort: LONGINT; (* serial base port *)
  325. traceColor: SHORTINT; (* current screen tracing color *)
  326. (** -- Processor identification -- *)
  327. (** Return current processor ID (0 to MaxNum-1). *)
  328. PROCEDURE ID* (): LONGINT;
  329. CODE {SYSTEM.AMD64}
  330. ; todo: use MOV instead of LEA as soon as assembler returns address for global variables
  331. LEA RAX, idAdr ; get address of idAdr
  332. MOV RAX, [RAX] ; get value of idAdr
  333. MOV EAX, [RAX] ; dereference idAdr
  334. LEA RBX, map ; address of map
  335. SHR EAX, 24
  336. AND EAX, 15
  337. MOV AL, [RBX + RAX]
  338. END ID;
  339. (** -- Miscellaneous -- *)
  340. (** This procedure should be called in all spin loops as a hint to the processor (e.g. Pentium 4). *)
  341. PROCEDURE -SpinHint*;
  342. CODE {SYSTEM.AMD64}
  343. PAUSE
  344. END SpinHint;
  345. (** Fill "size" bytes at "destAdr" with "filler". "size" must be multiple of 4. *)
  346. PROCEDURE Fill32* (destAdr: ADDRESS; size: SIZE; filler: LONGINT);
  347. CODE {SYSTEM.AMD64}
  348. MOV RDI, [RBP + destAdr]
  349. MOV RCX, [RBP + size]
  350. MOV EAX, [RBP + filler]
  351. TEST RCX, 3
  352. JZ ok
  353. PUSH 8 ; ASSERT failure
  354. INT 3
  355. ok:
  356. SHR RCX, 2
  357. CLD
  358. REP STOSD
  359. END Fill32;
  360. (** Return timer value of the current processor, or 0 if not available. *)
  361. (* e.g. ARM does not have a fine-grained timer *)
  362. PROCEDURE -GetTimer* (): HUGEINT;
  363. CODE {SYSTEM.AMD64}
  364. XOR RAX, RAX
  365. RDTSC ; set EDX:EAX
  366. SHL RDX, 32
  367. OR RAX, RDX
  368. END GetTimer;
  369. (** Disable interrupts and return old interrupt state. *)
  370. PROCEDURE -DisableInterrupts* (): SET;
  371. CODE {SYSTEM.AMD64}
  372. PUSHFQ
  373. CLI
  374. POP RAX
  375. END DisableInterrupts;
  376. (** Restore interrupt state. Parameter s must be return value of earlier DisableInterrupts call on same processor. *)
  377. PROCEDURE -RestoreInterrupts* (s: SET);
  378. CODE {SYSTEM.AMD64}
  379. POPFQ
  380. END RestoreInterrupts;
  381. (** Return TRUE iff interrupts are enabled on the current processor. *)
  382. PROCEDURE -InterruptsEnabled* (): BOOLEAN;
  383. CODE {SYSTEM.AMD64}
  384. PUSHFQ
  385. POP RAX
  386. SHR RAX, 9
  387. AND AL, 1
  388. END InterruptsEnabled;
  389. (** -- HUGEINT operations -- *)
  390. (** Return h*g. *)
  391. PROCEDURE MulH* (h, g: HUGEINT): HUGEINT;
  392. BEGIN RETURN h * g;
  393. END MulH;
  394. (** Return h DIV g. Rounding and division by zero behaviour is currently undefined. *)
  395. PROCEDURE DivH* (x, y: HUGEINT): HUGEINT;
  396. BEGIN RETURN x DIV y
  397. END DivH;
  398. (** Return ASH(h, n). *)
  399. PROCEDURE ASHH* (h: HUGEINT; n: LONGINT): HUGEINT;
  400. BEGIN RETURN ASH (h, n);
  401. END ASHH;
  402. (** Return a HUGEINT composed of high and low. *)
  403. PROCEDURE -LInt2ToHInt* (high, low: LONGINT): HUGEINT;
  404. CODE {SYSTEM.AMD64}
  405. POP RAX
  406. END LInt2ToHInt;
  407. (** Return h as a LONGREAL, with possible loss of precision. *)
  408. PROCEDURE -HIntToLReal* (h: HUGEINT): LONGREAL;
  409. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  410. FILD QWORD [ESP]
  411. PAUSE
  412. ADD RSP, 8
  413. END HIntToLReal;
  414. (** -- Processor initialization -- *)
  415. PROCEDURE -SetFCR (s: SET);
  416. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  417. FLDCW WORD [RSP] ; parameter s
  418. POP RAX
  419. END SetFCR;
  420. PROCEDURE -FCR (): SET;
  421. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  422. PUSH 0
  423. FNSTCW WORD [RSP]
  424. FWAIT
  425. POP RAX
  426. END FCR;
  427. PROCEDURE -InitFPU;
  428. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  429. FNINIT
  430. END InitFPU;
  431. (** Setup FPU control word of current processor. *)
  432. PROCEDURE SetupFPU*;
  433. BEGIN
  434. InitFPU; SetFCR(fcr)
  435. END SetupFPU;
  436. (* Set up flags (3, p. 20)
  437. Bit
  438. 1,3,5,15,19..31 - no change
  439. 0,2,4,6..7,11 - CF,PF,AF,ZF,SF,OF off
  440. 8 - TF off
  441. 9 - IF off (no interrupts)
  442. 10 - DF off
  443. 12..13 - IOPL = 3
  444. 14 - NT off (no Windows)
  445. 16 - RF off (no Interference)
  446. 17- VM off (no virtual 8086 mode)
  447. 18 - AC off (no 486 alignment checks) *)
  448. PROCEDURE -SetupFlags;
  449. CODE {SYSTEM.AMD64}
  450. PUSHFD
  451. AND DWORD [RSP], 0FFF8802AH
  452. OR DWORD [RSP], 3000H
  453. POPFD
  454. END SetupFlags;
  455. (* Set up various 486-specific flags (3, p. 23)
  456. 1. Enable exception 16 on math errors.
  457. 2. Disable supervisor mode faults on write to read-only pages
  458. (386-compatible for stack checking).
  459. 3. Enable the Alignment Check field in RFLAGS *)
  460. PROCEDURE -Setup486Flags;
  461. CODE {SYSTEM.486, SYSTEM.Privileged}
  462. MOV EAX, CR0
  463. OR EAX, 00040020H
  464. AND EAX, 0FFFEFFFFH
  465. MOV CR0, EAX
  466. END Setup486Flags;
  467. (* Set up 586-specific things *)
  468. PROCEDURE -Setup586Flags;
  469. CODE {SYSTEM.586, SYSTEM.Privileged}
  470. MOV EAX, CR4
  471. BTR EAX, 2 ; clear TSD
  472. MOV CR4, EAX
  473. END Setup586Flags;
  474. (* Disable exceptions caused by math in new task. (1, p. 479) *)
  475. PROCEDURE -DisableMathTaskEx;
  476. CODE {SYSTEM.386, SYSTEM.Privileged}
  477. MOV EAX,CR0
  478. AND AL, 0F5H
  479. MOV CR0, EAX
  480. END DisableMathTaskEx;
  481. (* Disable math emulation (1, p. 479) , bit 2 of CR0 *)
  482. PROCEDURE -DisableEmulation;
  483. CODE {SYSTEM.386, SYSTEM.Privileged}
  484. MOV EAX, CR0
  485. AND AL, 0FBH
  486. MOV CR0, EAX
  487. END DisableEmulation;
  488. (** CPU identification *)
  489. PROCEDURE CPUID*(function : LONGINT; VAR eax, ebx, ecx, edx : SET);
  490. CODE {SYSTEM.AMD64}
  491. MOV EAX, [RBP+function] ; CPUID function parameter
  492. MOV RSI, [RBP+ecx] ; copy ecx into ECX (sometimes used as input parameter)
  493. MOV ECX, [RSI]
  494. CPUID ; execute CPUID
  495. MOV RSI, [RBP+eax] ; copy EAX into eax;
  496. MOV [RSI], EAX
  497. MOV RSI, [RBP+ebx] ; copy EBX into ebx
  498. MOV [RSI], EBX
  499. MOV RSI, [RBP+ecx] ; copy ECX into ecx
  500. MOV [RSI], ECX
  501. MOV RSI, [RBP+edx] ; copy EDX into edx
  502. MOV [RSI], EDX
  503. END CPUID;
  504. (* If the CPUID instruction is supported, the ID flag (bit 21) of the EFLAGS register is r/w *)
  505. PROCEDURE CpuIdSupported*() : BOOLEAN;
  506. CODE {SYSTEM.AMD64}
  507. PUSHFQ ; save RFLAGS
  508. POP RAX ; store RFLAGS in RAX
  509. MOV EBX, EAX ; save EBX for later testing
  510. XOR EAX, 00200000H ; toggle bit 21
  511. PUSH RAX ; push to stack
  512. POPFQ ; save changed RAX to RFLAGS
  513. PUSHFQ ; push RFLAGS to TOS
  514. POP RAX ; store RFLAGS in RAX
  515. CMP EAX, EBX ; see if bit 21 has changed
  516. SETNE AL; ; return TRUE if bit 21 has changed, FALSE otherwise
  517. END CpuIdSupported;
  518. (** Initialise current processor. Must be called by every processor. *)
  519. PROCEDURE InitProcessor*;
  520. BEGIN
  521. SetupFlags;
  522. Setup486Flags;
  523. Setup586Flags;
  524. DisableMathTaskEx;
  525. DisableEmulation;
  526. SetupFPU;
  527. END InitProcessor;
  528. (** Initialize APIC ID address. *)
  529. PROCEDURE InitAPICIDAdr* (adr: ADDRESS; CONST m: IDMap);
  530. VAR s: SET;
  531. BEGIN
  532. s := DisableInterrupts ();
  533. idAdr := adr; map := m;
  534. RestoreInterrupts (s)
  535. END InitAPICIDAdr;
  536. PROCEDURE InitBoot;
  537. VAR
  538. largestFunction, i: LONGINT;
  539. eax, ebx, ecx, edx : SET;
  540. logicalProcessorCount : LONGINT;
  541. u: ARRAY 8 OF CHAR; vendor : Vendor;
  542. PROCEDURE GetString(VAR string : ARRAY OF CHAR; offset : LONGINT; register : SET);
  543. BEGIN
  544. string[offset] :=CHR(SYSTEM.VAL(LONGINT, register * {0..7}));
  545. string[offset+1] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {8..15}, -8)));
  546. string[offset+2] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {16..23}, -16)));
  547. string[offset+3] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {24..31}, -24)));
  548. END GetString;
  549. BEGIN
  550. vendor := "Unknown"; features := {}; features2 := {};
  551. coresPerProcessor := 1; threadsPerCore := 1;
  552. IF CpuIdSupported() THEN
  553. (* Assume that all processors are the same *)
  554. (* CPUID standard function 0 returns: eax: largest CPUID standard function supported, ebx, edx, ecx: vendor string *)
  555. CPUID(0, eax, ebx, ecx, edx);
  556. largestFunction := SYSTEM.VAL(LONGINT, eax);
  557. ASSERT(LEN(vendor) >= 13);
  558. GetString(vendor, 0, ebx); GetString(vendor, 4, edx); GetString(vendor, 8, ecx); vendor[12] := 0X;
  559. IF (largestFunction >= 1) THEN
  560. (* CPUID standard function 1 returns: CPU features in ecx & edx *)
  561. CPUID(1, eax, ebx, ecx, edx);
  562. features := SYSTEM.VAL(SET, edx);
  563. features2 := SYSTEM.VAL(SET, ecx);
  564. (* The code below is used to determine the number of threads per processor core (hyperthreading). This is required
  565. since processors supporting hyperthreading are listed only once in the MP tables, so we need to know the
  566. exact number of threads per processor to start the processor correctly *)
  567. IF (HTT IN features) THEN (* multithreading supported by CPU *)
  568. (* logical processor count = number of cores * number of threads per core = total number of threads supported *)
  569. logicalProcessorCount := SYSTEM.VAL(LONGINT, LSH(ebx * {16..23}, -16));
  570. IF (vendor = "GenuineIntel") THEN
  571. IF (largestFunction >= 4) THEN
  572. (* CPUID standard function 4 returns: number of processor cores -1 on this die eax[26.31] *)
  573. ecx := SYSTEM.VAL(SET, 0); (* input parameter - must be set to 0 *)
  574. CPUID(4, eax, ebx, ecx, edx);
  575. coresPerProcessor := SYSTEM.VAL(LONGINT, LSH(eax * {26..31}, -26)) + 1;
  576. threadsPerCore := logicalProcessorCount DIV coresPerProcessor;
  577. ELSE
  578. threadsPerCore := logicalProcessorCount;
  579. END;
  580. ELSIF (vendor = "AuthenticAMD") THEN
  581. (* CPUID extended function 1 returns: largest extended function *)
  582. CPUID((80000000H), eax, ebx, ecx, edx);
  583. largestFunction := SYSTEM.VAL(LONGINT, eax - {31}); (* remove sign *)
  584. IF (largestFunction >= 8) THEN
  585. (* CPUID extended function 8 returns: *)
  586. CPUID((80000008H), eax, ebx, ecx, edx);
  587. coresPerProcessor := SYSTEM.VAL(LONGINT, ecx * {0..7}) + 1;
  588. threadsPerCore := logicalProcessorCount DIV coresPerProcessor;
  589. ELSIF (largestFunction >= 1) THEN
  590. (* CPUID extended function 1 returns CmpLegacy bit in ecx *)
  591. CPUID((80000001H), eax, ebx, ecx, edx);
  592. IF 1 IN ecx THEN (* CmpLegacy bit set -> no hyperthreading *)
  593. coresPerProcessor := logicalProcessorCount;
  594. threadsPerCore := 1;
  595. END;
  596. ELSE
  597. (* single-core, single-thread *)
  598. END;
  599. ELSE
  600. Trace.String("Machine: "); Trace.Yellow; Trace.String("Warning: Cannot detect hyperthreading, unknown CPU vendor ");
  601. Trace.String(vendor); Trace.Ln; Trace.Default;
  602. END;
  603. END;
  604. END;
  605. END;
  606. Trace.String("Machine: "); Trace.Int(coresPerProcessor, 0); Trace.String(" cores per physical package, ");
  607. Trace.Int(threadsPerCore, 0); Trace.String(" threads per core.");
  608. Trace.Ln;
  609. InitFPU;
  610. fcr := (FCR () - {0, 2, 3, 10, 11}) + {0 .. 5, 8, 9}; (* default FCR RC=00B *)
  611. bootID := 0; map[0] := 0;
  612. idAdr := ADDRESSOF (bootID);
  613. (* allow user to specify GetTimer rate, for tracing purposes *)
  614. GetConfig ("MHz", u);
  615. i := 0; mhz := StrToInt (i, u);
  616. END InitBoot;
  617. (** -- Configuration and bootstrapping -- *)
  618. (** Return the value of the configuration string specified by parameter name in parameter val. Returns val = "" if the string was not found, or has an empty value. *)
  619. PROCEDURE GetConfig* (CONST name: ARRAY OF CHAR; VAR val: ARRAY OF CHAR);
  620. VAR i, src: LONGINT; ch: CHAR;
  621. BEGIN
  622. ASSERT (name[0] # "="); (* no longer supported, use GetInit instead *)
  623. src := 0;
  624. LOOP
  625. ch := config[src];
  626. IF ch = 0X THEN EXIT END;
  627. i := 0;
  628. LOOP
  629. ch := config[src];
  630. IF (ch # name[i]) OR (name[i] = 0X) THEN EXIT END;
  631. INC (i); INC (src)
  632. END;
  633. IF (ch = 0X) & (name[i] = 0X) THEN (* found: (src^ = 0X) & (name[i] = 0X) *)
  634. i := 0;
  635. REPEAT
  636. INC (src); ch := config[src]; val[i] := ch; INC (i);
  637. IF i = LEN(val) THEN val[i - 1] := 0X; RETURN END (* val too short *)
  638. UNTIL ch = 0X;
  639. val[i] := 0X; RETURN
  640. ELSE
  641. WHILE ch # 0X DO (* skip to end of name *)
  642. INC (src); ch := config[src]
  643. END;
  644. INC (src);
  645. REPEAT (* skip to end of value *)
  646. ch := config[src]; INC (src)
  647. UNTIL ch = 0X
  648. END
  649. END;
  650. val[0] := 0X
  651. END GetConfig;
  652. (** Get CHS parameters of first two BIOS-supported hard disks. *)
  653. PROCEDURE GetDiskCHS* (d: LONGINT; VAR cyls, hds, spt: LONGINT);
  654. BEGIN
  655. cyls := chs[d].cyls; hds := chs[d].hds; spt := chs[d].spt
  656. END GetDiskCHS;
  657. (** Get parameter values from Init string. If n = 0, return val = ASH(bx, 16) + ax, and if n = 1, return val = ASH(dx, 16) + cx, where ax, bx, cx, dx are the register values after the OBL boot loader or noboot.exe have executed the 16-bit x86 code in the Init string. *)
  658. PROCEDURE GetInit* (n: LONGINT; VAR val: HUGEINT);
  659. BEGIN
  660. val := initRegs[n]
  661. END GetInit;
  662. (** Convert a string to an integer. Parameter i specifies where in the string scanning should begin (usually 0 in the first call). Scanning stops at the first non-valid character, and i returns the updated position. Parameter s is the string to be scanned. The value is returned as result, or 0 if not valid. Syntax: number = ["-"] digit {digit} ["H" | "h"] . digit = "0" | ... "9" | "A" .. "F" | "a" .. "f" . If the number contains any hexdecimal letter, or if it ends in "H" or "h", it is interpreted as hexadecimal. *)
  663. PROCEDURE StrToInt* (VAR i: LONGINT; CONST s: ARRAY OF CHAR): LONGINT;
  664. VAR vd, vh, sgn, d: LONGINT; hex: BOOLEAN;
  665. BEGIN
  666. vd := 0; vh := 0; hex := FALSE;
  667. IF s[i] = "-" THEN sgn := -1; INC (i) ELSE sgn := 1 END;
  668. LOOP
  669. IF (s[i] >= "0") & (s[i] <= "9") THEN d := ORD (s[i])-ORD ("0")
  670. ELSIF (CAP (s[i]) >= "A") & (CAP (s[i]) <= "F") THEN d := ORD (CAP (s[i]))-ORD ("A") + 10; hex := TRUE
  671. ELSE EXIT
  672. END;
  673. vd := 10*vd + d; vh := 16*vh + d;
  674. INC (i)
  675. END;
  676. IF CAP (s[i]) = "H" THEN hex := TRUE; INC (i) END; (* optional H *)
  677. IF hex THEN vd := vh END;
  678. RETURN sgn * vd
  679. END StrToInt;
  680. (* Delay for IO *)
  681. PROCEDURE -Wait*;
  682. CODE {SYSTEM.AMD64}
  683. JMP N1
  684. N1: JMP N2
  685. N2: JMP N3
  686. N3:
  687. END Wait;
  688. (* Reset processor by causing a double fault. *)
  689. PROCEDURE Reboot;
  690. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  691. PUSH DWORD 0
  692. PUSH DWORD 0
  693. LIDT [RSP]
  694. INT 3
  695. END Reboot;
  696. (** Shut down the system. If parameter reboot is set, attempt to reboot the system. *)
  697. PROCEDURE Shutdown* (reboot: BOOLEAN);
  698. VAR i: LONGINT;
  699. BEGIN
  700. Cli;
  701. IF reboot THEN (* attempt reboot *)
  702. Portout8 (70H, 8FX); (* Reset type: p. 5-37 AT Tech. Ref. *)
  703. Wait; Portout8 (71H, 0X); (* Note: soft boot flag was set in InitMemory *)
  704. Wait; Portout8 (70H, 0DX);
  705. Wait; Portout8 (64H, 0FEX); (* reset CPU *)
  706. FOR i := 1 TO 10000 DO END;
  707. Reboot
  708. END;
  709. LOOP END
  710. END Shutdown;
  711. (* Get hard disk parameters. *)
  712. PROCEDURE GetPar (p: ADDRESS; ofs: LONGINT): LONGINT;
  713. VAR ch: CHAR;
  714. BEGIN
  715. SYSTEM.GET (p + 12 + ofs, ch);
  716. RETURN ORD (ch)
  717. END GetPar;
  718. (* Read boot table. *)
  719. PROCEDURE ReadBootTable (bt: ADDRESS);
  720. VAR i, p: ADDRESS; j, d, type, addr, size, heapSize: LONGINT; ch: CHAR;
  721. BEGIN
  722. heapSize := 0; lowTop := 0;
  723. p := bt; d := 0;
  724. LOOP
  725. SYSTEM.GET (p, type);
  726. IF type = -1 THEN
  727. EXIT (* end *)
  728. ELSIF type = 3 THEN (* boot memory/top of low memory *)
  729. SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size);
  730. lowTop := addr + size
  731. ELSIF type = 4 THEN (* free memory/extended memory size *)
  732. SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size);
  733. IF addr = HeapAdr THEN heapSize := size END
  734. ELSIF type = 5 THEN (* HD config *)
  735. IF d < MaxDisks THEN
  736. chs[d].cyls := GetPar (p, 0) + 100H * GetPar (p, 1);
  737. chs[d].hds := GetPar (p, 2); chs[d].spt := GetPar (p, 14);
  738. INC (d)
  739. END
  740. ELSIF type = 8 THEN (* config strings *)
  741. i := p + 8; j := 0; (* copy the config strings over *)
  742. LOOP
  743. SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j);
  744. IF ch = 0X THEN EXIT END;
  745. REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X; (* end of name *)
  746. REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X (* end of value *)
  747. END
  748. END;
  749. SYSTEM.GET (p + 4, size); INC (p, size)
  750. END;
  751. ASSERT((heapSize # 0) & (lowTop # 0));
  752. memTop := HeapAdr + heapSize
  753. END ReadBootTable;
  754. (** Read a byte from the non-volatile setup memory. *)
  755. PROCEDURE GetNVByte* (ofs: LONGINT): CHAR;
  756. VAR c: CHAR;
  757. BEGIN
  758. Portout8 (70H, CHR(ofs)); Wait; Portin8(71H, c);
  759. RETURN c
  760. END GetNVByte;
  761. (** Write a byte to the non-volatile setup memory. *)
  762. PROCEDURE PutNVByte* (ofs: LONGINT; val: CHAR);
  763. BEGIN
  764. Portout8 (70H, CHR(ofs)); Wait; Portout8 (71H, val)
  765. END PutNVByte;
  766. (** Compute a checksum for the Intel SMP spec floating pointer structure. *)
  767. PROCEDURE ChecksumMP* (adr: ADDRESS; size: SIZE): LONGINT;
  768. VAR sum: LONGINT; x: ADDRESS; ch: CHAR;
  769. BEGIN
  770. sum := 0;
  771. FOR x := adr TO adr + size-1 DO
  772. SYSTEM.GET (x, ch);
  773. sum := (sum + ORD(ch)) MOD 256
  774. END;
  775. RETURN sum
  776. END ChecksumMP;
  777. (* Search for MP floating pointer structure. *)
  778. PROCEDURE SearchMem (adr: ADDRESS; size: SIZE): ADDRESS;
  779. VAR x, len: LONGINT; ch: CHAR;
  780. BEGIN
  781. WHILE size > 0 DO
  782. SYSTEM.GET (adr, x);
  783. IF x = 05F504D5FH THEN (* "_MP_" found *)
  784. SYSTEM.GET (adr + 8, ch); len := ORD(ch)*16;
  785. IF len > 0 THEN
  786. SYSTEM.GET (adr + 9, ch);
  787. IF (ch = 1X) OR (ch >= 4X) THEN (* version 1.1 or 1.4 or higher *)
  788. IF ChecksumMP(adr, len) = 0 THEN
  789. RETURN adr (* found *)
  790. END
  791. END
  792. END
  793. END;
  794. INC (adr, 16); DEC (size, 16)
  795. END;
  796. RETURN NilAdr (* not found *)
  797. END SearchMem;
  798. (* Search for MP spec info. *)
  799. PROCEDURE SearchMP;
  800. VAR adr: ADDRESS;
  801. BEGIN
  802. adr := 0;
  803. SYSTEM.GET (040EH, SYSTEM.VAL (INTEGER, adr)); (* EBDA address *)
  804. adr := adr*16;
  805. IF adr < 100000H THEN adr := SearchMem(adr, 1024) (* 1. look in EBDA *)
  806. ELSE adr := NilAdr
  807. END;
  808. IF adr = NilAdr THEN (* 2. look in last kb of base memory *)
  809. adr := SearchMem(lowTop + (-lowTop) MOD 10000H - 1024, 1024);
  810. IF adr = NilAdr THEN (* 3. look at top of physical memory *)
  811. adr := SearchMem(memTop - 1024, 1024);
  812. IF adr = NilAdr THEN (* 4. look in BIOS ROM space *)
  813. adr := SearchMem(0E0000H, 20000H)
  814. END
  815. END
  816. END;
  817. IF adr = NilAdr THEN
  818. revMP := 0X; configMP := NilAdr
  819. ELSE
  820. SYSTEM.GET (adr + 9, revMP);
  821. SYSTEM.MOVE(adr + 11, ADDRESSOF(featureMP[0]), 5); (* feature bytes *)
  822. configMP := SYSTEM.GET32 (adr + 4); (* physical address outside reported RAM (spec 1.4 p. 4-2) *)
  823. IF configMP = 0 THEN configMP := NilAdr END
  824. END
  825. END SearchMP;
  826. (* Allocate area for ISA DMA. *)
  827. PROCEDURE AllocateDMA;
  828. VAR old: ADDRESS;
  829. BEGIN
  830. old := lowTop;
  831. dmaSize := DefaultDMASize*1024;
  832. ASSERT((dmaSize >= 0) & (dmaSize <= 65536));
  833. IF (lowTop-dmaSize) DIV 65536 # (lowTop-1) DIV 65536 THEN (* crosses 64KB boundary *)
  834. DEC (lowTop, lowTop MOD 65536) (* round down to 64KB boundary *)
  835. END;
  836. DEC (lowTop, dmaSize); (* allocate memory *)
  837. dmaSize := old - lowTop (* how much was allocated (including rounding) *)
  838. END AllocateDMA;
  839. (* Check if the specified address is RAM. *)
  840. PROCEDURE IsRAM(adr: ADDRESS): BOOLEAN;
  841. CONST Pattern1 = (0BEEFC0DEH); Pattern2 = (0AA55FF00H);
  842. VAR save, x: LONGINT; ok: BOOLEAN;
  843. BEGIN
  844. ok := FALSE;
  845. SYSTEM.GET (adr, save);
  846. SYSTEM.PUT (adr, Pattern1); (* attempt 1st write *)
  847. x := Pattern2; (* write something else *)
  848. SYSTEM.GET (adr, x); (* attempt 1st read *)
  849. IF x = Pattern1 THEN (* first test passed *)
  850. SYSTEM.PUT (adr, Pattern2); (* attempt 2nd write *)
  851. x := Pattern1; (* write something else *)
  852. SYSTEM.GET (adr, x); (* attempt 2nd read *)
  853. ok := (x = Pattern2)
  854. END;
  855. SYSTEM.PUT (adr, save);
  856. RETURN ok
  857. END IsRAM;
  858. (* Map the physical address in the second virtual page *)
  859. PROCEDURE -InvalidateTLB (address: ADDRESS);
  860. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  861. POP RAX
  862. INVLPG [RAX]
  863. END InvalidateTLB;
  864. PROCEDURE -GetPML4Base (): ADDRESS;
  865. CODE {SYSTEM.AMD64}
  866. MOV RAX, CR3
  867. END GetPML4Base;
  868. PROCEDURE -INVLPG (adr: ADDRESS);
  869. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  870. POP RAX
  871. INVLPG [RAX]
  872. END INVLPG;
  873. (* Check amount of memory available and update memTop. *)
  874. PROCEDURE CheckMemory;
  875. CONST K = 1024; M = K * K; PS = 2 * M; ExtMemAdr = M;
  876. TPS = 4 * K; UserPage = 7; PageNotPresent = 0;
  877. VAR s: ARRAY 16 OF CHAR; i: LONGINT;
  878. physicalAddress, pml4Base, pdpBase, pdBase: ADDRESS;
  879. pml4e, pdpe, pde, lastTable: ADDRESS;
  880. PROCEDURE AllocateTranslationTable (VAR baseAddress, firstEntry: ADDRESS);
  881. BEGIN
  882. baseAddress := lastTable;
  883. firstEntry := baseAddress;
  884. INC (lastTable, TPS);
  885. Fill32 (baseAddress, TPS, PageNotPresent)
  886. END AllocateTranslationTable;
  887. BEGIN
  888. GetConfig("ExtMemSize", s); (* in MB *)
  889. IF s[0] # 0X THEN (* override detection *)
  890. i := 0;
  891. memTop := ExtMemAdr + (StrToInt(i, s)) * M
  892. END;
  893. pml4Base := GetPML4Base ();
  894. DEC (pml4Base, pml4Base MOD TPS);
  895. SYSTEM.GET (pml4Base, pdpBase);
  896. DEC (pdpBase, pdpBase MOD TPS);
  897. SYSTEM.GET (pdpBase, pdBase);
  898. DEC (pdBase, pdBase MOD TPS);
  899. physicalAddress := PS;
  900. lastTable := pdBase + TPS;
  901. pml4e := pml4Base;
  902. pdpe := pdpBase;
  903. pde := pdBase;
  904. WHILE (pml4e < pml4Base + TPS) DO
  905. WHILE (pdpe < pdpBase + TPS) DO
  906. WHILE (pde < pdBase + TPS) DO
  907. INC (pde, 8);
  908. SYSTEM.PUT (pde, physicalAddress + UserPage + 80H);
  909. INVLPG (physicalAddress);
  910. INC (physicalAddress, PS);
  911. IF physicalAddress >= memTop THEN RETURN END;
  912. END;
  913. INC (pdpe, 8);
  914. AllocateTranslationTable (pdBase, pde);
  915. SYSTEM.PUT (pdpe, pde + UserPage);
  916. END;
  917. INC (pml4e, 8);
  918. AllocateTranslationTable (pdpBase, pdpe);
  919. SYSTEM.PUT (pml4e, pdpe + UserPage);
  920. END;
  921. HALT (99);
  922. END CheckMemory;
  923. (* Initialize locks. *)
  924. PROCEDURE InitLocks;
  925. VAR i: LONGINT; s: ARRAY 12 OF CHAR;
  926. BEGIN
  927. IF TimeCount # 0 THEN
  928. GetConfig("LockTimeout", s);
  929. i := 0; maxTime := StrToInt(i, s);
  930. IF maxTime > MAX(LONGINT) DIV 1000000 THEN
  931. maxTime := MAX(LONGINT)
  932. ELSE
  933. maxTime := maxTime * 1000000
  934. END
  935. END;
  936. FOR i := 0 TO MaxCPU-1 DO
  937. proc[i].locksHeld := {}; proc[i].preemptCount := 0
  938. END;
  939. FOR i := 0 TO MaxLocks-1 DO
  940. lock[i].locked := FALSE
  941. END
  942. END InitLocks;
  943. (* Return flags state. *)
  944. PROCEDURE -GetFlags (): SET;
  945. CODE {SYSTEM.AMD64}
  946. PUSHFQ
  947. POP RAX
  948. END GetFlags;
  949. (* Set flags state. *)
  950. PROCEDURE -SetFlags (s: SET);
  951. CODE {SYSTEM.AMD64}
  952. POPFQ
  953. END SetFlags;
  954. PROCEDURE -PushFlags*;
  955. CODE {SYSTEM.AMD64}
  956. PUSHFQ
  957. END PushFlags;
  958. PROCEDURE -PopFlags*;
  959. CODE {SYSTEM.AMD64}
  960. POPFQ
  961. END PopFlags;
  962. (** Disable preemption on the current processor (increment the preemption counter). Returns the current processor ID as side effect. *)
  963. PROCEDURE AcquirePreemption* (): LONGINT;
  964. VAR id: LONGINT;
  965. BEGIN
  966. PushFlags; Cli;
  967. id := ID ();
  968. INC (proc[id].preemptCount);
  969. PopFlags;
  970. RETURN id
  971. END AcquirePreemption;
  972. (** Enable preemption on the current processor (decrement the preemption counter). *)
  973. PROCEDURE ReleasePreemption*;
  974. VAR id: LONGINT;
  975. BEGIN
  976. PushFlags; Cli;
  977. id := ID ();
  978. IF StrongChecks THEN
  979. ASSERT(proc[id].preemptCount > 0)
  980. END;
  981. DEC (proc[id].preemptCount);
  982. PopFlags
  983. END ReleasePreemption;
  984. (** Return the preemption counter of the current processor (specified in parameter). *)
  985. PROCEDURE PreemptCount* (id: LONGINT): LONGINT;
  986. BEGIN
  987. IF StrongChecks THEN
  988. (*ASSERT(~(9 IN GetFlags ()));*) (* interrupts off *) (* commented out because check is too strong *)
  989. ASSERT(id = ID ()) (* caller must specify current processor *)
  990. END;
  991. RETURN proc[id].preemptCount
  992. END PreemptCount;
  993. (* Spin waiting for a lock. Return AL = 1X iff timed out. *)
  994. PROCEDURE AcquireSpinTimeout(VAR locked: BOOLEAN; count: LONGINT; flags: SET): CHAR;
  995. CODE {SYSTEM.AMD64}
  996. MOV RSI, [RBP + flags] ; RSI := flags
  997. MOV EDI, [RBP + count] ; RDI := count
  998. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  999. MOV AL, 1 ; AL := 1
  1000. CLI ; switch interrupts off before acquiring lock
  1001. test:
  1002. CMP [RBX], AL ; locked? { AL = 1 }
  1003. JE wait ; yes, go wait
  1004. XCHG [RBX], AL ; set and read the lock atomically. LOCK prefix implicit.
  1005. CMP AL, 1 ; was locked?
  1006. JNE exit ; no, we have it now, interrupts are off, and AL # 1
  1007. wait:
  1008. ; ASSERT(AL = 1)
  1009. XOR RCX, RCX ; just in case some processor interprets REP this way
  1010. REP NOP ; PAUSE instruction (* see SpinHint *)
  1011. TEST RSI, 200H ; bit 9 - IF
  1012. JZ intoff
  1013. STI ; restore interrupt state quickly to allow pending interrupts (e.g. AosProcessors.StopAll/Broadcast)
  1014. NOP ; NOP required, otherwise STI; CLI not interruptable
  1015. CLI ; disable interrupts
  1016. intoff:
  1017. DEC EDI ; counter
  1018. JNZ test ; not timed out yet
  1019. OR EDI, [RBP + count] ; re-fetch original value & set flags
  1020. JZ test ; if count = 0, retry forever
  1021. ; timed out (AL = 1)
  1022. exit:
  1023. END AcquireSpinTimeout;
  1024. (** Acquire a spin-lock and disable interrupts. *)
  1025. PROCEDURE Acquire* (level: LONGINT);
  1026. VAR id, i: LONGINT; flags: SET; start: HUGEINT;
  1027. BEGIN
  1028. id := AcquirePreemption ();
  1029. flags := GetFlags (); (* store state of interrupt flag *)
  1030. IF StrongChecks THEN
  1031. ASSERT(~(9 IN flags) OR (proc[id].locksHeld = {})); (* interrupts enabled => no locks held *)
  1032. ASSERT(~(level IN proc[id].locksHeld)) (* recursive locks not allowed *)
  1033. END;
  1034. IF (TimeCount = 0) OR (maxTime = 0) THEN
  1035. IF AcquireSpinTimeout(lock[level].locked, 0, flags) = 0X THEN END; (* {interrupts off} *)
  1036. ELSE
  1037. start := GetTimer ();
  1038. WHILE AcquireSpinTimeout(lock[level].locked, TimeCount, flags) = 1X DO
  1039. IF GetTimer () - start > maxTime THEN
  1040. trapState := proc;
  1041. trapLocksBusy := {};
  1042. FOR i := 0 TO MaxLocks-1 DO
  1043. IF lock[i].locked THEN INCL(trapLocksBusy, i) END
  1044. END;
  1045. HALT(1301) (* Lock timeout - see Traps *)
  1046. END
  1047. END
  1048. END;
  1049. IF proc[id].locksHeld = {} THEN
  1050. proc[id].state := flags
  1051. END;
  1052. INCL(proc[id].locksHeld, level); (* we now hold the lock *)
  1053. IF StrongChecks THEN (* no lower-level locks currently held by this processor *)
  1054. ASSERT((level = 0) OR (proc[id].locksHeld * {0..level-1} = {}))
  1055. END
  1056. END Acquire;
  1057. (** Release a spin-lock. Switch on interrupts when last lock released. *)
  1058. PROCEDURE Release* (level: LONGINT);
  1059. VAR id: LONGINT; flags: SET;
  1060. BEGIN (* {interrupts off} *)
  1061. id := ID ();
  1062. IF StrongChecks THEN
  1063. ASSERT(~(9 IN GetFlags ())); (* {interrupts off} *)
  1064. ASSERT(lock[level].locked);
  1065. ASSERT(level IN proc[id].locksHeld)
  1066. END;
  1067. EXCL(proc[id].locksHeld, level);
  1068. IF proc[id].locksHeld = {} THEN
  1069. flags := proc[id].state ELSE flags := GetFlags ()
  1070. END;
  1071. lock[level].locked := FALSE;
  1072. SetFlags(flags);
  1073. ReleasePreemption
  1074. END Release;
  1075. (** Acquire all locks. Only for exceptional cases. *)
  1076. PROCEDURE AcquireAll*;
  1077. VAR lock: LONGINT;
  1078. BEGIN
  1079. FOR lock := HighestLock TO LowestLock BY -1 DO Acquire(lock) END
  1080. END AcquireAll;
  1081. (** Release all locks. Reverse of AcquireAll. *)
  1082. PROCEDURE ReleaseAll*;
  1083. VAR lock: LONGINT;
  1084. BEGIN
  1085. FOR lock := LowestLock TO HighestLock DO Release(lock) END
  1086. END ReleaseAll;
  1087. (** Break all locks held by current processor (for exception handling). Returns levels released. *)
  1088. PROCEDURE BreakAll* (): SET;
  1089. VAR id, level: LONGINT; released: SET;
  1090. BEGIN
  1091. id := AcquirePreemption ();
  1092. PushFlags; Cli;
  1093. released := {};
  1094. FOR level := 0 TO MaxLocks-1 DO
  1095. IF level IN proc[id].locksHeld THEN
  1096. lock[level].locked := FALSE; (* break the lock *)
  1097. EXCL(proc[id].locksHeld, level);
  1098. INCL(released, level)
  1099. END
  1100. END;
  1101. IF proc[id].preemptCount > 1 THEN INCL(released, Preemption) END;
  1102. proc[id].preemptCount := 0; (* clear preemption flag *)
  1103. PopFlags;
  1104. RETURN released
  1105. END BreakAll;
  1106. (** Acquire a fine-grained lock on an active object. *)
  1107. PROCEDURE AcquireObject* (VAR locked: BOOLEAN);
  1108. CODE {SYSTEM.AMD64}
  1109. PUSHFQ
  1110. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  1111. MOV AL, 1
  1112. test:
  1113. CMP [RBX], AL ; locked? { AL = 1 }
  1114. JNE try
  1115. STI
  1116. PAUSE ; PAUSE instruction (* see SpinHint *)
  1117. CLI
  1118. JMP test
  1119. try:
  1120. XCHG [RBX], AL ; set and read the lock atomically. LOCK prefix implicit.
  1121. CMP AL, 1 ; was locked?
  1122. JE test ; yes, try again
  1123. POPFQ
  1124. END AcquireObject;
  1125. (** Release an active object lock. *)
  1126. PROCEDURE ReleaseObject* (VAR locked: BOOLEAN);
  1127. CODE {SYSTEM.AMD64}
  1128. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  1129. MOV BYTE [RBX], 0
  1130. END ReleaseObject;
  1131. (* Load global descriptor table *)
  1132. PROCEDURE LoadGDT(base: ADDRESS; size: SIZE);
  1133. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1134. ; LGDT needs 10 bytes: 2 for the 16-bit limit and 8 for the 64-bit base address in this order
  1135. ; Assumption: size argument in front of base -> promote size value to upper 48 bits of size
  1136. SHL QWORD [RBP + size], 64-16
  1137. LGDT [RBP + size + (64-16) / 8]
  1138. END LoadGDT;
  1139. (* Load segment registers *)
  1140. PROCEDURE LoadSegRegs(data: INTEGER);
  1141. CODE {SYSTEM.AMD64}
  1142. MOV AX, [RBP + data]
  1143. MOV DS, AX
  1144. XOR AX, AX
  1145. MOV ES, AX
  1146. MOV FS, AX
  1147. MOV GS, AX
  1148. END LoadSegRegs;
  1149. (* Return CS. *)
  1150. PROCEDURE -CS* (): INTEGER;
  1151. CODE {SYSTEM.AMD64}
  1152. MOV AX, CS
  1153. END CS;
  1154. (** -- Memory management -- *)
  1155. (* Allocate a physical page below 1M. Parameter adr returns physical and virtual address (or NilAdr).*)
  1156. PROCEDURE NewLowPage(VAR adr: ADDRESS);
  1157. BEGIN
  1158. adr := freeLowPage;
  1159. IF freeLowPage # NilAdr THEN
  1160. SYSTEM.GET (freeLowPage, freeLowPage); (* freeLowPage := freeLowPage.next *)
  1161. DEC(freeLowPages)
  1162. END
  1163. END NewLowPage;
  1164. (* Allocate a directly-mapped page. Parameter adr returns physical and virtual address (or NilAdr). *)
  1165. PROCEDURE NewDirectPage(VAR adr: ADDRESS);
  1166. BEGIN
  1167. IF pageHeapAdr # heapEndAdr THEN
  1168. DEC(pageHeapAdr, PS); adr := pageHeapAdr;
  1169. DEC(freeHighPages)
  1170. ELSE
  1171. adr := NilAdr
  1172. END
  1173. END NewDirectPage;
  1174. (* Allocate a physical page. *)
  1175. PROCEDURE NewPage(VAR physAdr: ADDRESS);
  1176. VAR sp, prev: ADDRESS;
  1177. BEGIN
  1178. SYSTEM.GET(pageStackAdr + NodeSP, sp);
  1179. ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *)
  1180. IF sp > MinSP THEN (* stack not empty, pop entry *)
  1181. DEC(sp, AddressSize);
  1182. SYSTEM.GET (pageStackAdr+sp, physAdr);
  1183. SYSTEM.PUT (pageStackAdr+NodeSP, sp);
  1184. SYSTEM.GET (pageStackAdr+NodePrev, prev);
  1185. IF (sp = MinSP) & (prev # NilAdr) THEN
  1186. pageStackAdr := prev
  1187. END;
  1188. DEC(freeHighPages)
  1189. ELSE
  1190. NewDirectPage(physAdr)
  1191. END
  1192. END NewPage;
  1193. (* Deallocate a physical page. *)
  1194. PROCEDURE DisposePage(physAdr: ADDRESS);
  1195. VAR sp, next, newAdr: ADDRESS;
  1196. BEGIN
  1197. SYSTEM.GET (pageStackAdr + NodeSP, sp);
  1198. ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *)
  1199. IF sp = MaxSP THEN (* current stack full *)
  1200. SYSTEM.GET (pageStackAdr + NodeNext, next);
  1201. IF next # NilAdr THEN (* next stack exists, make it current *)
  1202. pageStackAdr := next;
  1203. SYSTEM.GET (pageStackAdr+NodeSP, sp);
  1204. ASSERT(sp = MinSP) (* must be empty *)
  1205. ELSE (* allocate next stack *)
  1206. NewDirectPage(newAdr);
  1207. IF newAdr = NilAdr THEN
  1208. NewLowPage(newAdr); (* try again from reserve *)
  1209. IF newAdr = NilAdr THEN
  1210. IF Stats THEN INC(NlostPages) END;
  1211. RETURN (* give up (the disposed page is lost) *)
  1212. ELSE
  1213. IF Stats THEN INC(NreservePagesUsed) END
  1214. END
  1215. END;
  1216. sp := MinSP; (* will be written to NodeSP below *)
  1217. SYSTEM.PUT (newAdr + NodeNext, next);
  1218. SYSTEM.PUT (newAdr + NodePrev, pageStackAdr);
  1219. pageStackAdr := newAdr
  1220. END
  1221. END;
  1222. (* push entry on current stack *)
  1223. SYSTEM.PUT (pageStackAdr + sp, physAdr);
  1224. SYSTEM.PUT (pageStackAdr + NodeSP, sp + AddressSize);
  1225. INC(freeHighPages)
  1226. END DisposePage;
  1227. (* Allocate virtual address space for mapping. Parameter size must be multiple of page size. Parameter virtAdr returns virtual address or NilAdr on failure. *)
  1228. PROCEDURE NewVirtual(VAR virtAdr: ADDRESS; size: SIZE);
  1229. BEGIN
  1230. ASSERT(size MOD PS = 0);
  1231. (*
  1232. IF mapTop+size > MapAreaAdr+MapAreaSize THEN
  1233. virtAdr := NilAdr (* out of virtual space *)
  1234. ELSE
  1235. virtAdr := mapTop;
  1236. INC(mapTop, size)
  1237. END
  1238. *)
  1239. (* this code is commented because PACO produces weird behaviour when used with
  1240. 64-bit ADDRESS*)
  1241. virtAdr := mapTop;
  1242. INC(mapTop, size)
  1243. END NewVirtual;
  1244. PROCEDURE DisposeVirtual(virtAdr: ADDRESS; size: SIZE);
  1245. (* to do *)
  1246. END DisposeVirtual;
  1247. (* Map a physical page into the virtual address space. Parameter virtAdr is mapped address and phys is mapping value. Returns TRUE iff mapping successful. *)
  1248. PROCEDURE MapTable (base, index: ADDRESS): ADDRESS;
  1249. VAR pt: ADDRESS;
  1250. BEGIN
  1251. SYSTEM.GET (base + index * AddressSize, pt);
  1252. IF ODD (pt) THEN (* pt present *)
  1253. DEC (pt, pt MOD TPS)
  1254. ELSE
  1255. NewPage(pt);
  1256. IF pt = NilAdr THEN RETURN NilAdr END;
  1257. SYSTEM.PUT (base + index * AddressSize, pt + UserPage);
  1258. Fill32 (pt, TPS, PageNotPresent)
  1259. END;
  1260. RETURN pt;
  1261. END MapTable;
  1262. PROCEDURE MapPage(virtAdr, phys: ADDRESS): BOOLEAN;
  1263. VAR i, pt: ADDRESS;
  1264. pml4e, pdpe, pde, pte: ADDRESS;
  1265. BEGIN
  1266. virtAdr := virtAdr DIV PS;
  1267. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1268. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1269. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1270. pml4e := virtAdr MOD PTEs;
  1271. pt := MapTable (kernelPML4, pml4e);
  1272. IF pt = NilAdr THEN RETURN FALSE END;
  1273. pt := MapTable (pt, pdpe);
  1274. IF pt = NilAdr THEN RETURN FALSE END;
  1275. pt := MapTable (pt, pde);
  1276. IF pt = NilAdr THEN RETURN FALSE END;
  1277. SYSTEM.PUT(pt + pte * AddressSize, phys);
  1278. RETURN TRUE;
  1279. END MapPage;
  1280. (* Return mapped page address for a given virtual address (ODD if mapped) *)
  1281. PROCEDURE MappedPage(virtAdr: ADDRESS): ADDRESS;
  1282. VAR pt: ADDRESS;
  1283. pml4e, pdpe, pde, pte: ADDRESS;
  1284. BEGIN
  1285. virtAdr := virtAdr DIV PS;
  1286. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1287. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1288. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1289. pml4e := virtAdr MOD PTEs;
  1290. SYSTEM.GET(kernelPML4 + pml4e * AddressSize, pt);
  1291. IF ~ODD(pt) THEN RETURN 0 END;
  1292. DEC (pt, pt MOD 1000H);
  1293. SYSTEM.GET(pt + pdpe * AddressSize, pt);
  1294. IF ~ODD(pt) THEN RETURN 0 END;
  1295. DEC (pt, pt MOD 1000H);
  1296. SYSTEM.GET(pt + pde * AddressSize, pt);
  1297. IF ~ODD(pt) THEN RETURN 0 END;
  1298. DEC (pt, pt MOD 1000H);
  1299. SYSTEM.GET (pt + pte * AddressSize, pt);
  1300. RETURN pt;
  1301. END MappedPage;
  1302. (* Unmap a page and return the previous mapping, like MappedPage (). Caller must flush TLB. *)
  1303. PROCEDURE UnmapPage(virtAdr: ADDRESS): ADDRESS;
  1304. VAR t, pt: ADDRESS;
  1305. pml4e, pdpe, pde, pte: ADDRESS;
  1306. BEGIN
  1307. virtAdr := virtAdr DIV PS;
  1308. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1309. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1310. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1311. pml4e := virtAdr MOD PTEs;
  1312. SYSTEM.GET(kernelPML4 + pml4e * AddressSize, pt);
  1313. IF ~ODD(pt) THEN RETURN 0 END;
  1314. DEC (pt, pt MOD 1000H);
  1315. SYSTEM.GET(pt + pdpe * AddressSize, pt);
  1316. IF ~ODD(pt) THEN RETURN 0 END;
  1317. DEC (pt, pt MOD 1000H);
  1318. SYSTEM.GET(pt + pde * AddressSize, pt);
  1319. IF ~ODD(pt) THEN RETURN 0 END;
  1320. DEC (pt, pt MOD 1000H);
  1321. SYSTEM.GET(pt + pte * AddressSize, t);
  1322. SYSTEM.PUT(pt + pte * AddressSize, NIL);
  1323. INVLPG (t);
  1324. RETURN t;
  1325. END UnmapPage;
  1326. (* Map area [virtAdr..virtAdr+size) directly to area [Adr(phys)..Adr(phys)+size). Returns TRUE iff successful. *)
  1327. PROCEDURE MapDirect(virtAdr: ADDRESS; size: SIZE; phys: ADDRESS): BOOLEAN;
  1328. BEGIN
  1329. (*
  1330. Trace.String("MapDirect "); Trace.Address (virtAdr); Trace.Char(' '); Trace.Address (phys); Trace.Char (' '); Trace.Int (size, 0);
  1331. Trace.Int(size DIV PS, 8); Trace.Ln;
  1332. *)
  1333. ASSERT((virtAdr MOD PS = 0) & (size MOD PS = 0));
  1334. WHILE size # 0 DO
  1335. IF ~ODD(MappedPage(virtAdr)) THEN
  1336. IF ~MapPage(virtAdr, phys) THEN RETURN FALSE END
  1337. END;
  1338. INC(virtAdr, PS); INC(phys, PS); DEC(size, PS)
  1339. END;
  1340. RETURN TRUE
  1341. END MapDirect;
  1342. (* Policy decision for heap expansion. NewBlock for the same block has failed try times. *)
  1343. PROCEDURE ExpandNow(try: LONGINT): BOOLEAN;
  1344. VAR size: SIZE;
  1345. BEGIN
  1346. size := LSH(memBlockTail.endBlockAdr - memBlockHead.beginBlockAdr, -10); (* heap size in KB *)
  1347. RETURN (~ODD(try) OR (size < heapMinKB)) & (size < heapMaxKB)
  1348. END ExpandNow;
  1349. (* Try to expand the heap by at least "size" bytes *)
  1350. PROCEDURE ExpandHeap*(try: LONGINT; size: SIZE; VAR memBlock: MemoryBlock; VAR beginBlockAdr, endBlockAdr: ADDRESS);
  1351. BEGIN
  1352. IF ExpandNow(try) THEN
  1353. IF size < expandMin THEN size := expandMin END;
  1354. beginBlockAdr := memBlockHead.endBlockAdr;
  1355. endBlockAdr := beginBlockAdr;
  1356. INC(endBlockAdr, size);
  1357. SetHeapEndAdr(endBlockAdr); (* in/out parameter *)
  1358. memBlock := memBlockHead;
  1359. (* endBlockAdr of memory block is set by caller after free block has been set in memory block - this process is part of lock-free heap expansion *)
  1360. ELSE
  1361. beginBlockAdr := memBlockHead.endBlockAdr;
  1362. endBlockAdr := memBlockHead.endBlockAdr;
  1363. memBlock := NIL
  1364. END
  1365. END ExpandHeap;
  1366. (* Set memory block end address *)
  1367. PROCEDURE SetMemoryBlockEndAddress*(memBlock: MemoryBlock; endBlockAdr: ADDRESS);
  1368. BEGIN
  1369. ASSERT(endBlockAdr >= memBlock.beginBlockAdr);
  1370. memBlock.endBlockAdr := endBlockAdr
  1371. END SetMemoryBlockEndAddress;
  1372. (* Free unused memory block *)
  1373. PROCEDURE FreeMemBlock*(memBlock: MemoryBlock);
  1374. BEGIN
  1375. HALT(515) (* impossible to free heap in I386 native A2 version *)
  1376. END FreeMemBlock;
  1377. (** Attempt to set the heap end address to the specified address. The returned value is the actual new end address (never smaller than previous value). *)
  1378. PROCEDURE SetHeapEndAdr(VAR endAdr: ADDRESS);
  1379. VAR n, m: SIZE;
  1380. BEGIN
  1381. Acquire(Memory);
  1382. n := LSH(endAdr+(PS-1), -PSlog2) - LSH(heapEndAdr, -PSlog2); (* pages requested *)
  1383. m := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2) - ReservedPages; (* max pages *)
  1384. IF n > m THEN n := m END;
  1385. IF n > 0 THEN INC(heapEndAdr, n*PS); DEC(freeHighPages, n) END;
  1386. endAdr := heapEndAdr;
  1387. Release(Memory)
  1388. END SetHeapEndAdr;
  1389. (** Map a physical memory area (physAdr..physAdr+size-1) into the virtual address space. Parameter virtAdr returns the virtual address of mapped region, or NilAdr on failure. *)
  1390. PROCEDURE MapPhysical*(physAdr: ADDRESS; size: SIZE; VAR virtAdr: ADDRESS);
  1391. VAR ofs: ADDRESS;
  1392. BEGIN
  1393. IF (LSH(physAdr, -PSlog2) <= topPageNum) &
  1394. (LSH(physAdr+size-1, -PSlog2) <= topPageNum) &
  1395. (LSH(physAdr, -PSlog2) >= LSH(LowAdr, -PSlog2)) THEN
  1396. virtAdr := physAdr (* directly mapped *)
  1397. ELSE
  1398. ofs := physAdr MOD PS;
  1399. DEC(physAdr, ofs); INC(size, ofs); (* align start to page boundary *)
  1400. INC(size, (-size) MOD PS); (* align end to page boundary *)
  1401. Acquire(Memory);
  1402. NewVirtual(virtAdr, size);
  1403. IF virtAdr # NilAdr THEN
  1404. IF ~MapDirect(virtAdr, size, physAdr + UserPage) THEN
  1405. DisposeVirtual(virtAdr, size);
  1406. virtAdr := NilAdr
  1407. END
  1408. END;
  1409. Release(Memory);
  1410. IF TraceVerbose THEN
  1411. Acquire (TraceOutput);
  1412. Trace.String("Mapping ");
  1413. Trace.IntSuffix(SHORT(size), 1, "B"); Trace.String(" at ");
  1414. Trace.Address (physAdr); Trace.String (" - "); Trace.Address (physAdr+size-1);
  1415. IF virtAdr = NilAdr THEN
  1416. Trace.String(" failed")
  1417. ELSE
  1418. Trace.String (" to "); Trace.Address (virtAdr);
  1419. IF ofs # 0 THEN Trace.String (", offset "); Trace.Int(SHORT(ofs), 0) END
  1420. END;
  1421. Trace.Ln;
  1422. Release (TraceOutput);
  1423. END;
  1424. IF virtAdr # NilAdr THEN INC(virtAdr, ofs) END (* adapt virtual address to correct offset *)
  1425. END
  1426. END MapPhysical;
  1427. (** Unmap an area previously mapped with MapPhysical. *)
  1428. PROCEDURE UnmapPhysical*(virtAdr: ADDRESS; size: SIZE);
  1429. (* to do *)
  1430. END UnmapPhysical;
  1431. (** Return the physical address of the specified range of memory, or NilAdr if the range is not contiguous. It is the caller's responsibility to assure the range remains allocated during the time it is in use. *)
  1432. PROCEDURE PhysicalAdr*(adr: ADDRESS; size: SIZE): ADDRESS;
  1433. VAR physAdr, mapped, expected: ADDRESS;
  1434. BEGIN
  1435. IF (LSH(adr, -PSlog2) <= topPageNum) & (LSH(adr+size-1, -PSlog2) <= topPageNum) THEN
  1436. RETURN adr (* directly mapped *)
  1437. ELSE
  1438. Acquire(Memory);
  1439. mapped := MappedPage(adr);
  1440. Release(Memory);
  1441. IF ODD(mapped) & (size > 0) THEN (* mapped, and range not empty or too big *)
  1442. physAdr := mapped - mapped MOD PS + adr MOD PS; (* strip paging bits and add page offset *)
  1443. (* now check if whole range is physically contiguous *)
  1444. DEC(size, PS - adr MOD PS); (* subtract distance to current page end *)
  1445. IF size > 0 THEN (* range crosses current page end *)
  1446. expected := LSH(mapped, -PSlog2)+1; (* expected physical page *)
  1447. LOOP
  1448. INC(adr, PS); (* step to next page *)
  1449. Acquire(Memory);
  1450. mapped := MappedPage(adr);
  1451. Release(Memory);
  1452. IF ~ODD(mapped) OR (LSH(mapped, -PSlog2) # expected) THEN
  1453. physAdr := NilAdr; EXIT
  1454. END;
  1455. DEC(size, PS);
  1456. IF size <= 0 THEN EXIT END; (* ok *)
  1457. INC(expected)
  1458. END
  1459. ELSE
  1460. (* ok, skip *)
  1461. END
  1462. ELSE
  1463. physAdr := NilAdr
  1464. END;
  1465. RETURN physAdr
  1466. END
  1467. END PhysicalAdr;
  1468. (** Translate a virtual address range to num ranges of physical address. num returns 0 on error. *)
  1469. PROCEDURE TranslateVirtual*(virtAdr: ADDRESS; size: SIZE; VAR num: LONGINT; VAR physAdr: ARRAY OF Range);
  1470. VAR ofs, phys1: ADDRESS; size1: SIZE;
  1471. BEGIN
  1472. Acquire(Memory);
  1473. num := 0;
  1474. LOOP
  1475. IF size = 0 THEN EXIT END;
  1476. IF num = LEN(physAdr) THEN num := 0; EXIT END; (* index check *)
  1477. ofs := virtAdr MOD PS; (* offset in page *)
  1478. size1 := PS - ofs; (* distance to next page boundary *)
  1479. IF size1 > size THEN size1 := size END;
  1480. phys1 := MappedPage(virtAdr);
  1481. IF ~ODD(phys1) THEN num := 0; EXIT END; (* page not present *)
  1482. physAdr[num].adr := phys1 - phys1 MOD PS + ofs;
  1483. physAdr[num].size := size1; INC(num);
  1484. INC(virtAdr, size1); DEC(size, size1)
  1485. END;
  1486. IF num = 0 THEN physAdr[0].adr := NilAdr; physAdr[0].size := 0 END;
  1487. Release(Memory)
  1488. END TranslateVirtual;
  1489. (** Return information on free memory in Kbytes. *)
  1490. PROCEDURE GetFreeK*(VAR total, lowFree, highFree: SIZE);
  1491. CONST KperPage = PS DIV 1024;
  1492. BEGIN
  1493. Acquire(Memory);
  1494. total := totalPages * KperPage;
  1495. lowFree := freeLowPages * KperPage;
  1496. highFree := freeHighPages * KperPage;
  1497. Release(Memory)
  1498. END GetFreeK;
  1499. (** -- Stack -- *)
  1500. (** Extend the stack to include the specified address, if possible. Returns TRUE iff ok. *)
  1501. PROCEDURE ExtendStack*(VAR s: Stack; virtAdr: ADDRESS): BOOLEAN;
  1502. VAR phys: ADDRESS; ok: BOOLEAN;
  1503. BEGIN
  1504. Acquire(Memory);
  1505. ok := FALSE;
  1506. IF (virtAdr < s.high) & (virtAdr >= s.low) THEN
  1507. DEC(virtAdr, virtAdr MOD PS); (* round down to page boundary *)
  1508. IF Stats & (virtAdr < s.adr-PS) THEN INC(Nbigskips) END;
  1509. IF ODD(MappedPage(virtAdr)) THEN (* already mapped *)
  1510. ok := TRUE
  1511. ELSE
  1512. NewPage(phys);
  1513. IF phys # NilAdr THEN
  1514. IF MapPage(virtAdr, phys + UserPage) THEN
  1515. IF virtAdr < s.adr THEN
  1516. s.adr := virtAdr
  1517. ELSE
  1518. IF Stats THEN INC(Nfilled) END
  1519. END;
  1520. ok := TRUE
  1521. ELSE
  1522. DisposePage(phys)
  1523. END
  1524. END
  1525. END
  1526. END;
  1527. Release(Memory);
  1528. RETURN ok
  1529. END ExtendStack;
  1530. (** Allocate a stack. Parameter initSP returns initial stack pointer value. *)
  1531. PROCEDURE NewStack*(VAR s: Stack; process: ANY; VAR initSP: ADDRESS);
  1532. VAR adr, phys: ADDRESS; old: HUGEINT; free: SET;
  1533. BEGIN
  1534. ASSERT(InitUserStackSize = PS); (* for now *)
  1535. Acquire(Memory);
  1536. IF Stats THEN INC(NnewStacks) END;
  1537. old := freeStackIndex;
  1538. LOOP
  1539. IF Stats THEN INC(NnewStackLoops) END;
  1540. free := freeStack[freeStackIndex];
  1541. IF free # {} THEN
  1542. adr := 0; WHILE ~(adr IN free) DO INC(adr) END; (* BTW: BSF instruction is not faster *)
  1543. IF Stats THEN INC(NnewStackInnerLoops, adr+1) END;
  1544. EXCL(freeStack[freeStackIndex], adr);
  1545. adr := 10000000H + (freeStackIndex*SetSize + adr)*MaxUserStackSize; (*StackAreaAdr *)
  1546. EXIT
  1547. END;
  1548. INC(freeStackIndex);
  1549. IF freeStackIndex = LEN(freeStack) THEN freeStackIndex := 0 END;
  1550. IF freeStackIndex = old THEN HALT(1503) END (* out of stack space *)
  1551. END;
  1552. NewPage(phys); ASSERT(phys # NilAdr); (* allocate one physical page at first *)
  1553. s.high := adr + MaxUserStackSize; s.low := adr + UserStackGuardSize;
  1554. s.adr := s.high - InitUserStackSize; (* at the top of the virtual area *)
  1555. initSP := s.high-AddressSize;
  1556. IF ~MapPage(s.adr, phys + UserPage) THEN HALT(99) END;
  1557. SYSTEM.PUT (initSP, process);
  1558. Release(Memory)
  1559. END NewStack;
  1560. (** Return the process pointer set when the current user stack was created (must be running on user stack). *)
  1561. PROCEDURE -GetProcessPtr* (): ANY;
  1562. CODE {SYSTEM.AMD64}
  1563. MOV RAX, -MaxUserStackSize
  1564. AND RAX, RSP
  1565. MOV RAX, [RAX + MaxUserStackSize - 8]
  1566. POP RBX; pointer return passed via stack
  1567. MOV [RBX], RAX
  1568. END GetProcessPtr;
  1569. (** True iff current process works on a kernel stack *)
  1570. PROCEDURE WorkingOnKernelStack* (): BOOLEAN;
  1571. VAR id: LONGINT; sp: ADDRESS;
  1572. BEGIN
  1573. ASSERT(KernelStackSize # MaxUserStackSize - UserStackGuardSize); (* detection does only work with this assumption *)
  1574. sp := CurrentSP ();
  1575. id := ID ();
  1576. RETURN (sp >= procm[id].stack.low) & (sp <= procm[id].stack.high)
  1577. END WorkingOnKernelStack;
  1578. (** Deallocate a stack. Current thread should not dispose its own stack. Uses privileged instructions. *)
  1579. PROCEDURE DisposeStack*(CONST s: Stack);
  1580. VAR adr, phys: ADDRESS;
  1581. BEGIN
  1582. (* First make sure there are no references to virtual addresses of the old stack in the TLBs. This is required because we are freeing the pages, and they could be remapped later at different virtual addresses. DisposeStack will only be called from the thread finalizer, which ensures that the user will no longer be referencing this memory. Therefore we can make this upcall from outside the locked region, avoiding potential deadlock. *)
  1583. GlobalFlushTLB; (* finalizers are only called after Processors has initialized this upcall *)
  1584. Acquire(Memory);
  1585. IF Stats THEN INC(NdisposeStacks) END;
  1586. adr := s.adr; (* unmap and deallocate all pages of stack *)
  1587. REPEAT
  1588. phys := UnmapPage(adr); (* TLB was flushed and no intermediate references possible to unreachable stack *)
  1589. IF ODD(phys) THEN DisposePage(phys - phys MOD PS) END;
  1590. INC(adr, PS)
  1591. UNTIL adr = s.high;
  1592. adr := (adr - MaxUserStackSize - StackAreaAdr) DIV MaxUserStackSize;
  1593. INCL(freeStack[adr DIV 32], adr MOD 32);
  1594. Release(Memory)
  1595. END DisposeStack;
  1596. (** Check if the specified stack is valid. *)
  1597. PROCEDURE ValidStack*(CONST s: Stack; sp: ADDRESS): BOOLEAN;
  1598. VAR valid: BOOLEAN;
  1599. BEGIN
  1600. Acquire(Memory);
  1601. valid := (sp MOD 4 = 0) & (sp >= s.adr) & (sp <= s.high);
  1602. WHILE valid & (sp < s.high) DO
  1603. valid := ODD(MappedPage(sp));
  1604. INC(sp, PS)
  1605. END;
  1606. Release(Memory);
  1607. RETURN valid
  1608. END ValidStack;
  1609. (** Update the stack snapshot of the current processor. (for Processors) *)
  1610. PROCEDURE UpdateState*;
  1611. VAR id: LONGINT;
  1612. BEGIN
  1613. ASSERT(CS () MOD 4 = 0); (* to get kernel stack pointer *)
  1614. id := ID ();
  1615. ASSERT(procm[id].stack.high # 0); (* current processor stack has been assigned *)
  1616. procm[id].sp := CurrentBP () (* instead of ESP, just fetch EBP of current procedure (does not contain pointers) *)
  1617. END UpdateState;
  1618. (** Get kernel stack regions for garbage collection. (for Heaps) *)
  1619. PROCEDURE GetKernelStacks*(VAR stack: ARRAY OF Stack);
  1620. VAR i: LONGINT;
  1621. BEGIN (* {UpdateState has been called by each processor} *)
  1622. FOR i := 0 TO MaxCPU-1 DO
  1623. stack[i].adr := procm[i].sp;
  1624. stack[i].high := procm[i].stack.high
  1625. END
  1626. END GetKernelStacks;
  1627. (* Init page tables (paging still disabled until EnableMM is called). *)
  1628. PROCEDURE InitPages;
  1629. VAR i, j: HUGEINT; phys, lTop, mTop: ADDRESS;
  1630. BEGIN
  1631. (* get top of high and low memory *)
  1632. mTop := memTop;
  1633. DEC(mTop, mTop MOD PS); (* mTop MOD PS = 0 *)
  1634. topPageNum := LSH(mTop-1, -PSlog2);
  1635. lTop := lowTop;
  1636. DEC(lTop, lTop MOD PS); (* lTop MOD PS = 0 *)
  1637. (* initialize NewDirectPage and SetHeapEndAdr (get kernel range) *)
  1638. SYSTEM.GET (LinkAdr + EndBlockOfs, heapEndAdr);
  1639. (* ug *) (*
  1640. SYSTEM.PUT (heapEndAdr, NIL); (* set tag to NIL *)
  1641. INC(heapEndAdr, AddressSize); (* space for NIL *)
  1642. *)
  1643. (* ug: not needed, extension of heap done in GetStaticHeap anyway
  1644. INC(heapEndAdr, K); (* space for free heap block descriptor of type Heaps.HeapBlockDesc at heapEndAdr, initialization is done in Heaps *)
  1645. INC(heapEndAdr, (-heapEndAdr) MOD PS); (* round up to page size *)
  1646. *)
  1647. pageHeapAdr := mTop;
  1648. freeHighPages := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2);
  1649. IF TraceVerbose THEN
  1650. Trace.String("Kernel: "); Trace.Address (LinkAdr); Trace.String(" .. ");
  1651. Trace.Address (heapEndAdr-1); Trace.Ln;
  1652. Trace.String ("High: "); Trace.Address (heapEndAdr); Trace.String(" .. ");
  1653. Trace.Address (pageHeapAdr-1); Trace.String(" = "); Trace.Int (SHORT(freeHighPages),0);
  1654. Trace.StringLn (" free pages")
  1655. END;
  1656. (* initialize empty free page stack *)
  1657. NewDirectPage(pageStackAdr); ASSERT(pageStackAdr # NilAdr);
  1658. SYSTEM.PUT (pageStackAdr+NodeSP, SYSTEM.VAL (ADDRESS, MinSP));
  1659. SYSTEM.PUT (pageStackAdr+NodeNext, SYSTEM.VAL (ADDRESS, NilAdr));
  1660. SYSTEM.PUT (pageStackAdr+NodePrev, SYSTEM.VAL (ADDRESS, NilAdr));
  1661. (* free low pages *)
  1662. freeLowPage := NilAdr; freeLowPages := 0;
  1663. i := lTop DIV PS; j := LowAdr DIV PS;
  1664. IF TraceVerbose THEN
  1665. Trace.String("Low: "); Trace.Address (j*PS); Trace.String (".."); Trace.Address (i*PS-1)
  1666. END;
  1667. REPEAT
  1668. DEC(i); phys := i*PS;
  1669. SYSTEM.PUT (phys, freeLowPage); (* phys.next := freeLowPage *)
  1670. freeLowPage := phys; INC(freeLowPages)
  1671. UNTIL i = j;
  1672. IF TraceVerbose THEN
  1673. Trace.String(" = "); Trace.Int(SHORT(freeLowPages), 1); Trace.StringLn (" free pages")
  1674. END;
  1675. totalPages := LSH(memTop - M + lowTop + dmaSize + PS, -PSlog2); (* what BIOS gave us *)
  1676. (* stacks *)
  1677. ASSERT((StackAreaAdr MOD MaxUserStackSize = 0) & (StackAreaSize MOD MaxUserStackSize = 0));
  1678. FOR i := 0 TO LEN(freeStack)-1 DO freeStack[i] := {0..SetSize-1} END;
  1679. FOR i := MaxUserStacks TO LEN(freeStack)*SetSize-1 DO EXCL(freeStack[i DIV SetSize], i MOD SetSize) END;
  1680. freeStackIndex := 0;
  1681. (* mappings *)
  1682. mapTop := MapAreaAdr;
  1683. (* create the address space *)
  1684. NewPage(kernelPML4); ASSERT(kernelPML4 # NilAdr);
  1685. Fill32(kernelPML4, TPS, PageNotPresent);
  1686. IF ~MapDirect(LowAdr, memTop-LowAdr, LowAdr + UserPage) THEN HALT(99) END (* map heap direct *)
  1687. END InitPages;
  1688. (* Generate a memory segment descriptor. type IN {0..7} & dpl IN {0..3}.
  1689. type
  1690. 0 data, expand-up, read-only
  1691. 1 data, expand-up, read-write
  1692. 2 data, expand-down, read-only
  1693. 3 data, expand-down, read-write
  1694. 4 code, non-conforming, execute-only
  1695. 5 code, non-conforming, execute-read
  1696. 6 code, conforming, execute-only
  1697. 7 code, conforming, execute-read
  1698. *)
  1699. PROCEDURE GenCodeSegDesc (dpl, base, limit: LONGINT; conforming, longmode: BOOLEAN; VAR sd: SegDesc);
  1700. VAR s: SET;
  1701. BEGIN
  1702. sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H;
  1703. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1704. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1705. s := s + {9, 11, 12, 15, 23}; (* present=1, D = 0*)
  1706. IF conforming THEN INCL(s, 10) END;
  1707. IF longmode THEN INCL(s, 21) ELSE INCL (s, 22) END; (* long mode flag or default 32-bit operand *)
  1708. sd.high := SYSTEM.VAL(LONGINT, s)
  1709. END GenCodeSegDesc;
  1710. PROCEDURE GenDataSegDesc (dpl, base, limit: LONGINT; VAR sd: SegDesc);
  1711. VAR s: SET;
  1712. BEGIN
  1713. sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H;
  1714. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1715. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1716. s := s + {9, 12, 15, 22, 23}; (* present=1 *)
  1717. sd.high := SYSTEM.VAL(LONGINT, s)
  1718. END GenDataSegDesc;
  1719. (* Generate a 64-bit TSS descriptor (16bytes). *)
  1720. PROCEDURE GenTSSDesc(base: ADDRESS; limit, dpl: LONGINT; VAR sdl, sdh: SegDesc);
  1721. VAR s: SET;
  1722. BEGIN
  1723. sdl.low := SYSTEM.VAL(LONGINT, ASH(base MOD 10000H, 16) + limit MOD 10000H);
  1724. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1725. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1726. s := s + {8, 11, 15}; (* type=non-busy TSS, present=1, AVL=0, 32-bit=0 *)
  1727. sdl.high := SYSTEM.VAL(LONGINT, s);
  1728. sdh.low := SYSTEM.VAL(LONGINT, base DIV 10000000H);
  1729. sdh.high := 0;
  1730. END GenTSSDesc;
  1731. (* Initialize segmentation. *)
  1732. PROCEDURE InitSegments;
  1733. VAR i: LONGINT;
  1734. BEGIN
  1735. (* limits and bases are ignored in 64-bit mode *)
  1736. (* GDT 0: Null segment *)
  1737. gdt[0].low := 0; gdt[0].high := 0;
  1738. (* GDT 1: 32-bit Kernel code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1739. GenCodeSegDesc(0, 0, M-1, FALSE, FALSE, gdt[1]);
  1740. (* GDT 2: 64-bit Kernel code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1741. GenCodeSegDesc(0, 0, M-1, FALSE, TRUE, gdt[2]);
  1742. (* GDT 3: 32-bit User code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1743. GenCodeSegDesc(0, 0, M-1, TRUE, FALSE, gdt[3]);
  1744. (* GDT 4: 64-bit User code: conforming, execute-read, base 0, limit 4G, PL 0 *)
  1745. GenCodeSegDesc(0, 0, M-1, TRUE, TRUE, gdt[4]);
  1746. (* GDT 5: Kernel stack: read-write, base 0, limit 4G, PL 0 *)
  1747. GenDataSegDesc(0, 0, M-1, gdt[5]);
  1748. (* GDT 6: User stack: read-write, base 0, limit 4G, PL 3 *)
  1749. GenDataSegDesc(3, 0, M-1, gdt[6]);
  1750. (* GDT 7: User/Kernel data: expand-up, read-write, base 0, limit 4G, PL 3 *)
  1751. GenDataSegDesc(3, 0, M-1, gdt[7]);
  1752. FOR i := 0 TO MaxCPU-1 DO
  1753. GenTSSDesc(ADDRESSOF(procm[i].tss), SIZEOF(TSSDesc)-1, 0, gdt[TSSOfs+i*2], gdt[TSSOfs+i*2 + 1]);
  1754. procm[i].sp := 0; procm[i].stack.high := 0
  1755. END
  1756. END InitSegments;
  1757. (* Enable segmentation on the current processor. *)
  1758. PROCEDURE EnableSegments;
  1759. BEGIN
  1760. LoadGDT(ADDRESSOF(gdt[0]), SIZEOF(GDT)-1);
  1761. LoadSegRegs(DataSel)
  1762. END EnableSegments;
  1763. (* Allocate a kernel stack. *)
  1764. PROCEDURE NewKernelStack(VAR stack: Stack);
  1765. VAR phys, virt: ADDRESS; size: SIZE;
  1766. BEGIN
  1767. size := KernelStackSize;
  1768. NewVirtual(virt, size + PS); (* add one page for overflow protection *)
  1769. ASSERT(virt # NilAdr, 1502);
  1770. INC(virt, PS); (* leave page open at bottom *)
  1771. stack.low := virt;
  1772. stack.adr := virt; (* return stack *)
  1773. REPEAT
  1774. NewPage(phys); ASSERT(phys # NilAdr);
  1775. IF ~MapPage(virt, phys + KernelPage) THEN HALT(99) END;
  1776. DEC(size, PS); INC(virt, PS)
  1777. UNTIL size = 0;
  1778. stack.high := virt
  1779. END NewKernelStack;
  1780. (* Set task register *)
  1781. PROCEDURE -SetTR(tr: ADDRESS);
  1782. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1783. POP RAX
  1784. LTR AX
  1785. END SetTR;
  1786. (* Enable memory management and switch to new stack in virtual space.
  1787. Stack layout:
  1788. caller1 return
  1789. caller1 RBP <-- caller0 RBP
  1790. [caller0 locals]
  1791. 04 caller0 return
  1792. 00 caller0 RBP <-- RBP
  1793. locals <-- RSP
  1794. *)
  1795. PROCEDURE -EnableMM(pml4Base, rsp: ADDRESS);
  1796. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1797. POP RBX
  1798. POP RAX
  1799. MOV RCX, [RBP + 8] ; caller0 return
  1800. MOV RDX, [RBP] ; caller0 RBP
  1801. MOV RDX, [RDX + 8] ; caller 1 return
  1802. MOV CR3, RAX ; pml4 page translation base address
  1803. XOR RAX, RAX
  1804. MOV [RBX - 8], RAX ; not UserStackSel (cf. GetUserStack)
  1805. MOV [RBX - 16], RDX ; caller1 return on new stack
  1806. MOV [RBX - 24], RAX ; caller1 RBP on new stack
  1807. LEA RBP, [RBX - 24] ; new stack top
  1808. MOV RSP, RBP
  1809. JMP RCX
  1810. END EnableMM;
  1811. (** -- Initialization -- *)
  1812. (** Initialize memory management.
  1813. o every processor calls this once during initialization
  1814. o mutual exclusion with other processors must be guaranteed by the caller
  1815. o interrupts must be off
  1816. o segmentation and paging is enabled
  1817. o return is on the new stack => caller must have no local variables
  1818. *)
  1819. PROCEDURE InitMemory*;
  1820. VAR id: LONGINT;
  1821. BEGIN
  1822. EnableSegments;
  1823. (* allocate stack *)
  1824. id := ID ();
  1825. NewKernelStack(procm[id].stack);
  1826. procm[id].sp := 0;
  1827. (* initialize TSS *)
  1828. Fill32(ADDRESSOF(procm[id].tss), SIZEOF(TSSDesc), 0);
  1829. procm[id].tss.RSP0 := procm[id].stack.high; (* kernel stack org *)
  1830. procm[id].tss.IOMapBaseAddress := -1; (* no bitmap *)
  1831. (* enable paging and switch stack *)
  1832. SetTR(KernelTR + id*16);
  1833. EnableMM(kernelPML4, procm[id].tss.RSP0)
  1834. END InitMemory;
  1835. (** Initialize a boot page for MP booting. Parameter physAdr returns the physical address of a low page. *)
  1836. PROCEDURE InitBootPage*(start: Startup; VAR physAdr: ADDRESS);
  1837. CONST BootOfs = 800H;
  1838. VAR adr, a: ADDRESS;
  1839. BEGIN
  1840. Acquire(Memory);
  1841. NewLowPage(physAdr);
  1842. Release(Memory);
  1843. ASSERT((physAdr # NilAdr) & (physAdr >= 0) & (physAdr < M) & (physAdr MOD PS = 0));
  1844. adr := physAdr + BootOfs;
  1845. a := adr;
  1846. (* put binary code copy of SMP.Bin to address a (cf. BinToCode.Mod ) *)
  1847. SYSTEM.PUT32(a, 0002F10EBH); INC (a, 4);
  1848. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1849. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1850. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1851. SYSTEM.PUT32(a, 031660000H); INC (a, 4);
  1852. SYSTEM.PUT32(a, 066C88CC0H); INC (a, 4);
  1853. SYSTEM.PUT32(a, 02E04E0C1H); INC (a, 4);
  1854. SYSTEM.PUT32(a, 04A060966H); INC (a, 4);
  1855. SYSTEM.PUT32(a, 0010F2E08H); INC (a, 4);
  1856. SYSTEM.PUT32(a, 02E08081EH); INC (a, 4);
  1857. SYSTEM.PUT32(a, 00216010FH); INC (a, 4);
  1858. SYSTEM.PUT32(a, 0C4896608H); INC (a, 4);
  1859. SYSTEM.PUT32(a, 000C48166H); INC (a, 4);
  1860. SYSTEM.PUT32(a, 00F000008H); INC (a, 4);
  1861. SYSTEM.PUT32(a, 00F66C020H); INC (a, 4);
  1862. SYSTEM.PUT32(a, 00F00E8BAH); INC (a, 4);
  1863. SYSTEM.PUT32(a, 0662EC022H); INC (a, 4);
  1864. SYSTEM.PUT32(a, 0080E1E8BH); INC (a, 4);
  1865. SYSTEM.PUT32(a, 00850EA66H); INC (a, 4);
  1866. SYSTEM.PUT32(a, 000080000H); INC (a, 4);
  1867. SYSTEM.PUT32(a, 00FE0200FH); INC (a, 4);
  1868. SYSTEM.PUT32(a, 00F05E8BAH); INC (a, 4);
  1869. SYSTEM.PUT32(a, 0220FE022H); INC (a, 4);
  1870. SYSTEM.PUT32(a, 00080B9DBH); INC (a, 4);
  1871. SYSTEM.PUT32(a, 0320FC000H); INC (a, 4);
  1872. SYSTEM.PUT32(a, 008E8BA0FH); INC (a, 4);
  1873. SYSTEM.PUT32(a, 0200F300FH); INC (a, 4);
  1874. SYSTEM.PUT32(a, 0E8BA0FC0H); INC (a, 4);
  1875. SYSTEM.PUT32(a, 0C0220F1FH); INC (a, 4);
  1876. SYSTEM.PUT32(a, 0000000EAH); INC (a, 4);
  1877. SYSTEM.PUT16(a, 01000H); INC (a, 2);
  1878. SYSTEM.PUT8(a, 000H); INC (a);
  1879. (* the following offsets must be patched and can be reported
  1880. by the assembler when assembling SMP.S with: PCAAMD64.Assemble SMP.S l~ *)
  1881. SYSTEM.PUT32 (adr+14, SYSTEM.VAL (LONGINT, kernelPML4)); (* cf. label PML4BASE *)
  1882. SYSTEM.PUT32 (adr+117, SYSTEM.VAL (LONGINT, start)); (* not a method *) (* cf. label KENTRY *)
  1883. SYSTEM.PUT32 (adr+4, SYSTEM.VAL (LONGINT, ADDRESSOF(gdt[0]))); (* cf. label GDT *)
  1884. (* jump at start *)
  1885. SYSTEM.PUT8(physAdr, 0EAX); (* jmp far *)
  1886. SYSTEM.PUT32(physAdr + 1, ASH(physAdr, 16-4) + BootOfs) (* seg:ofs *)
  1887. END InitBootPage;
  1888. (** The BP in a MP system calls this to map the APIC physical address directly. *)
  1889. PROCEDURE InitAPICArea*(adr: ADDRESS; size: SIZE);
  1890. BEGIN
  1891. (* ASSERT((size = PS) & (adr >= IntelAreaAdr) & (adr+size-1 < IntelAreaAdr+IntelAreaSize)); *)
  1892. IF ~MapDirect(adr, size, adr + UserPage) THEN HALT(99) END
  1893. END InitAPICArea;
  1894. (* Set machine-dependent parameters gcThreshold, expandMin, heapMinKB and heapMaxKB *)
  1895. PROCEDURE SetGCParams*;
  1896. VAR size, t: SIZE;
  1897. BEGIN
  1898. GetFreeK(size, t, t); (* size is total memory size in KB *)
  1899. heapMinKB := size * HeapMin DIV 100;
  1900. heapMaxKB := size * HeapMax DIV 100;
  1901. expandMin := size * ExpandRate DIV 100 * 1024;
  1902. IF expandMin < 0 THEN expandMin := MAX(LONGINT) END;
  1903. gcThreshold := size * Threshold DIV 100 * 1024;
  1904. IF gcThreshold < 0 THEN gcThreshold := MAX(LONGINT) END
  1905. END SetGCParams;
  1906. (** Get first memory block and first free address, heap area in first memory block is automatically expanded to account for the first
  1907. few calls to NEW *)
  1908. PROCEDURE GetStaticHeap*(VAR beginBlockAdr, endBlockAdr, freeBlockAdr: ADDRESS);
  1909. BEGIN
  1910. beginBlockAdr := initialMemBlock.beginBlockAdr;
  1911. endBlockAdr := initialMemBlock.endBlockAdr;
  1912. freeBlockAdr := beginBlockAdr;
  1913. END GetStaticHeap;
  1914. (* returns if an address is a currently allocated heap address *)
  1915. PROCEDURE ValidHeapAddress*(p: ADDRESS): BOOLEAN;
  1916. BEGIN
  1917. RETURN (p >= memBlockHead.beginBlockAdr) & (p <= memBlockTail.endBlockAdr)
  1918. OR (p>=401000H) & (p<=500000H) (*! guess until kernel size known *)
  1919. END ValidHeapAddress;
  1920. (** Jump from kernel to user mode. Every processor calls this during initialization. *)
  1921. PROCEDURE JumpToUserLevel*(userRBP: ADDRESS);
  1922. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1923. PUSH UserStackSel ; SS3
  1924. PUSH QWORD [RBP + userRBP] ; RSP3
  1925. PUSHFQ ; RFLAGS3
  1926. PUSH User64CodeSel ; CS3
  1927. CALL DWORD L1 ; PUSH L1 (RIP3)
  1928. L1:
  1929. ADD QWORD [RSP], BYTE 7 ; adjust RIP3 to L2 (L2-L1 should be 7)
  1930. IRETQ ; switch to level 3 and continue at following instruction
  1931. L2:
  1932. POP RBP ; from level 3 stack (refer to AosActive.NewProcess)
  1933. RET ; jump to body of first active object; cf. Objects.NewProcess
  1934. END JumpToUserLevel;
  1935. (* should ensure that a given address can be represented in the legacy 4GB address space
  1936. replacement for unsafe: x := SYSTEM.VAL (LONGINT, y) with y of type ADDRESS
  1937. -> better rewrite client code! this procedure should be redundant and removable in the end! *)
  1938. PROCEDURE Ensure32BitAddress*(adr: ADDRESS): Address32;
  1939. BEGIN
  1940. (* TODO *)
  1941. ASSERT (Is32BitAddress (adr), 9876);
  1942. RETURN SYSTEM.VAL (Address32, adr)
  1943. END Ensure32BitAddress;
  1944. PROCEDURE Is32BitAddress*(adr: ADDRESS): BOOLEAN;
  1945. BEGIN RETURN SYSTEM.VAL (Address32, adr) = adr;
  1946. END Is32BitAddress;
  1947. (**
  1948. * Flush Data Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1949. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1950. * left empty on Intel architecture.
  1951. *)
  1952. PROCEDURE FlushDCacheRange * (adr: ADDRESS; len: LONGINT);
  1953. END FlushDCacheRange;
  1954. (**
  1955. * Invalidate Data Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1956. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1957. * left empty on Intel architecture.
  1958. *)
  1959. PROCEDURE InvalidateDCacheRange * (adr: ADDRESS; len: LONGINT);
  1960. END InvalidateDCacheRange;
  1961. (**
  1962. * Invalidate Instruction Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1963. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1964. * left empty on Intel architecture.
  1965. *)
  1966. PROCEDURE InvalidateICacheRange * (adr: ADDRESS; len: LONGINT);
  1967. END InvalidateICacheRange;
  1968. (* Unexpected - Default interrupt handler *)
  1969. PROCEDURE Unexpected(VAR state: State);
  1970. VAR int: HUGEINT; isr, irr: CHAR;
  1971. BEGIN
  1972. int := state.INT;
  1973. IF HandleSpurious & ((int >= IRQ0) & (int <= MaxIRQ) OR (int = MPSPU)) THEN (* unexpected IRQ, get more info *)
  1974. IF (int >= IRQ8) & (int <= IRQ15) THEN
  1975. Portout8 (IntB0, 0BX); Portin8(IntB0, isr);
  1976. Portout8 (IntB0, 0AX); Portin8(IntB0, irr)
  1977. ELSIF (int >= IRQ0) & (int <= IRQ7) THEN
  1978. Portout8 (IntA0, 0BX); Portin8(IntA0, isr);
  1979. Portout8 (IntA0, 0AX); Portin8(IntA0, irr)
  1980. ELSE
  1981. isr := 0X; irr := 0X
  1982. END;
  1983. IF TraceSpurious THEN
  1984. Acquire (TraceOutput);
  1985. Trace.String("INT"); Trace.Int(SHORT(int), 1);
  1986. Trace.Hex(ORD(isr), -3); Trace.Hex(ORD(irr), -2); Trace.Ln;
  1987. Release (TraceOutput);
  1988. END
  1989. ELSE
  1990. Acquire (TraceOutput);
  1991. Trace.StringLn ("Unexpected interrupt");
  1992. Trace.Memory(ADDRESSOF(state), SIZEOF(State)-4*8); (* exclude last 4 fields *)
  1993. IF int = 3 THEN (* was a HALT or ASSERT *)
  1994. (* It seems that no trap handler is installed (Traps not linked), so wait endlessly, while holding trace lock. This should quiten down the system, although other processors may possibly still run processes. *)
  1995. LOOP END
  1996. ELSE
  1997. Release (TraceOutput);
  1998. SetRAX(int);
  1999. HALT(1801) (* unexpected interrupt *)
  2000. END
  2001. END
  2002. END Unexpected;
  2003. (* InEnableIRQ - Enable a hardware interrupt (caller must hold module lock). *)
  2004. PROCEDURE -InEnableIRQ (int: HUGEINT);
  2005. CODE {SYSTEM.AMD64}
  2006. POP RBX
  2007. CMP RBX, IRQ7
  2008. JG cont2
  2009. IN AL, IntA1
  2010. SUB RBX, IRQ0
  2011. BTR RAX, RBX
  2012. OUT IntA1, AL
  2013. JMP end
  2014. cont2:
  2015. IN AL, IntB1
  2016. SUB RBX, IRQ8
  2017. BTR RAX, RBX
  2018. OUT IntB1, AL
  2019. end:
  2020. END InEnableIRQ;
  2021. (* InDisableIRQ - Disable a hardware interrupt (caller must hold module lock). *)
  2022. PROCEDURE -InDisableIRQ (int: HUGEINT);
  2023. CODE {SYSTEM.AMD64}
  2024. POP RBX
  2025. CMP RBX, IRQ7
  2026. JG cont2
  2027. IN AL, IntA1
  2028. SUB RBX, IRQ0
  2029. BTS RAX, RBX
  2030. OUT IntA1, AL
  2031. JMP end
  2032. cont2:
  2033. IN AL, IntB1
  2034. SUB RBX, IRQ8
  2035. BTS RAX, RBX
  2036. OUT IntB1, AL
  2037. end:
  2038. END InDisableIRQ;
  2039. (** EnableIRQ - Enable a hardware interrupt (also done automatically by InstallHandler). *)
  2040. PROCEDURE EnableIRQ* (int: HUGEINT);
  2041. BEGIN
  2042. (* ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2)); *)
  2043. Acquire(Interrupts); (* protect interrupt mask register *)
  2044. InEnableIRQ(int);
  2045. Release(Interrupts)
  2046. END EnableIRQ;
  2047. (** DisableIRQ - Disable a hardware interrupt. *)
  2048. PROCEDURE DisableIRQ* (int: HUGEINT);
  2049. BEGIN
  2050. ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2));
  2051. Acquire(Interrupts); (* protect interrupt mask register *)
  2052. InDisableIRQ(int);
  2053. Release(Interrupts)
  2054. END DisableIRQ;
  2055. (** InstallHandler - Install interrupt handler & enable IRQ if necessary.
  2056. On entry to h interrupts are disabled and may be enabled with Sti. After handling the interrupt
  2057. the state of interrupts are restored. The acknowledgement of a hardware interrupt is done automatically.
  2058. IRQs are mapped from IRQ0 to MaxIRQ. *)
  2059. PROCEDURE InstallHandler* (h: Handler; int: LONGINT);
  2060. VAR (* n: HandlerList; *) i: LONGINT; unexpected: Handler;
  2061. BEGIN
  2062. ASSERT(default.valid); (* initialized *)
  2063. ASSERT(int # IRQ2); (* IRQ2 is used for cascading and remapped to IRQ9 *)
  2064. Acquire(Interrupts);
  2065. (* FieldInterrupt may traverse list while it is being modified *)
  2066. i := 0;
  2067. unexpected := Unexpected;
  2068. IF intHandler[int, 0].handler # unexpected THEN
  2069. WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO
  2070. INC(i)
  2071. END;
  2072. IF i < MaxNumHandlers - 1 THEN
  2073. intHandler[int, i].valid := TRUE;
  2074. intHandler[int, i].handler := h;
  2075. ELSE
  2076. Acquire(TraceOutput);
  2077. Trace.String("Machine.InstallHandler: handler could not be installed for interrupt "); Trace.Int(int, 0);
  2078. Trace.String(" - too many handlers per interrupt number"); Trace.Ln;
  2079. Release(TraceOutput)
  2080. END
  2081. ELSE
  2082. intHandler[int, 0].handler := h;
  2083. IF (int >= IRQ0) & (int <= IRQ15) THEN InEnableIRQ(int) END
  2084. END;
  2085. Release(Interrupts)
  2086. END InstallHandler;
  2087. (** RemoveHandler - Uninstall interrupt handler & disable IRQ if necessary *)
  2088. PROCEDURE RemoveHandler* (h: Handler; int: LONGINT);
  2089. VAR (* p, c: HandlerList; *) i, j, foundIndex: LONGINT;
  2090. BEGIN
  2091. ASSERT(default.valid); (* initialized *)
  2092. Acquire(Interrupts);
  2093. (* find h *)
  2094. i := 0;
  2095. foundIndex := -1;
  2096. WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO
  2097. IF intHandler[int, i].handler = h THEN foundIndex := i END;
  2098. INC(i)
  2099. END;
  2100. IF foundIndex # -1 THEN
  2101. (* h found -> copy interrupt handlers higher than foundIndex *)
  2102. FOR j := foundIndex TO i - 2 DO
  2103. intHandler[int, j] := intHandler[int, j + 1]
  2104. END
  2105. END;
  2106. IF ~intHandler[int, 0].valid THEN
  2107. (* handler h was the only interrupt handler for interrupt int -> install the default handler *)
  2108. intHandler[int, 0] := default;
  2109. IF (int >= IRQ0) & (int <= IRQ15) THEN DisableIRQ(int) END
  2110. END;
  2111. Release(Interrupts)
  2112. END RemoveHandler;
  2113. (* Get control registers. *)
  2114. PROCEDURE GetCR0to4(VAR cr: ARRAY OF HUGEINT);
  2115. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2116. MOV RDI, [RBP + cr]
  2117. MOV RAX, CR0
  2118. XOR RBX, RBX ; CR1 is not documented
  2119. MOV RCX, CR2
  2120. MOV RDX, CR3
  2121. MOV [RDI + 0], RAX
  2122. MOV [RDI + 8], RBX
  2123. MOV [RDI + 16], RCX
  2124. MOV [RDI + 24], RDX
  2125. MOV RAX, CR4 ; Pentium only
  2126. MOV [RDI + 32], RAX
  2127. END GetCR0to4;
  2128. (* GetDR0to7 - Get debug registers. *)
  2129. PROCEDURE GetDR0to7(VAR dr: ARRAY OF HUGEINT);
  2130. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2131. MOV RDI, [RBP + dr]
  2132. MOV RAX, DR0
  2133. MOV RBX, DR1
  2134. MOV RCX, DR2
  2135. MOV RDX, DR3
  2136. MOV [RDI + 0], RAX
  2137. MOV [RDI + 8], RBX
  2138. MOV [RDI + 16], RCX
  2139. MOV [RDI + 24], RDX
  2140. XOR RAX, RAX ; DR4 is not documented
  2141. XOR RBX, RBX ; DR5 is not documented
  2142. MOV RCX, DR6
  2143. MOV RDX, DR7
  2144. MOV [RDI + 32], RAX
  2145. MOV [RDI + 40], RBX
  2146. MOV [RDI + 48], RCX
  2147. MOV [RDI + 56], RDX
  2148. END GetDR0to7;
  2149. (* CLTS - Clear task-switched flag. *)
  2150. PROCEDURE -CLTS;
  2151. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2152. CLTS
  2153. END CLTS;
  2154. (* GetFPU - Store floating-point environment (28 bytes) and mask all floating-point exceptions. *)
  2155. PROCEDURE -GetFPU(adr: ADDRESS);
  2156. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2157. POP RBX
  2158. FNSTENV [RBX] ; also masks all exceptions
  2159. FWAIT
  2160. END GetFPU;
  2161. (* CR2 - Get page fault address. *)
  2162. PROCEDURE -CR2* (): ADDRESS;
  2163. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2164. MOV RAX, CR2
  2165. END CR2;
  2166. (** GetExceptionState - Get exception state from interrupt state (and switch on interrupts). *)
  2167. PROCEDURE GetExceptionState* (VAR int: State; VAR exc: ExceptionState);
  2168. VAR id: LONGINT; level0: BOOLEAN;
  2169. BEGIN
  2170. (* save all state information while interrupts are still disabled *)
  2171. exc.halt := -int.INT; id := ID ();
  2172. IF int.INT = PF THEN exc.pf := CR2 () ELSE exc.pf := 0 END;
  2173. GetCR0to4(exc.CR);
  2174. GetDR0to7(exc.DR);
  2175. CLTS; (* ignore task switch flag *)
  2176. IF int.INT = MF THEN
  2177. GetFPU(ADDRESSOF(exc.FPU[0]));
  2178. int.PC := SYSTEM.VAL (ADDRESS, exc.FPU[3]); (* modify PC according to FPU info *)
  2179. (* set halt code according to FPU info *)
  2180. IF 2 IN exc.FPU[1] THEN exc.halt := -32 (* division by 0 *)
  2181. ELSIF 3 IN exc.FPU[1] THEN exc.halt := -33 (* overflow *)
  2182. ELSIF 0 IN exc.FPU[1] THEN exc.halt := -34 (* operation invalid *)
  2183. ELSIF 6 IN exc.FPU[1] THEN exc.halt := -35 (* stack fault *)
  2184. ELSIF 1 IN exc.FPU[1] THEN exc.halt := -36 (* denormalized *)
  2185. ELSIF 4 IN exc.FPU[1] THEN exc.halt := -37 (* underflow *)
  2186. ELSIF 5 IN exc.FPU[1] THEN exc.halt := -38 (* precision loss *)
  2187. ELSE (* {exc.halt = -16} *)
  2188. END
  2189. ELSE
  2190. Fill32(ADDRESSOF(exc.FPU[0]), LEN(exc.FPU)*SIZEOF(SET), 0)
  2191. END;
  2192. SetupFPU;
  2193. level0 := (int.CS MOD 4 = KernelLevel);
  2194. IF int.INT = BP THEN (* breakpoint (HALT) *)
  2195. IF level0 THEN
  2196. exc.halt := int.SP (* get halt code *)
  2197. (* if HALT(MAX(INTEGER)), leave halt code on stack when returning, but not serious problem.*)
  2198. ELSE
  2199. SYSTEM.GET (int.SP, exc.halt); (* get halt code from outer stack *)
  2200. IF exc.halt >= MAX(INTEGER) THEN INC (int.SP, AddressSize) END (* pop halt code from outer stack *)
  2201. END;
  2202. IF exc.halt < MAX(INTEGER) THEN DEC (int.PC) END; (* point to the INT 3 instruction (assume 0CCX, not 0CDX 3X) *)
  2203. ELSIF int.INT = OVF THEN (* overflow *)
  2204. DEC (int.PC) (* point to the INTO instruction (assume 0CEX, not 0CDX 4X) *)
  2205. ELSIF int.INT = PF THEN (* page fault *)
  2206. IF int.PC = 0 THEN (* reset PC to return address of indirect CALL to 0 *)
  2207. IF level0 THEN int.PC := int.SP (* ret adr *) ELSE SYSTEM.GET (int.SP, int.PC) END
  2208. END
  2209. END;
  2210. (* get segment registers *)
  2211. IF level0 THEN (* from same level, no ESP, SS etc. on stack *)
  2212. exc.SP := ADDRESSOF(int.SP) (* stack was here when interrupt happened *)
  2213. ELSE (* from outer level *)
  2214. exc.SP := int.SP
  2215. END
  2216. END GetExceptionState;
  2217. (* FieldInterrupt and FieldIRQ *)
  2218. (*
  2219. At entry to a Handler procedure the stack is as follows:
  2220. -- if (VMBit IN .RFLAGS) --
  2221. 176 -- .SS
  2222. 168 -- .RSP ; or haltcode
  2223. -- (VMBit IN .RFLAGS) OR (CS MOD 4 < .CS MOD 4) --
  2224. 160 -- .RFLAGS
  2225. 152 -- .CS
  2226. 144 -- .RIP ; rest popped by IRETD
  2227. 136 -- .ERR/RBP ; pushed by processor or glue code, popped by POP RBP
  2228. 128 -- .INT <-- .RSP0 ; pushed by glue code, popped by POP RBP
  2229. 120 -- .RAX
  2230. 112 -- .RCX
  2231. 104 -- .RDX
  2232. 96 -- .RBX
  2233. 88 -- .RSP0
  2234. 80 -- .RBP/ERR ; exchanged by glue code
  2235. 72 -- .RSI
  2236. 64 -- .RDI
  2237. 56 -- .R8
  2238. 48 -- .R9
  2239. 40 -- .R10
  2240. 32 -- .R11
  2241. 24 -- .R12
  2242. 16 -- .R13
  2243. 08 -- .R14
  2244. 00 48 .R15 <--- state: State
  2245. -- 40 ptr
  2246. -- 32 object pointer for DELEGATE
  2247. -- 24 TAG(state)
  2248. -- 16 ADR(state)
  2249. -- 08 RIP' (RET to FieldInterrupt)
  2250. -- 00 RBP' <-- RBP
  2251. -- -- locals <-- RSP
  2252. *)
  2253. PROCEDURE {NOPAF} FieldInterrupt;
  2254. CONST SizeOfHandlerRec = SIZEOF(HandlerRec);
  2255. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2256. entry:
  2257. ; fake PUSHAD (not available in 64-bit mode)
  2258. PUSH RAX
  2259. PUSH RCX
  2260. PUSH RDX
  2261. PUSH RBX ; (error code)
  2262. LEA RAX, [RSP - 4 * 8] ; (RSP minus the four pushed 64-bit registers)
  2263. PUSH RAX ; original value of RSP
  2264. PUSH RBP
  2265. PUSH RSI
  2266. PUSH RDI
  2267. PUSH R8
  2268. PUSH R9
  2269. PUSH R10
  2270. PUSH R11
  2271. PUSH R12
  2272. PUSH R13
  2273. PUSH R14
  2274. PUSH R15
  2275. LEA RBP, [RSP + 136]
  2276. MOV RBX, [RSP + 128] ; RBX = int number
  2277. IMUL RBX, RBX, MaxNumHandlers
  2278. IMUL RBX, RBX, SizeOfHandlerRec
  2279. ; todo: replace LEA by MOV when compiler supports this
  2280. LEA RAX, intHandler
  2281. ADD RAX, RBX ; address of intHandler[int, 0]
  2282. ; todo: replace LEA by MOV when compiler supports this
  2283. LEA RDX, stateTag
  2284. loop: ; call all handlers for the interrupt
  2285. MOV RCX, RSP
  2286. PUSH RAX ; save ptr for table
  2287. PUSH QWORD [RAX + 12] ; delegate
  2288. PUSH RDX ; TAG(state)
  2289. PUSH RCX ; ADR(state)
  2290. CALL QWORD [RAX+4] ; call handler
  2291. ADD RSP, 24
  2292. CLI ; handler may have re-enabled interrupts
  2293. POP RAX
  2294. ADD RAX, SizeOfHandlerRec
  2295. MOV RBX, [RAX]
  2296. CMP RBX, 0
  2297. JNE loop
  2298. ; fake POPAD (not available in 64-bit mode)
  2299. POP R15
  2300. POP R14
  2301. POP R13
  2302. POP R12
  2303. POP R11
  2304. POP R10
  2305. POP R9
  2306. POP R8
  2307. POP RDI
  2308. POP RSI
  2309. POP RBP
  2310. ADD RSP, 8 ;POP RSP
  2311. POP RBX
  2312. POP RDX
  2313. POP RCX
  2314. POP RAX ; now EBP = error code
  2315. POP RBP ; now EBP = INT
  2316. POP RBP ; now EBP = caller RBP
  2317. IRETQ
  2318. END FieldInterrupt;
  2319. PROCEDURE {NOPAF} FieldIRQ;
  2320. CONST SizeOfHandlerRec = SIZEOF(HandlerRec);
  2321. CODE {SYSTEM.AMD64}
  2322. entry:
  2323. ; fake PUSHAD (not available in 64-bit mode)
  2324. PUSH RAX
  2325. PUSH RCX
  2326. PUSH RDX
  2327. PUSH RBX ; (error code)
  2328. LEA RAX, [RSP - 4 * 8] ; (RSP minus the four pushed 64-bit registers)
  2329. PUSH RAX ; original value of RSP
  2330. PUSH RBP
  2331. PUSH RSI
  2332. PUSH RDI
  2333. PUSH R8
  2334. PUSH R9
  2335. PUSH R10
  2336. PUSH R11
  2337. PUSH R12
  2338. PUSH R13
  2339. PUSH R14
  2340. PUSH R15
  2341. LEA RBP, [RSP + 136]
  2342. ;; PUSH 32[ESP] ; int number
  2343. ;; CALL traceInterruptIn
  2344. MOV RBX, [RSP + 128] ; RBX = int number
  2345. IMUL RBX, RBX, MaxNumHandlers
  2346. IMUL RBX, RBX, SizeOfHandlerRec
  2347. ; todo: replace LEA by MOV when compiler supports this
  2348. LEA RAX, intHandler
  2349. ADD RAX, RBX ; address of intHandler[int, 0]
  2350. ; todo: replace LEA by MOV when compiler supports this
  2351. LEA RDX, stateTag
  2352. loop: ; call all handlers for the interrupt
  2353. MOV RCX, RSP
  2354. PUSH RAX ; save ptr for linked list
  2355. PUSH QWORD [RAX + 12] ; delegate
  2356. PUSH RDX ; TAG(state)
  2357. PUSH RCX ; ADR(state)
  2358. CALL QWORD [RAX + 4] ; call handler
  2359. ADD RSP, 24
  2360. CLI ; handler may have re-enabled interrupts
  2361. POP RAX
  2362. ADD RAX, SizeOfHandlerRec
  2363. MOV RBX, [RAX]
  2364. CMP RBX, 0
  2365. JNE loop
  2366. ;; PUSH 32[ESP] ; int number
  2367. ;; CALL traceInterruptOut
  2368. ; ack interrupt
  2369. MOV AL, 20H ; undoc PC ed. 2 p. 1018
  2370. CMP BYTE [RSP + 128], IRQ8
  2371. JB irq0
  2372. OUT IntB0, AL ; 2nd controller
  2373. irq0:
  2374. OUT IntA0, AL ; 1st controller
  2375. ; fake POPAD (not available in 64-bit mode)
  2376. POP R15
  2377. POP R14
  2378. POP R13
  2379. POP R12
  2380. POP R11
  2381. POP R10
  2382. POP R9
  2383. POP R8
  2384. POP RDI
  2385. POP RSI
  2386. POP RBP
  2387. ADD RSP, 8 ;POP RSP
  2388. POP RBX
  2389. POP RDX
  2390. POP RCX
  2391. POP RAX ; now RBP = error code
  2392. POP RBP ; now RBP = INT
  2393. POP RBP ; now RBP = caller RBP
  2394. IRETQ
  2395. END FieldIRQ;
  2396. (* LoadIDT - Load interrupt descriptor table *)
  2397. PROCEDURE LoadIDT(base: ADDRESS; size: SIZE);
  2398. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2399. ; LIDT needs 10 bytes: 2 for the 16-bit limit and 8 for the 64-bit base address
  2400. ; Assumption: size in front of base -> promote size value to upper 48 bits of size
  2401. SHL QWORD [RBP + size], 64-16
  2402. LIDT [RBP + size + (64-16) / 8]
  2403. END LoadIDT;
  2404. (** Init - Initialize interrupt handling. Called once during initialization. Uses NEW. *)
  2405. (*
  2406. The glue code is:
  2407. entry0: ; entry point for interrupts without error code
  2408. PUSH 0 ; fake error code
  2409. entry1: ; entry point for interrupts with error code
  2410. XCHG [ESP], EBP ; exchange error code and caller EBP
  2411. PUSH int ; interrupt number
  2412. JMP FieldInterrupt:entry
  2413. *)
  2414. PROCEDURE InitInterrupts*;
  2415. VAR a: ADDRESS; o, i: LONGINT; p: PROCEDURE; mask: SET;
  2416. BEGIN
  2417. stateTag := SYSTEM.TYPECODE(State);
  2418. (* initialise 8259 interrupt controller chips *)
  2419. Portout8 (IntA0, 11X); Portout8 (IntA1, CHR(IRQ0));
  2420. Portout8 (IntA1, 4X); Portout8 (IntA1, 1X); Portout8 (IntA1, 0FFX);
  2421. Portout8 (IntB0, 11X); Portout8 (IntB1, CHR(IRQ8));
  2422. Portout8 (IntB1, 2X); Portout8 (IntB1, 1X); Portout8 (IntB1, 0FFX);
  2423. (* enable interrupts from second interrupt controller, chained to line 2 of controller 1 *)
  2424. Portin8(IntA1, SYSTEM.VAL (CHAR, mask));
  2425. EXCL(mask, IRQ2-IRQ0);
  2426. Portout8 (IntA1, SYSTEM.VAL (CHAR, mask));
  2427. (*
  2428. NEW(default); default.next := NIL; default.handler := Unexpected;
  2429. *)
  2430. (*
  2431. newrec (SYSTEM.VAL (ANY, default), SYSTEM.TYPECODE (HandlerList));
  2432. *)
  2433. (* default.next := NIL; default.handler := Unexpected; *)
  2434. default.valid := TRUE; default.handler := Unexpected;
  2435. FOR i := 0 TO IDTSize-1 DO (* set up glue code *)
  2436. intHandler[i, 0] := default; o := 0;
  2437. (* PUSH error code, int num & regs *)
  2438. glue[i][o] := 6AX; INC (o); glue[i][o] := 0X; INC (o); (* PUSH 0 ; {o = 2} *)
  2439. glue[i][o] := 48X; INC(o); glue[i][o] := 87X; INC(o); glue[i][o] := 2CX; INC(o); glue[i][o] := 24X; INC(o); (* XCHG [RSP], RBP *)
  2440. glue[i][o] := 6AX; INC (o); glue[i][o] := CHR(i); INC (o); (* PUSH i *)
  2441. IF (i >= IRQ0) & (i <= IRQ15) THEN p := FieldIRQ ELSE p := FieldInterrupt END;
  2442. a := SYSTEM.VAL(ADDRESS, p) - (ADDRESSOF(glue[i][o])+5);
  2443. (* a must be a 32-bit offset to be used with the followingjump instruction, ensured since
  2444. both the glue code array and the interrupt functions are inside this module *)
  2445. glue[i][o] := 0E9X; INC (o); (* JMP FieldInterrupt.entry *)
  2446. SYSTEM.PUT32 (ADDRESSOF(glue[i][o]), a);
  2447. (* set up IDT entry *)
  2448. IF (i > 31) OR ~(i IN {8, 10..14, 17}) THEN a := ADDRESSOF(glue[i][0]) (* include PUSH 0 *)
  2449. ELSE a := ADDRESSOF(glue[i][2]) (* skip PUSH 0, processor supplies error code *)
  2450. END;
  2451. idt[i].offsetBits0to15 := SHORT (SHORT(a MOD 10000H));
  2452. (* IRQ0 must be at level 0 because time slicing in Objects needs to set interrupted process' ESP *)
  2453. (* all irq's are handled at level 0, because of priority experiment in Objects.FieldIRQ *)
  2454. IF TRUE (* (i < IRQ0) OR (i > IRQ15) OR (i = IRQ0) OR (i = IRQ0 + 1)*) THEN
  2455. idt[i].selector := Kernel64CodeSel; (* gdt[1] -> non-conformant segment => level 0 *)
  2456. idt[i].gateType := SYSTEM.VAL(INTEGER, 0EE00H) (* present, DPL 3, system, 64-bit interrupt gate *)
  2457. ELSE (* {IRQ0..IRQ15} - {IRQ0 + 1} *)
  2458. idt[i].selector := User64CodeSel; (* gdt[3] -> conformant segment => level 0 or 3 *)
  2459. idt[i].gateType := SYSTEM.VAL(INTEGER, 08E00H) (* present, DPL 0, system, 64-bit interrupt gate *)
  2460. END;
  2461. idt[i].offsetBits16to31 := SHORT (SHORT(a DIV 10000H));
  2462. idt[i].offsetBits32to63 := SHORT(a DIV 100000000H);
  2463. idt[i].reserved := 0;
  2464. END
  2465. END InitInterrupts;
  2466. (** Start - Start handling interrupts. Every processor calls this once during initialization. *)
  2467. PROCEDURE Start*;
  2468. BEGIN
  2469. ASSERT(default.valid); (* initialized *)
  2470. LoadIDT(ADDRESSOF(idt[0]), SIZEOF(IDT)-1);
  2471. Sti
  2472. END Start;
  2473. (* Return current instruction pointer *)
  2474. PROCEDURE CurrentPC* (): ADDRESS;
  2475. CODE {SYSTEM.AMD64}
  2476. MOV RAX, [RBP + 8]
  2477. END CurrentPC;
  2478. (* Return current frame pointer *)
  2479. PROCEDURE -CurrentBP* (): ADDRESS;
  2480. CODE {SYSTEM.AMD64}
  2481. MOV RAX, RBP
  2482. END CurrentBP;
  2483. (* Set current frame pointer *)
  2484. PROCEDURE -SetBP* (bp: ADDRESS);
  2485. CODE {SYSTEM.AMD64}
  2486. POP RBP
  2487. END SetBP;
  2488. (* Return current stack pointer *)
  2489. PROCEDURE -CurrentSP* (): ADDRESS;
  2490. CODE {SYSTEM.AMD64}
  2491. MOV RAX, RSP
  2492. END CurrentSP;
  2493. (* Set current stack pointer *)
  2494. PROCEDURE -SetSP* (sp: ADDRESS);
  2495. CODE {SYSTEM.AMD64}
  2496. POP RSP
  2497. END SetSP;
  2498. PROCEDURE -GetRAX*(): HUGEINT;
  2499. CODE{SYSTEM.AMD64}
  2500. END GetRAX;
  2501. PROCEDURE -GetRCX*(): HUGEINT;
  2502. CODE{SYSTEM.AMD64}
  2503. MOV RAX,RCX
  2504. END GetRCX;
  2505. PROCEDURE -GetRSI*(): HUGEINT;
  2506. CODE{SYSTEM.AMD64}
  2507. MOV RAX,RSI
  2508. END GetRSI;
  2509. PROCEDURE -GetRDI*(): HUGEINT;
  2510. CODE{SYSTEM.AMD64}
  2511. MOV RAX,RDI
  2512. END GetRDI;
  2513. PROCEDURE -SetRAX*(n: HUGEINT);
  2514. CODE{SYSTEM.AMD64}
  2515. NOP
  2516. POP RAX
  2517. END SetRAX;
  2518. PROCEDURE -SetRBX*(n: HUGEINT);
  2519. CODE{SYSTEM.AMD64}
  2520. NOP
  2521. POP RBX
  2522. END SetRBX;
  2523. PROCEDURE -SetRCX*(n: HUGEINT);
  2524. CODE{SYSTEM.AMD64}
  2525. POP RCX
  2526. END SetRCX;
  2527. PROCEDURE -SetRDX*(n: HUGEINT);
  2528. CODE{SYSTEM.AMD64}
  2529. POP RDX
  2530. END SetRDX;
  2531. PROCEDURE -SetRSI*(n: HUGEINT);
  2532. CODE{SYSTEM.AMD64}
  2533. POP RSI
  2534. END SetRSI;
  2535. PROCEDURE -SetRDI*(n: HUGEINT);
  2536. CODE{SYSTEM.AMD64}
  2537. POP RDI
  2538. END SetRDI;
  2539. PROCEDURE Portin8*(port: LONGINT; VAR val: CHAR);
  2540. CODE{SYSTEM.AMD64}
  2541. MOV EDX,[RBP+port]
  2542. IN AL, DX
  2543. MOV RCX, [RBP+val]
  2544. MOV [RCX], AL
  2545. END Portin8;
  2546. PROCEDURE Portin16*(port: LONGINT; VAR val: INTEGER);
  2547. CODE{SYSTEM.AMD64}
  2548. MOV EDX,[RBP+port]
  2549. IN AX, DX
  2550. MOV RCX, [RBP+val]
  2551. MOV [RCX], AX
  2552. END Portin16;
  2553. PROCEDURE Portin32*(port: LONGINT; VAR val: LONGINT);
  2554. CODE{SYSTEM.AMD64}
  2555. MOV EDX,[RBP+port]
  2556. IN EAX, DX
  2557. MOV RCX, [RBP+val]
  2558. MOV [RCX], EAX
  2559. END Portin32;
  2560. PROCEDURE Portout8*(port: LONGINT; val: CHAR);
  2561. CODE{SYSTEM.AMD64}
  2562. MOV AL,[RBP+val]
  2563. MOV EDX,[RBP+port]
  2564. OUT DX,AL
  2565. END Portout8;
  2566. PROCEDURE Portout16*(port: LONGINT; val: INTEGER);
  2567. CODE{SYSTEM.AMD64}
  2568. MOV AX,[RBP+val]
  2569. MOV EDX,[RBP+port]
  2570. OUT DX,AX
  2571. END Portout16;
  2572. PROCEDURE Portout32*(port: LONGINT; val: LONGINT);
  2573. CODE{SYSTEM.AMD64}
  2574. MOV EAX,[RBP+val]
  2575. MOV EDX,[RBP+port]
  2576. OUT DX,EAX
  2577. END Portout32;
  2578. PROCEDURE -Cli*;
  2579. CODE{SYSTEM.AMD64}
  2580. CLI
  2581. END Cli;
  2582. PROCEDURE -Sti*;
  2583. CODE{SYSTEM.AMD64}
  2584. STI
  2585. END Sti;
  2586. (* Save minimal FPU state (for synchronous process switches). *)
  2587. (* saving FPU state takes 108 bytes memory space, no alignment required *)
  2588. PROCEDURE -FPUSaveMin* (VAR state: SSEState);
  2589. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2590. POP RAX
  2591. FNSTCW [RAX] ; control word is at state[0]
  2592. FWAIT
  2593. END FPUSaveMin;
  2594. (* Restore minimal FPU state. *)
  2595. PROCEDURE -FPURestoreMin* (VAR state: SSEState);
  2596. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2597. POP RAX
  2598. FLDCW [RAX] ; control word is at state[0]
  2599. END FPURestoreMin;
  2600. (* Save full FPU state (for asynchronous process switches). *)
  2601. PROCEDURE -FPUSaveFull* (VAR state: SSEState);
  2602. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2603. POP RAX
  2604. FSAVE [RAX]
  2605. END FPUSaveFull;
  2606. (* Restore full FPU state. *)
  2607. PROCEDURE -FPURestoreFull* (VAR state: SSEState);
  2608. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2609. POP RAX
  2610. FRSTOR [RAX]
  2611. END FPURestoreFull;
  2612. (* stateAdr must be the address of a 16-byte aligned memory area of at least 512 bytes *)
  2613. PROCEDURE -SSESaveFull* (stateAdr: ADDRESS);
  2614. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2615. POP RAX
  2616. FXSAVE [RAX]
  2617. FWAIT
  2618. FNINIT
  2619. END SSESaveFull;
  2620. PROCEDURE -SSERestoreFull* (stateAdr: ADDRESS);
  2621. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2622. POP RAX
  2623. FXRSTOR [RAX]
  2624. END SSERestoreFull;
  2625. PROCEDURE -SSESaveMin* (stateAdr: ADDRESS);
  2626. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2627. POP RAX
  2628. FNSTCW [RAX]
  2629. FWAIT
  2630. STMXCSR [RAX + 24]
  2631. END SSESaveMin;
  2632. PROCEDURE -SSERestoreMin* (stateAdr: ADDRESS);
  2633. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2634. POP RAX
  2635. FLDCW [RAX]
  2636. LDMXCSR [RAX + 24]
  2637. END SSERestoreMin;
  2638. (* Helper functions for SwitchTo. *)
  2639. PROCEDURE -PushState* (CONST state: State);
  2640. CODE {SYSTEM.AMD64}
  2641. POP RAX ; ADR (state)
  2642. POP RBX ; TYPECODE (state), ignored
  2643. PUSH QWORD [RAX + 176] ; SS
  2644. PUSH QWORD [RAX + 168] ; SP
  2645. PUSH QWORD [RAX + 160] ; FLAGS
  2646. PUSH QWORD [RAX + 152] ; CS
  2647. PUSH QWORD [RAX + 144] ; PC
  2648. PUSH QWORD [RAX + 120] ; RAX
  2649. PUSH QWORD [RAX + 112] ; RCX
  2650. PUSH QWORD [RAX + 104] ; RDX
  2651. PUSH QWORD [RAX + 96] ; RBX
  2652. PUSH DWORD 0; ignored
  2653. PUSH QWORD [RAX + 136] ; RBP
  2654. PUSH QWORD [RAX + 72] ; RSI
  2655. PUSH QWORD [RAX + 64] ; RDI
  2656. PUSH QWORD [RAX + 56] ; R8
  2657. PUSH QWORD [RAX + 48] ; R9
  2658. PUSH QWORD [RAX + 40] ; R10
  2659. PUSH QWORD [RAX + 32] ; R11
  2660. PUSH QWORD [RAX + 24] ; R12
  2661. PUSH QWORD [RAX + 16] ; R13
  2662. PUSH QWORD [RAX + 8] ; R14
  2663. PUSH QWORD [RAX + 0] ; R15
  2664. END PushState;
  2665. PROCEDURE -JumpState*;
  2666. CODE {SYSTEM.AMD64}
  2667. POP R15
  2668. POP R14
  2669. POP R13
  2670. POP R12
  2671. POP R11
  2672. POP R10
  2673. POP R9
  2674. POP R8
  2675. POP RDI
  2676. POP RSI
  2677. POP RBP
  2678. POP RBX; ignored
  2679. POP RBX
  2680. POP RDX
  2681. POP RCX
  2682. POP RAX
  2683. IRETQ
  2684. END JumpState;
  2685. PROCEDURE -CallLocalIPC*;
  2686. CODE {SYSTEM.AMD64}
  2687. INT MPIPCLocal
  2688. END CallLocalIPC;
  2689. PROCEDURE -HLT*;
  2690. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2691. STI ; (* required according to ACPI 2.0 spec section 8.2.2 *)
  2692. HLT
  2693. END HLT;
  2694. (* Kernel mode upcall to perform global processor halt. *)
  2695. PROCEDURE KernelCallHLT*;
  2696. CODE {SYSTEM.AMD64}
  2697. MOV EAX, 2
  2698. INT MPKC
  2699. END KernelCallHLT;
  2700. (* Parse processor entry in MP config table. *)
  2701. PROCEDURE CPUID1*(): LONGINT;
  2702. CODE {SYSTEM.AMD64}
  2703. MOV EAX, 1
  2704. CPUID
  2705. MOV EAX, EBX
  2706. END CPUID1;
  2707. (** -- Atomic operations -- *)
  2708. (** Atomic INC(x). *)
  2709. PROCEDURE -AtomicInc*(VAR x: LONGINT);
  2710. CODE {SYSTEM.AMD64}
  2711. POP RAX
  2712. LOCK
  2713. INC DWORD [RAX]
  2714. END AtomicInc;
  2715. (** Atomic DEC(x). *)
  2716. PROCEDURE -AtomicDec*(VAR x: LONGINT);
  2717. CODE {SYSTEM.AMD64}
  2718. POP RAX
  2719. LOCK
  2720. DEC DWORD [RAX]
  2721. END AtomicDec;
  2722. (** Atomic EXCL. *)
  2723. PROCEDURE AtomicExcl* (VAR s: SET; bit: LONGINT);
  2724. CODE {SYSTEM.AMD64}
  2725. MOV EAX, [RBP + bit]
  2726. MOV RBX, [RBP + s]
  2727. LOCK
  2728. BTR [RBX], EAX
  2729. END AtomicExcl;
  2730. (** Atomic INC(x, y). *)
  2731. PROCEDURE -AtomicAdd*(VAR x: LONGINT; y: LONGINT);
  2732. CODE {SYSTEM.AMD64}
  2733. POP EBX
  2734. POP RAX
  2735. LOCK
  2736. ADD DWORD [RAX], EBX
  2737. END AtomicAdd;
  2738. (** Atomic test-and-set. Set x = TRUE and return old value of x. *)
  2739. PROCEDURE -AtomicTestSet*(VAR x: BOOLEAN): BOOLEAN;
  2740. CODE {SYSTEM.AMD64}
  2741. POP RBX
  2742. MOV AL, 1
  2743. XCHG [RBX], AL
  2744. END AtomicTestSet;
  2745. (* Atomic compare-and-swap. Set x = new if x = old and return old value of x *)
  2746. PROCEDURE -AtomicCAS* (VAR x: LONGINT; old, new: LONGINT): LONGINT;
  2747. CODE {SYSTEM.AMD64}
  2748. POP EBX ; new
  2749. POP EAX ; old
  2750. POP RCX ; address of x
  2751. LOCK CMPXCHG [RCX], EBX ; atomicly compare x with old and set it to new if equal
  2752. END AtomicCAS;
  2753. PROCEDURE CopyState* (CONST from: State; VAR to: State);
  2754. BEGIN
  2755. to.R15 := from.R15;
  2756. to.R14 := from.R14;
  2757. to.R13 := from.R13;
  2758. to.R12 := from.R12;
  2759. to.R11 := from.R11;
  2760. to.R10 := from.R10;
  2761. to.R9 := from.R9;
  2762. to.R8 := from.R8;
  2763. to.RDI := from.RDI;
  2764. to.RSI := from.RSI;
  2765. to.RBX := from.RBX;
  2766. to.RDX := from.RDX;
  2767. to.RCX := from.RCX;
  2768. to.RAX := from.RAX;
  2769. to.BP := from.BP;
  2770. to.PC := from.PC;
  2771. to.CS := from.CS;
  2772. to.SP := from.SP;
  2773. to.SS := from.SS;
  2774. to.FLAGS := from.FLAGS;
  2775. END CopyState;
  2776. (* function returning the number of processors that are available to Aos *)
  2777. PROCEDURE NumberOfProcessors*( ): LONGINT;
  2778. BEGIN
  2779. RETURN numberOfProcessors
  2780. END NumberOfProcessors;
  2781. (*! non portable code, for native Aos only *)
  2782. PROCEDURE SetNumberOfProcessors*(num: LONGINT);
  2783. BEGIN
  2784. numberOfProcessors := num;
  2785. END SetNumberOfProcessors;
  2786. (* function for changing byte order *)
  2787. PROCEDURE ChangeByteOrder* (n: LONGINT): LONGINT;
  2788. CODE {SYSTEM.AMD64}
  2789. MOV EAX, [RBP + n] ; load n in eax
  2790. BSWAP EAX ; swap byte order
  2791. END ChangeByteOrder;
  2792. (* Write a value to the APIC. *)
  2793. PROCEDURE ApicPut(ofs: SIZE; val: SET);
  2794. BEGIN
  2795. IF TraceApic THEN
  2796. Acquire(TraceOutput);
  2797. Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" := "); Trace.Hex(SYSTEM.VAL (LONGINT, val), 9); Trace.Ln;
  2798. Release(TraceOutput);
  2799. END;
  2800. SYSTEM.PUT(localAPIC+ofs, SYSTEM.VAL (LONGINT, val))
  2801. END ApicPut;
  2802. (* Read a value from the APIC. *)
  2803. PROCEDURE ApicGet(ofs: SIZE): SET;
  2804. VAR val: SET;
  2805. BEGIN
  2806. SYSTEM.GET(localAPIC+ofs, SYSTEM.VAL (LONGINT, val));
  2807. IF TraceApic THEN
  2808. Acquire(TraceOutput);
  2809. Trace.String(" ("); Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" = ");
  2810. Trace.Hex(SYSTEM.VAL(LONGINT, val), 9); Trace.StringLn (")");
  2811. Release(TraceOutput);
  2812. END;
  2813. RETURN val
  2814. END ApicGet;
  2815. (* Handle interprocessor interrupt. During upcall interrupts are off and processor is at kernel level. *)
  2816. PROCEDURE HandleIPC(VAR state: State);
  2817. VAR id: LONGINT;
  2818. BEGIN
  2819. id := ID();
  2820. IF ~TraceProcessor OR (id IN allProcessors) THEN
  2821. IF FrontBarrier IN ipcFlags THEN
  2822. AtomicExcl(ipcFrontBarrier, id);
  2823. WHILE ipcFrontBarrier # {} DO SpinHint END (* wait for all *)
  2824. END;
  2825. ipcHandler(id, state, ipcMessage); (* interrupts off and at kernel level *)
  2826. IF BackBarrier IN ipcFlags THEN
  2827. AtomicExcl(ipcBackBarrier, id);
  2828. WHILE ipcBackBarrier # {} DO SpinHint END (* wait for all *)
  2829. END;
  2830. AtomicExcl(ipcBusy, id) (* ack - after this point we do not access shared variables for this broadcast *)
  2831. END;
  2832. IF state.INT = MPIPC THEN
  2833. ApicPut(0B0H, {}) (* EOI (not needed for NMI or local call, see 7.4.10.6) *)
  2834. END
  2835. END HandleIPC;
  2836. (* Handle MP error interrupt. *)
  2837. PROCEDURE HandleError(VAR state: State);
  2838. VAR esr: SET; (* int: LONGINT; *)
  2839. BEGIN
  2840. (* int := state.INT; *) esr := ApicGet(280H);
  2841. ApicPut(0B0H, {}); (* EOI *)
  2842. HALT(2302) (* SMP error *)
  2843. END HandleError;
  2844. (* Interprocessor broadcasting. Lock level SMP. *)
  2845. PROCEDURE LocalBroadcast(h: BroadcastHandler; msg: Message; flags: SET);
  2846. BEGIN
  2847. IF Self IN flags THEN ipcBusy := allProcessors
  2848. ELSE ipcBusy := allProcessors - {ID()}
  2849. END;
  2850. ipcFrontBarrier := ipcBusy; ipcBackBarrier := ipcBusy;
  2851. ipcHandler := h; ipcMessage := msg; ipcFlags := flags;
  2852. IF numProcessors > 1 THEN (* ICR: Fixed, Physical, Edge, All Excl. Self, INT IPC *)
  2853. ApicPut(300H, {18..19} + SYSTEM.VAL (SET, MPIPC));
  2854. (*REPEAT UNTIL ~(12 IN ApicGet(300H))*) (* wait for send to finish *)
  2855. END;
  2856. IF Self IN flags THEN CallLocalIPC END; (* "send" to self also *)
  2857. WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack before we release locks *)
  2858. ipcHandler := NIL; ipcMessage := NIL (* no race, because we have IPC lock *)
  2859. END LocalBroadcast;
  2860. (** Broadcast an operation to all processors. *)
  2861. PROCEDURE Broadcast* (h: BroadcastHandler; msg: Message; flags: SET);
  2862. BEGIN
  2863. Acquire(Processors);
  2864. LocalBroadcast(h, msg, flags);
  2865. Release(Processors)
  2866. END Broadcast;
  2867. (* Start all halted processors. *) (* Lock level Processors. *)
  2868. PROCEDURE StartAll*;
  2869. BEGIN
  2870. Acquire(Processors); (* wait for any pending Stops to finish, and disallow further Stops *)
  2871. ASSERT(stopped & (ipcBusy = {}));
  2872. ipcBusy := allProcessors - {ID()};
  2873. stopped := FALSE;
  2874. WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack *)
  2875. Release(Processors)
  2876. END StartAll;
  2877. PROCEDURE HandleFlushTLB(id: LONGINT; CONST state: State; msg: Message);
  2878. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2879. MOV EAX, CR3
  2880. MOV CR3, EAX
  2881. END HandleFlushTLB;
  2882. (** Flush the TLBs on all processors (multiprocessor-safe). *)
  2883. PROCEDURE GlobalFlushTLB;
  2884. BEGIN
  2885. Acquire(Processors);
  2886. LocalBroadcast(HandleFlushTLB, NIL, {Self, FrontBarrier, BackBarrier});
  2887. Release(Processors)
  2888. END GlobalFlushTLB;
  2889. PROCEDURE HandleFlushCache(id: LONGINT; CONST state: State; msg: Message);
  2890. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2891. WBINVD ; write back and invalidate internal cache and initiate write back and invalidation of external caches
  2892. END HandleFlushCache;
  2893. (** Flush the caches on all processors (multiprocessor-safe). *)
  2894. PROCEDURE GlobalFlushCache;
  2895. BEGIN
  2896. Acquire(Processors);
  2897. LocalBroadcast(HandleFlushCache, NIL, {Self, FrontBarrier, BackBarrier});
  2898. Release(Processors)
  2899. END GlobalFlushCache;
  2900. (* Activate the garbage collector in single-processor mode. Lock level ALL. *)
  2901. PROCEDURE HandleKernelCall(VAR state: State);
  2902. BEGIN (* level 0 *)
  2903. IF IFBit IN state.FLAGS THEN
  2904. Sti (* re-enable interrupts *)
  2905. END;
  2906. CASE state.RAX OF (* see KernelCall* *)
  2907. |2: (* HLT *)
  2908. IF IFBit IN state.FLAGS THEN
  2909. HLT
  2910. END
  2911. END
  2912. END HandleKernelCall;
  2913. (*
  2914. (** Activate the garbage collector immediately (multiprocessor-safe). *)
  2915. PROCEDURE GlobalGC*;
  2916. BEGIN
  2917. Acquire(Processors);
  2918. gcBarrier := allProcessors;
  2919. LocalBroadcast(HandleGC, NIL, {Self, BackBarrier});
  2920. Release(Processors);
  2921. END GlobalGC;
  2922. *)
  2923. PROCEDURE HandleGetTimestamp(id: LONGINT; CONST state: State; msg: Message);
  2924. BEGIN
  2925. time[id] := GetTimer()
  2926. END HandleGetTimestamp;
  2927. (** Get timestamp on all processors (for testing). *)
  2928. PROCEDURE GlobalGetTimestamp;
  2929. VAR t: TimeArray; i: LONGINT; mean, var, n: HUGEINT;
  2930. BEGIN
  2931. Acquire(Processors);
  2932. LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier});
  2933. LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier});
  2934. t := time;
  2935. Release(Processors);
  2936. Acquire (TraceOutput);
  2937. FOR i := 0 TO numProcessors-1 DO Trace.HIntHex(t[i], 17) END;
  2938. IF numProcessors > 1 THEN
  2939. mean := 0;
  2940. n := numProcessors;
  2941. FOR i := 0 TO numProcessors-1 DO
  2942. INC (mean, t[i])
  2943. END;
  2944. mean := DivH(mean, n);
  2945. var := 0;
  2946. FOR i := 0 TO numProcessors-1 DO
  2947. n := t[i] - mean;
  2948. INC (var, MulH(n, n))
  2949. END;
  2950. var := DivH(var, numProcessors - 1);
  2951. Trace.String(" mean="); Trace.HIntHex(mean, 16);
  2952. Trace.String(" var="); Trace.HIntHex(var, 16);
  2953. Trace.String(" var="); Trace.Int(SHORT (var), 1);
  2954. Trace.String(" diff:");
  2955. FOR i := 0 TO numProcessors-1 DO
  2956. Trace.Int(SHORT (t[i] - mean), 1); Trace.Char(" ")
  2957. END
  2958. END;
  2959. Release (TraceOutput);
  2960. END GlobalGetTimestamp;
  2961. PROCEDURE ParseProcessor(adr: ADDRESS);
  2962. VAR id, idx, signature, family, feat, ver, log: LONGINT; flags: SET; string : ARRAY 8 OF CHAR;
  2963. BEGIN
  2964. SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, flags));
  2965. id := ASH(SYSTEM.VAL (LONGINT, flags * {8..15}), -8);
  2966. ver := ASH(SYSTEM.VAL (LONGINT, flags * {16..23}), -16);
  2967. SYSTEM.GET (adr+4, signature);
  2968. family := ASH(signature, -8) MOD 10H;
  2969. SYSTEM.GET (adr+8, feat);
  2970. idx := -1;
  2971. IF (family # 0) & (signature MOD 1000H # 0FFFH) & (24 IN flags) & (id < LEN(idMap)) & (idMap[id] = -1) THEN
  2972. IF 25 IN flags THEN idx := 0 (* boot processor *)
  2973. ELSIF numProcessors < maxProcessors THEN idx := numProcessors; INC(numProcessors)
  2974. ELSE (* skip *)
  2975. END
  2976. END;
  2977. IF idx # -1 THEN apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx)) END;
  2978. Trace.String(" Processor "); Trace.Int(id, 1);
  2979. Trace.String(", APIC"); Trace.Hex(ver, -3);
  2980. Trace.String(", ver "); Trace.Int(family, 1);
  2981. Trace.Char("."); Trace.Int(ASH(signature, -4) MOD 10H, 1);
  2982. Trace.Char("."); Trace.Int(signature MOD 10H, 1);
  2983. Trace.String(", features "); Trace.Hex(feat, 9);
  2984. Trace.String(", ID "); Trace.Int(idx, 1);
  2985. IF (threadsPerCore > 1) THEN Trace.String(" ("); Trace.Int(threadsPerCore, 0); Trace.String(" threads)"); END;
  2986. Trace.Ln;
  2987. IF (threadsPerCore > 1) THEN
  2988. GetConfig("DisableHyperthreading", string);
  2989. IF (string = "1") THEN
  2990. Trace.String("Machine: Hyperthreading disabled."); Trace.Ln;
  2991. RETURN;
  2992. END;
  2993. log := (LSH(CPUID1(), -16) MOD 256);
  2994. WHILE log > 1 DO
  2995. INC(id); DEC(log);
  2996. IF numProcessors < maxProcessors THEN
  2997. idx := numProcessors; INC(numProcessors);
  2998. apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx))
  2999. END
  3000. END
  3001. END
  3002. END ParseProcessor;
  3003. (* Parse MP configuration table. *)
  3004. PROCEDURE ParseMPConfig;
  3005. VAR adr, x: ADDRESS; i: LONGINT; entries: INTEGER; ch: CHAR; s: SET; str: ARRAY 8 OF CHAR;
  3006. BEGIN
  3007. localAPIC := 0; numProcessors := 1; allProcessors := {0};
  3008. FOR i := 0 TO LEN(idMap)-1 DO idMap[i] := -1 END; (* all unassigned *)
  3009. FOR i := 0 TO MaxCPU-1 DO started[i] := FALSE END;
  3010. adr := configMP;
  3011. GetConfig("MaxProcs", str);
  3012. i := 0; maxProcessors := StrToInt(i, str);
  3013. IF maxProcessors = 0 THEN maxProcessors := MaxCPU END;
  3014. IF (maxProcessors > 0) & (adr # NilAdr) THEN (* MP config table present, possible multi-processor *)
  3015. Trace.String("Machine: Intel MP Spec "); Trace.Int(ORD(revMP) DIV 10H + 1, 1);
  3016. Trace.Char("."); Trace.Int(ORD(revMP) MOD 10H, 1); Trace.Ln;
  3017. IF TraceVerbose THEN
  3018. IF ODD(ASH(ORD(featureMP[1]), -7)) THEN
  3019. Trace.StringLn (" PIC mode");
  3020. (* to do: enable SymIO *)
  3021. ELSE
  3022. Trace.StringLn (" Virtual wire mode");
  3023. END
  3024. END;
  3025. IF featureMP[0] # 0X THEN (* pre-defined configuration *)
  3026. Trace.String(" Default config "); Trace.Int(ORD(featureMP[0]), 1); Trace.Ln;
  3027. localAPIC := (0FEE00000H);
  3028. apicVer[0] := 0; apicVer[1] := 0
  3029. ELSE (* configuration defined in table *)
  3030. MapPhysical(adr, 68*1024, adr); (* 64K + 4K header *)
  3031. SYSTEM.GET (adr, i); ASSERT(i = 504D4350H); (* check signature *)
  3032. SYSTEM.GET (adr+4, i); (* length *)
  3033. ASSERT(ChecksumMP(adr, i MOD 10000H) = 0);
  3034. IF TraceVerbose THEN
  3035. Trace.String(" ID: ");
  3036. FOR x := adr+8 TO adr+27 DO
  3037. SYSTEM.GET (x, ch); Trace.Char(ch);
  3038. IF x = adr+15 THEN Trace.Char(" ") END
  3039. END;
  3040. Trace.Ln
  3041. END;
  3042. localAPIC := 0; SYSTEM.GET(adr+36, SYSTEM.VAL (LONGINT, localAPIC));
  3043. IF TraceVerbose THEN Trace.String(" Local APIC:"); Trace.Address (localAPIC); Trace.Ln END;
  3044. SYSTEM.GET (adr+34, entries);
  3045. INC(adr, 44); (* skip header *)
  3046. WHILE entries > 0 DO
  3047. SYSTEM.GET (adr, ch); (* type *)
  3048. CASE ORD(ch) OF
  3049. 0: (* processor *)
  3050. ParseProcessor(adr);
  3051. INC(adr, 20)
  3052. |1: (* bus *)
  3053. IF TraceVerbose THEN
  3054. SYSTEM.GET (adr+1, ch);
  3055. Trace.String(" Bus "); Trace.Int(ORD(ch), 1); Trace.String(": ");
  3056. FOR x := adr+2 TO adr+7 DO SYSTEM.GET (x, ch); Trace.Char(ch) END;
  3057. Trace.Ln
  3058. END;
  3059. INC(adr, 8)
  3060. |2: (* IO APIC *)
  3061. IF TraceVerbose THEN
  3062. SYSTEM.GET (adr+1, ch); Trace.String(" IO APIC ID:"); Trace.Hex(ORD(ch), -3);
  3063. SYSTEM.GET (adr+2, ch); Trace.String(", version "); Trace.Int(ORD(ch), 1);
  3064. SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, s)); IF ~(24 IN s) THEN Trace.String(" (disabled)") END;
  3065. Trace.Ln
  3066. END;
  3067. INC(adr, 8)
  3068. |3: (* IO interrupt assignment *)
  3069. INC(adr, 8)
  3070. |4: (* Local interrupt assignment *)
  3071. INC(adr, 8)
  3072. END; (* CASE *)
  3073. DEC(entries)
  3074. END
  3075. END
  3076. END;
  3077. IF localAPIC = 0 THEN (* single processor *)
  3078. Trace.StringLn ("Machine: Single-processor");
  3079. apicVer[0] := 0
  3080. END;
  3081. started[0] := TRUE;
  3082. FOR i := 0 TO MaxCPU-1 DO revIDmap[i] := -1 END;
  3083. FOR i := 0 TO LEN(idMap)-1 DO
  3084. x := idMap[i];
  3085. IF x # -1 THEN
  3086. ASSERT(revIDmap[x] = -1); (* no duplicate APIC ids *)
  3087. revIDmap[x] := SHORT(SHORT(i))
  3088. END
  3089. END;
  3090. (* timer configuration *)
  3091. GetConfig("TimerRate", str);
  3092. i := 0; timerRate := StrToInt(i, str);
  3093. IF timerRate = 0 THEN timerRate := 1000 END;
  3094. IF TraceProcessor THEN
  3095. GetConfig("TraceProc", str);
  3096. i := 0; traceProcessor := StrToInt(i, str) # 0
  3097. END
  3098. END ParseMPConfig;
  3099. (* Return the current average measured bus clock speed in Hz. *)
  3100. PROCEDURE GetBusClockRate(): LONGINT;
  3101. VAR timer: LONGINT; t: LONGINT;
  3102. BEGIN
  3103. t := ticks;
  3104. REPEAT UNTIL ticks # t; (* wait for edge *)
  3105. timer := ticks + ClockRateDelay;
  3106. ApicPut(380H, SYSTEM.VAL (SET, MAX(LONGINT))); (* initial count *)
  3107. REPEAT UNTIL timer - ticks <= 0;
  3108. t := MAX(LONGINT) - SYSTEM.VAL (LONGINT, ApicGet(390H)); (* current count *)
  3109. IF t <= MAX(LONGINT) DIV 1000 THEN
  3110. RETURN 1000 * t DIV ClockRateDelay
  3111. ELSE
  3112. RETURN t DIV ClockRateDelay * 1000
  3113. END
  3114. END GetBusClockRate;
  3115. (* Initialize APIC timer for timeslicing. *)
  3116. PROCEDURE InitMPTimer;
  3117. VAR rate: LONGINT;
  3118. BEGIN
  3119. IF timerRate > 0 THEN
  3120. ApicPut(3E0H, {0,1,3}); (* divide by 1 *)
  3121. ApicPut(320H, {16} + SYSTEM.VAL (SET, MPTMR)); (* masked, one-shot *)
  3122. rate := GetBusClockRate();
  3123. busHz0[ID()] := rate;
  3124. rate := (rate+500000) DIV 1000000 * 1000000; (* round to nearest MHz *)
  3125. busHz1[ID()] := rate;
  3126. ApicPut(320H, {17} + SYSTEM.VAL (SET, MPTMR)); (* unmasked, periodic *)
  3127. ApicPut(380H, SYSTEM.VAL (SET, rate DIV timerRate)) (* initial count *)
  3128. END
  3129. END InitMPTimer;
  3130. (* Handle multiprocessor timer interrupt. *)
  3131. PROCEDURE HandleMPTimer(VAR state: State);
  3132. BEGIN (* {interrupts off} *)
  3133. timer(ID(), state);
  3134. ApicPut(0B0H, {}); (* EOI *)
  3135. Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *)
  3136. Timeslice(state) (* fixme: check recursive interrupt *)
  3137. END HandleMPTimer;
  3138. (* Handle uniprocessor timer interrupt. *)
  3139. PROCEDURE HandleUPTimer(VAR state: State);
  3140. BEGIN (* {interrupts off} *)
  3141. timer(0, state);
  3142. Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *)
  3143. Timeslice(state)
  3144. END HandleUPTimer;
  3145. PROCEDURE DummyEvent(id: LONGINT; CONST state: State);
  3146. END DummyEvent;
  3147. (** Install a processor timer event handler. *)
  3148. PROCEDURE InstallEventHandler* (h: EventHandler);
  3149. BEGIN
  3150. IF h # NIL THEN timer := h ELSE timer := DummyEvent END
  3151. END InstallEventHandler;
  3152. (* Initialize APIC for current processor. *)
  3153. PROCEDURE InitAPIC;
  3154. BEGIN
  3155. (* enable APIC, set focus checking & set spurious interrupt handler *)
  3156. ASSERT(MPSPU MOD 16 = 15); (* low 4 bits set, p. 7-29 *)
  3157. ApicPut(0F0H, {8} + SYSTEM.VAL (SET, MPSPU));
  3158. (* set error interrupt handler *)
  3159. ApicPut(370H, SYSTEM.VAL (SET, MPERR));
  3160. InitMPTimer
  3161. END InitAPIC;
  3162. (* Start processor activity. *)
  3163. PROCEDURE StartMP;
  3164. VAR id: LONGINT; state: State;
  3165. BEGIN (* running at kernel level with interrupts on *)
  3166. InitAPIC;
  3167. id := ID(); (* timeslicing is disabled, as we are running at kernel level *)
  3168. Acquire (TraceOutput);
  3169. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" running");
  3170. Release (TraceOutput);
  3171. IF TraceProcessor & traceProcessor & (id = numProcessors-1) THEN
  3172. DEC(numProcessors) (* exclude from rest of activity *)
  3173. ELSE
  3174. INCL(allProcessors, id)
  3175. END;
  3176. (* synchronize with boot processor - end of mutual exclusion *)
  3177. started[id] := TRUE;
  3178. IF TraceProcessor & ~(id IN allProcessors) THEN
  3179. Acquire (TraceOutput);
  3180. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" tracing");
  3181. Release (TraceOutput);
  3182. LOOP
  3183. IF traceProcessorProc # NIL THEN traceProcessorProc(id, state) END;
  3184. SpinHint
  3185. END
  3186. END;
  3187. (* wait until woken up *)
  3188. WHILE stopped DO SpinHint END;
  3189. (* now fully functional, including storage allocation *)
  3190. AtomicExcl(ipcBusy, id); (* ack *)
  3191. Acquire (TraceOutput);
  3192. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn(" scheduling");
  3193. Release (TraceOutput);
  3194. ASSERT(id = ID()); (* still running on same processor *)
  3195. start;
  3196. END StartMP;
  3197. (* Subsequent processors start executing here. *)
  3198. PROCEDURE EnterMP;
  3199. (* no local variables allowed, because stack is switched. *)
  3200. BEGIN (* running at kernel level with interrupts off *)
  3201. InitProcessor;
  3202. InitMemory; (* switch stack *)
  3203. Start;
  3204. StartMP
  3205. END EnterMP;
  3206. (* Start another processor. *)
  3207. PROCEDURE StartProcessor(phys: ADDRESS; apicid: LONGINT; startup: BOOLEAN);
  3208. VAR j, k: LONGINT; s: SET; timer: LONGINT;
  3209. BEGIN
  3210. (* clear APIC errors *)
  3211. ApicPut(280H, {}); s := ApicGet(280H);
  3212. (* assert INIT *)
  3213. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3214. ApicPut(300H, {8, 10, 14, 15}); (* set Dest, INIT, Phys, Assert, Level *)
  3215. timer := ticks + 5; (* > 200us *)
  3216. REPEAT UNTIL timer - ticks <= 0;
  3217. (* deassert INIT *)
  3218. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3219. ApicPut(300H, {8, 10, 15}); (* set Dest, INIT, Deassert, Phys, Level *)
  3220. IF startup THEN (* send STARTUP if required *)
  3221. j := 0; k := 2;
  3222. WHILE j # k DO
  3223. ApicPut(280H, {});
  3224. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3225. (* set Dest, Startup, Deassert, Phys, Edge *)
  3226. ApicPut(300H, {9, 10} + SYSTEM.VAL (SET, phys DIV 4096 MOD 256));
  3227. timer := ticks + 10; (* ~10ms *)
  3228. REPEAT UNTIL timer - ticks <= 0;
  3229. IF ~(12 IN ApicGet(300H)) THEN (* idle *)
  3230. IF ApicGet(280H) * {0..3, 5..7} = {} THEN k := j (* ESR success, exit *)
  3231. ELSE INC(j) (* retry *)
  3232. END
  3233. ELSE INC(j) (* retry *)
  3234. END
  3235. END
  3236. END
  3237. END StartProcessor;
  3238. (* Boot other processors, one at a time. *)
  3239. PROCEDURE BootMP;
  3240. VAR phys, page0Adr: ADDRESS; i: LONGINT; timer: LONGINT;
  3241. BEGIN
  3242. stopped := TRUE; ipcBusy := {}; (* other processors can be woken with StartAll *)
  3243. InitBootPage(EnterMP, phys);
  3244. MapPhysical(0, 4096, page0Adr); (* map in BIOS data area *)
  3245. Acquire(TraceOutput); Trace.String("Machine: Booting processors... "); Trace.Ln; Release(TraceOutput);
  3246. FOR i := 1 TO numProcessors-1 DO
  3247. (* set up booting for old processor types that reset on INIT & don't understand STARTUP *)
  3248. SYSTEM.PUT (page0Adr + 467H, ASH(phys, 16-4));
  3249. PutNVByte(15, 0AX); (* shutdown status byte *)
  3250. (* attempt to start another processor *)
  3251. Acquire(TraceOutput); Trace.String(" P0 starting P"); Trace.Int(i, 1); Trace.Ln; Release(TraceOutput);
  3252. StartProcessor(phys, revIDmap[i], apicVer[i] >= 10H); (* try booting processor i *)
  3253. (* wait for CPU to become active *)
  3254. timer := ticks + 5000; (* ~5s timeout *)
  3255. REPEAT SpinHint UNTIL started[i] OR (timer - ticks <= 0);
  3256. (* end of mutual exclusion *)
  3257. Acquire(TraceOutput);
  3258. IF started[i] THEN
  3259. Trace.String(" P0 recognized P"); Trace.Int(i, 1);
  3260. ELSE
  3261. Trace.String(" P0 timeout on P"); Trace.Int(i, 1);
  3262. END;
  3263. Trace.Ln;
  3264. Release(TraceOutput);
  3265. END;
  3266. SYSTEM.PUT (page0Adr + 467H, SYSTEM.VAL (LONGINT, 0));
  3267. UnmapPhysical(page0Adr, 4096);
  3268. PutNVByte(15, 0X) (* restore shutdown status *)
  3269. END BootMP;
  3270. (* Timer interrupt handler. *)
  3271. PROCEDURE TimerInterruptHandler(VAR state: State);
  3272. BEGIN
  3273. INC(ticks);
  3274. DEC(eventCount);
  3275. IF eventCount = 0 THEN
  3276. eventCount := eventMax; event(state)
  3277. END
  3278. END TimerInterruptHandler;
  3279. PROCEDURE Dummy(VAR state: State);
  3280. END Dummy;
  3281. PROCEDURE InitTicks;
  3282. CONST Div = (2*TimerClock + Second) DIV (2*Second); (* timer clock divisor *)
  3283. BEGIN
  3284. eventCount := 0; eventMax := 0; event := Dummy;
  3285. (* initialize timer hardware *)
  3286. ASSERT(Div <= 65535);
  3287. Portout8(43H, 34X); Wait; (* mode 2, rate generator *)
  3288. Portout8(40H, CHR(Div MOD 100H)); Wait;
  3289. Portout8(40H, CHR(ASH(Div, -8)));
  3290. InstallHandler(TimerInterruptHandler, IRQ0)
  3291. END InitTicks;
  3292. (* Set timer upcall. The handler procedure will be called at a rate of Second/divisor Hz. *)
  3293. PROCEDURE InstallTickHandler(handler: Handler; divisor: LONGINT);
  3294. BEGIN
  3295. eventMax := divisor; event := handler;
  3296. eventCount := eventMax
  3297. END InstallTickHandler;
  3298. (* Initialize processors *)
  3299. PROCEDURE InitProcessors*;
  3300. BEGIN
  3301. traceProcessor := FALSE; traceProcessorProc := NIL;
  3302. ASSERT(Second = 1000); (* use of Machine.ticks *)
  3303. InitTicks;
  3304. timer := DummyEvent;
  3305. ParseMPConfig;
  3306. InstallHandler(HandleIPC, MPIPCLocal);
  3307. IF localAPIC # 0 THEN (* APIC present *)
  3308. InitAPICArea(localAPIC, 4096);
  3309. InitAPICIDAdr(localAPIC+20H, idMap);
  3310. ASSERT(MPSPU MOD 16 = 15); (* use default handler (see 7.4.11.1) *)
  3311. InstallHandler(HandleError, MPERR);
  3312. InstallHandler(HandleMPTimer, MPTMR);
  3313. InstallHandler(HandleIPC, MPIPC);
  3314. InitAPIC;
  3315. IF numProcessors > 1 THEN BootMP END
  3316. ELSE
  3317. IF timerRate > 0 THEN
  3318. InstallTickHandler(HandleUPTimer, Second DIV timerRate)
  3319. END
  3320. END;
  3321. InstallHandler(HandleKernelCall, MPKC);
  3322. END InitProcessors;
  3323. (* Send and print character *)
  3324. PROCEDURE TraceChar (c: CHAR);
  3325. VAR status: SHORTINT;
  3326. (* Scroll the screen by one line. *)
  3327. PROCEDURE Scroll;
  3328. VAR adr: ADDRESS; off: SIZE;
  3329. BEGIN
  3330. adr := traceBase + TraceLen;
  3331. SYSTEM.MOVE (adr, adr - TraceLen, TraceSize - TraceLen);
  3332. adr := traceBase + TraceSize - TraceLen;
  3333. FOR off := 0 TO TraceLen - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (adr + off, 100H * 7H + 32) END
  3334. END Scroll;
  3335. BEGIN
  3336. IF TraceV24 IN traceMode THEN
  3337. REPEAT (* wait until port is ready to accept a character *)
  3338. Portin8 (tracePort + 5, SYSTEM.VAL(CHAR,status))
  3339. UNTIL ODD (status DIV 20H); (* THR empty *)
  3340. Portout8 (tracePort, c);
  3341. END;
  3342. IF TraceScreen IN traceMode THEN
  3343. IF c = 9X THEN c := 20X END;
  3344. IF c = 0DX THEN (* CR *)
  3345. DEC (tracePos, tracePos MOD TraceLen)
  3346. ELSIF c = 0AX THEN (* LF *)
  3347. IF tracePos < TraceSize THEN
  3348. INC (tracePos, TraceLen) (* down to next line *)
  3349. ELSE
  3350. Scroll
  3351. END
  3352. ELSE
  3353. IF tracePos >= TraceSize THEN
  3354. Scroll;
  3355. DEC (tracePos, TraceLen)
  3356. END;
  3357. SYSTEM.PUT16 (traceBase + tracePos, 100H * traceColor + ORD (c));
  3358. INC (tracePos, SIZEOF(INTEGER))
  3359. END
  3360. END
  3361. END TraceChar;
  3362. (* Change color *)
  3363. PROCEDURE TraceColor (c: SHORTINT);
  3364. BEGIN traceColor := c;
  3365. END TraceColor;
  3366. (* Initialise tracing. *)
  3367. PROCEDURE InitTrace;
  3368. CONST MaxPorts = 8;
  3369. VAR i, p, bps: LONGINT; off: SIZE; s, name: ARRAY 32 OF CHAR;
  3370. baselist: ARRAY MaxPorts OF LONGINT;
  3371. BEGIN
  3372. GetConfig ("TraceMode", s);
  3373. p := 0; traceMode := SYSTEM.VAL (SET, StrToInt (p, s));
  3374. IF TraceScreen IN traceMode THEN
  3375. GetConfig ("TraceMem", s);
  3376. p := 0; traceBase := SYSTEM.VAL (ADDRESS, StrToInt (p, s));
  3377. IF traceBase = 0 THEN traceBase := 0B8000H END; (* default screen buffer *)
  3378. FOR off := 0 TO TraceSize - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (traceBase + off, 100H * 7H + 32) END;
  3379. tracePos := 0;
  3380. Portout8(3D4H, 0EX);
  3381. Portout8(3D5H, CHR((TraceWidth*TraceHeight) DIV 100H));
  3382. Portout8(3D4H, 0FX);
  3383. Portout8(3D5H, CHR((TraceWidth*TraceHeight) MOD 100H))
  3384. END;
  3385. IF TraceV24 IN traceMode THEN
  3386. FOR i := 0 TO MaxPorts - 1 DO
  3387. COPY ("COMx", name); name[3] := CHR (ORD ("1") + i);
  3388. GetConfig (name, s); p := 0; baselist[i] := StrToInt (p, s);
  3389. END;
  3390. IF baselist[0] = 0 THEN baselist[0] := 3F8H END; (* COM1 port default values *)
  3391. IF baselist[1] = 0 THEN baselist[1] := 2F8H END; (* COM2 port default values *)
  3392. GetConfig("TracePort", s); p := 0; p := StrToInt(p, s); DEC(p);
  3393. IF (p >= 0) & (p < MaxPorts) THEN tracePort := baselist[p] ELSE tracePort := baselist[0] END;
  3394. ASSERT(tracePort > 0);
  3395. GetConfig("TraceBPS", s); p := 0; bps := StrToInt(p, s);
  3396. IF bps <= 0 THEN bps := 38400 END;
  3397. Portout8 (tracePort + 3, 80X); (* Set the Divisor Latch Bit - DLAB = 1 *)
  3398. bps := 115200 DIV bps; (* compiler DIV/PORTOUT bug workaround *)
  3399. Portout8 (tracePort + 1, CHR (bps DIV 100H)); (* Set the Divisor Latch MSB *)
  3400. Portout8 (tracePort, CHR (bps MOD 100H)); (* Set the Divisor Latch LSB *)
  3401. Portout8 (tracePort + 3, 3X); (* 8N1 *)
  3402. Portout8 (tracePort + 4, 3X); (* Set DTR, RTS on in the MCR *)
  3403. Portout8 (tracePort + 1, 0X); (* Disable receive interrupts *)
  3404. END;
  3405. traceColor := 7; Trace.Char := TraceChar; Trace.Color := TraceColor;
  3406. END InitTrace;
  3407. (* The following procedure is linked as the first block in the bootfile *)
  3408. PROCEDURE {NOPAF, FIXED(0100000H)} FirstAddress;
  3409. CODE{SYSTEM.AMD64}
  3410. ; relocate the bootfile from 0x1000 to target address 0x100000
  3411. PUSH RAX
  3412. PUSH RSI
  3413. PUSH RDI
  3414. MOV RSI,1000H
  3415. MOV RDI,100000H
  3416. MOV RCX, LastAddress
  3417. SUB RCX, RDI
  3418. CLD
  3419. REP MOVSB
  3420. POP RDI
  3421. POP RSI
  3422. POP RAX
  3423. ; continue in relocated bootfile
  3424. JMP DWORD 100000H - 1000H + Skip
  3425. Skip:
  3426. ; save arguments passed by bootloader
  3427. MOV bootFlag, RAX
  3428. MOV initRegs0,RSI
  3429. MOV initRegs1, RDI
  3430. END FirstAddress;
  3431. (* empty section allocated at end of bootfile *)
  3432. PROCEDURE {NOPAF} LastAddress;
  3433. CODE {SYSTEM.AMD64}
  3434. END LastAddress;
  3435. (* Init code called from OBL. EAX = boot table offset. ESI, EDI=initRegs. 2k stack is available. No trap handling. *)
  3436. BEGIN
  3437. initRegs[0] := initRegs0;
  3438. initRegs[1] := initRegs1;
  3439. (* registers 6 and 7 get converted to 32 bit, cf. PCB.Assigne
  3440. SYSTEM.GETREG(6, initRegs[0]); SYSTEM.GETREG(7, initRegs[1]); (* initRegs0 & initRegs1 *)
  3441. *)
  3442. SYSTEM.PUT16(0472H, 01234H); (* soft boot flag, for when we reboot *)
  3443. ReadBootTable(bootFlag);
  3444. InitTrace;
  3445. Trace.String("Machine: "); Trace.Blue;Trace.StringLn (Version); Trace.Default;
  3446. CheckMemory;
  3447. SearchMP;
  3448. AllocateDMA; (* must be called after SearchMP, as lowTop is modified *)
  3449. version := Version;
  3450. InitBoot;
  3451. InitProcessor;
  3452. InitLocks;
  3453. NmaxUserStacks := MaxUserStacks;
  3454. ASSERT(ASH(1, PSlog2) = PS);
  3455. Trace.String("Machine: Enabling MMU... ");
  3456. InitSegments; (* enable flat segments *)
  3457. InitPages; (* create page tables *)
  3458. InitMemory; (* switch on segmentation, paging and switch stack *)
  3459. Trace.Green; Trace.StringLn("Ok"); Trace.Default;
  3460. (* allocate empty memory block with enough space for at least one free block *)
  3461. memBlockHead := SYSTEM.VAL (MemoryBlock, ADDRESSOF (initialMemBlock));
  3462. memBlockTail := memBlockHead;
  3463. initialMemBlock.beginBlockAdr := SYSTEM.VAL (ADDRESS, LastAddress);
  3464. initialMemBlock.endBlockAdr := initialMemBlock.beginBlockAdr + StaticBlockSize;
  3465. initialMemBlock.size := initialMemBlock.endBlockAdr - initialMemBlock.beginBlockAdr;
  3466. FOR i := 0 TO IDTSize - 1 DO
  3467. FOR j := 0 TO MaxNumHandlers - 1 DO
  3468. intHandler[i, j].valid := FALSE;
  3469. intHandler[i, j].handler := NIL
  3470. END
  3471. END;
  3472. default.valid := FALSE; (* initialized later *)
  3473. END Machine.
  3474. (*
  3475. 03.03.1998 pjm First version
  3476. 30.06.1999 pjm ProcessorID moved to AosProcessor
  3477. *)
  3478. (**
  3479. Notes
  3480. This module defines an interface to the boot environment of the system. The facilities provided here are only intended for the lowest levels of the system, and should never be directly imported by user modules (exceptions are noted below). They are highly specific to the system hardware and firmware architecture.
  3481. Typically a machine has some type of firmware that performs initial testing and setup of the system. The firmware initiates the operating system bootstrap loader, which loads the boot file. This module is the first module in the statically linked boot file that gets control.
  3482. There are two more-or-less general procedures in this module: GetConfig and StrToInt. GetConfig is used to query low-level system settings, e.g., the location of the boot file system. StrToInt is a utility procedure that parses numeric strings.
  3483. Config strings:
  3484. ExtMemSize Specifies size of extended memory (above 1MB) in MB. This value is not checked for validity. Setting it false may cause the system to fail, possible after running for some time. The memory size is usually detected automatically, but if the detection does not work for some reason, or if you want to limit the amount of memory detected, this string can be set. For example, if the machine has 64MB of memory, this value can be set as ExtMemSize="63".
  3485. *)