RPI.CPU.Mod 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516
  1. (* Runtime support for CPU internals *)
  2. (* Copyright (C) Florian Negele *)
  3. MODULE CPU;
  4. IMPORT SYSTEM;
  5. CONST StackSize* = 4096;
  6. CONST Quantum* = 100000;
  7. CONST CacheLineSize* = 32;
  8. CONST StackDisplacement* = 0;
  9. PROCEDURE Backoff-;
  10. CODE
  11. MOV R2, #0x100
  12. loop:
  13. SUBS R2, R2, #1
  14. BNE loop
  15. END Backoff;
  16. (* cpu control *)
  17. PROCEDURE Delay- (cycles: SIZE);
  18. CODE
  19. LDR R2, [FP, #cycles]
  20. delay:
  21. SUBS R2, R2, #1
  22. BNE delay
  23. END Delay;
  24. PROCEDURE {NORETURN} Reset-;
  25. BEGIN {UNCOOPERATIVE, UNCHECKED}
  26. WriteWord (WDOG, PASSWORD + 1);
  27. WriteWord (RSTC, PASSWORD + FULLRESET);
  28. Halt;
  29. END Reset;
  30. PROCEDURE {NORETURN} Halt-;
  31. CODE
  32. MRS R2, CPSR
  33. ORR R2, R2, #0b1100000
  34. MSR CPSR_c, r2
  35. WFI
  36. END Halt;
  37. PROCEDURE -SaveResult-;
  38. CODE
  39. STMDB SP!, {R0, R1}
  40. END SaveResult;
  41. PROCEDURE -RestoreResultAndReturn-;
  42. CODE
  43. LDMIA SP!, {R0, R1}
  44. ADD SP, FP, #4
  45. LDMIA SP!, {FP, PC}
  46. END RestoreResultAndReturn;
  47. (* memory management *)
  48. VAR pageTable {ALIGNED (4000H)}: RECORD entry: ARRAY 4096 OF SIZE END;
  49. PROCEDURE IdentityMapMemory- (size: SIZE);
  50. CONST Section = 2H; Domain0 = 0H; FullAccess = 0C00H; NormalWriteBackAllocate = 100CH; StronglyOrdered = 0H; Shareable = 10000H;
  51. CONST NormalMemory = Section + Domain0 + FullAccess + NormalWriteBackAllocate + Shareable;
  52. CONST StronglyOrderedMemory = Section + Domain0 + FullAccess + StronglyOrdered;
  53. VAR index: SIZE;
  54. BEGIN {UNCOOPERATIVE, UNCHECKED}
  55. index := 0; size := size DIV 100000H;
  56. WHILE index # size DO pageTable.entry[index] := index * 100000H + NormalMemory; INC (index) END;
  57. WHILE index # LEN (pageTable.entry) DO pageTable.entry[index] := index * 100000H + StronglyOrderedMemory; INC (index) END;
  58. END IdentityMapMemory;
  59. PROCEDURE EnableMemoryManagementUnit-;
  60. CODE
  61. load:
  62. LDR R0, [PC, #page-$-8]
  63. MCR P15, 0, R0, C2, C0, 0
  64. B grant
  65. page:
  66. d32 pageTable
  67. grant:
  68. MOV R0, #0b11
  69. MCR P15, 0, R0, C3, C0, 0
  70. enable:
  71. MRC P15, 0, R0, C1, C0, 0
  72. ORR R0, R0, #0b1 ; memory protection
  73. ORR R0, R0, #0b100 ; data and unified cache
  74. ORR R0, R0, #0b100000000000 ; branch prediction
  75. ORR R0, R0, #0b1000000000000 ; instruction cache
  76. MCR P15, 0, R0, C1, C0, 0
  77. END EnableMemoryManagementUnit;
  78. PROCEDURE Invalidate- (address: ADDRESS);
  79. CODE
  80. LDR R0, [FP, #address]
  81. BIC R0, R0, #(CacheLineSize - 1)
  82. MCR P15, 0, R0, C7, C6, 1
  83. END Invalidate;
  84. PROCEDURE Clean- (address: ADDRESS);
  85. CODE
  86. LDR R0, [FP, #address]
  87. BIC R0, R0, #(CacheLineSize - 1)
  88. MCR P15, 0, R0, C7, C10, 1
  89. END Clean;
  90. (* hardware registers *)
  91. CONST WDOG* = 03F100024H; RSTC* = 03F10001CH; PASSWORD = 05A000000H; FULLRESET = 000000020H;
  92. CONST GPFSEL0* = 03F200004H; FSEL0* = 0; FSEL1* = 3; FSEL2* = 6; FSEL3* = 9; FSEL4* = 12; FSEL5* = 15; FSEL6* = 18; FSEL7* = 21; FSEL8* = 24; FSEL9* = 27;
  93. CONST GPFSEL1* = 03F200008H; FSEL10* = 0; FSEL11* = 3; FSEL12* = 6; FSEL13* = 9; FSEL14* = 12; FSEL15* = 15; FSEL16* = 18; FSEL17* = 21; FSEL18* = 24; FSEL19* = 27;
  94. CONST GPSET0* = 03F20001CH; GPSET1* = 03F200020H;
  95. CONST GPCLR0* = 03F200028H; GPCLR1* = 03F20002CH;
  96. CONST GPPUD* = 03F200094H; PUD* = 0;
  97. CONST GPPUDCLK0* = 03F200098H; GPPUDCLK1* = 03F20009CH;
  98. CONST IRQBasicPending* = 03F00B200H; IRQPending1* = 03F00B204H; IRQPending2* = 03F00B208H;
  99. CONST IRQEnable1* = 03F00B210H; IRQEnable2* = 03F00B214H; IRQEnableBasic* = 03F00B218H;
  100. CONST IRQDisable1* = 03F00B21CH; IRQDisable2* = 03F00B220H; IRQDisableBasic* = 03F00B224H;
  101. CONST STCS* = 03F003000H; M0* = 0; M1* = 1; M2* = 2; M3* = 3;
  102. CONST STCLO* = 03F003004H; STCHI* = 03F003008H;
  103. CONST STC0* = 03F00300CH; STC1* = 03F003010H; STC2* = 03F003014H; STC3* = 03F003018H;
  104. CONST FUARTCLK* = 3000000;
  105. CONST UART_DR* = 03F201000H;
  106. CONST UART_FR* = 03F201018H; RXFE* = 4; TXFF* = 5; TXFE* = 7;
  107. CONST UART_IBRD* = 03F201024H;
  108. CONST UART_FBRD* = 03F201028H;
  109. CONST UART_LCRH* = 03F20102CH; FEN* = 4; WLEN8* = {5, 6};
  110. CONST UART_CR* = 03F201030H; UARTEN* = 0; TXE* = 8; RXE* = 9;
  111. CONST UART_IMSC* = 03F201038H; RXIM* = 4;
  112. CONST UART_ICR* = 03F201044H; RXIC* = 4;
  113. PROCEDURE ReadWord- (register: ADDRESS): WORD;
  114. CODE
  115. LDR R2, [FP, #register]
  116. LDR R0, [R2, #0]
  117. END ReadWord;
  118. PROCEDURE ReadMask- (register: ADDRESS): SET;
  119. CODE
  120. LDR R2, [FP, #register]
  121. LDR R0, [R2, #0]
  122. END ReadMask;
  123. PROCEDURE WriteWord- (register: ADDRESS; value: ADDRESS);
  124. CODE
  125. LDR R2, [FP, #register]
  126. LDR R3, [FP, #value]
  127. STR R3, [R2, #0]
  128. END WriteWord;
  129. PROCEDURE WriteMask- (register: ADDRESS; value: SET);
  130. CODE
  131. LDR R2, [FP, #register]
  132. LDR R3, [FP, #value]
  133. STR R3, [R2, #0]
  134. END WriteMask;
  135. PROCEDURE Mask- (register: ADDRESS; value: SET);
  136. CODE
  137. LDR R2, [FP, #register]
  138. LDR R3, [FP, #value]
  139. LDR R4, [R2, #0]
  140. ORR R4, R4, R3
  141. STR R4, [R2, #0]
  142. END Mask;
  143. PROCEDURE Unmask- (register: ADDRESS; value: SET);
  144. CODE
  145. LDR R2, [FP, #register]
  146. LDR R3, [FP, #value]
  147. LDR R4, [R2, #0]
  148. BIC R4, R4, R3
  149. STR R4, [R2, #0]
  150. END Unmask;
  151. (* interrupt handling *)
  152. CONST Interrupts* = 7;
  153. CONST UndefinedInstruction* = 1; SoftwareInterrupt* = 2; PrefetchAbort* = 3; DataAbort* = 4; IRQ* = 5; FIQ* = 6;
  154. TYPE InterruptHandler* = PROCEDURE (index: SIZE);
  155. VAR handlers: ARRAY Interrupts OF InterruptHandler;
  156. PROCEDURE InstallInterrupt- (handler: InterruptHandler; index: SIZE): InterruptHandler;
  157. VAR previous: InterruptHandler;
  158. BEGIN {UNCOOPERATIVE, UNCHECKED}
  159. ASSERT (handler # NIL); ASSERT (index < Interrupts);
  160. REPEAT previous := CAS (handlers[index], NIL, NIL) UNTIL CAS (handlers[index], previous, handler) = previous;
  161. RETURN previous;
  162. END InstallInterrupt;
  163. PROCEDURE HandleInterrupt (index: SIZE);
  164. BEGIN {UNCOOPERATIVE, UNCHECKED}
  165. SYSTEM.SetActivity (NIL);
  166. IF index = IRQ THEN WriteMask (IRQDisable1, ReadMask (IRQPending1)); WriteMask (IRQDisable2, ReadMask (IRQPending2)) END;
  167. IF handlers[index] # NIL THEN handlers[index] (index) ELSE HALT (1234) END;
  168. END HandleInterrupt;
  169. PROCEDURE DisableInterrupt- (index: SIZE);
  170. VAR previous: InterruptHandler;
  171. BEGIN {UNCOOPERATIVE, UNCHECKED}
  172. ASSERT (index < Interrupts);
  173. IF index = IRQ THEN WriteMask (IRQDisable1, ReadMask (IRQEnable1)); WriteMask (IRQDisable2, ReadMask (IRQEnable2)) END;
  174. REPEAT previous := CAS (handlers[index], NIL, NIL) UNTIL CAS (handlers[index], previous, NIL) = previous;
  175. END DisableInterrupt;
  176. PROCEDURE Initialize-;
  177. CODE
  178. ADD R2, PC, #vector-$-8
  179. MOV R3, #0
  180. ADD R4, R3, #vector_end - vector
  181. copy:
  182. CMP R3, R4
  183. BEQ vector_end
  184. LDR r5, [R2], #4
  185. STR r5, [R3], #4
  186. B copy
  187. vector:
  188. LDR PC, [PC, #header-$-8]
  189. LDR PC, [PC, #undefined_instruction-$-8]
  190. LDR PC, [PC, #software_interrupt-$-8]
  191. LDR PC, [PC, #prefetch_abort-$-8]
  192. LDR PC, [PC, #data_abort-$-8]
  193. MOV R0, R0
  194. LDR PC, [PC, #irq-$-8]
  195. fiq:
  196. STMDB SP!, {R0, R1, R2, R3, R4, R5, R6, R7, LR}
  197. MOV R2, #UndefinedInstruction
  198. STR R2, [SP, #-4]!
  199. LDR R2, [PC, #handle-$-8]
  200. BLX R2
  201. ADD SP, SP, #4
  202. LDMIA SP!, {R0, R1, R2, R3, R4, R5, R6, R7, LR}
  203. SUBS PC, LR, #4
  204. header:
  205. d32 0x8000
  206. undefined_instruction:
  207. d32 UndefinedInstructionHandler
  208. software_interrupt:
  209. d32 SoftwareInterruptHandler
  210. prefetch_abort:
  211. d32 PrefetchAbortHandler
  212. data_abort:
  213. d32 DataAbortHandler
  214. irq:
  215. d32 IRQHandler
  216. handle:
  217. d32 HandleInterrupt
  218. vector_end:
  219. MOV R2, #0b10001
  220. MSR CPSR_c, R2
  221. MOV SP, #0x7000
  222. MOV R2, #0b10010
  223. MSR CPSR_c, R2
  224. MOV SP, #0x6000
  225. MOV R2, #0b10111
  226. MSR CPSR_c, R2
  227. MOV SP, #0x5000
  228. MOV R2, #0b11011
  229. MSR CPSR_c, R2
  230. MOV SP, #0x4000
  231. MOV R2, #0b10011
  232. MSR CPSR_c, R2
  233. END Initialize;
  234. PROCEDURE {NOPAF} UndefinedInstructionHandler;
  235. CODE
  236. STMDB SP!, {R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR}
  237. MOV R2, #UndefinedInstruction
  238. STR R2, [SP, #-4]!
  239. LDR R2, [PC, #handle-$-8]
  240. BLX R2
  241. ADD SP, SP, #4
  242. LDMIA SP!, {R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR}
  243. MOVS PC, LR
  244. handle:
  245. d32 HandleInterrupt
  246. END UndefinedInstructionHandler;
  247. PROCEDURE {NOPAF} SoftwareInterruptHandler;
  248. CODE
  249. STMDB SP!, {R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR}
  250. MOV R2, #SoftwareInterrupt
  251. STR R2, [SP, #-4]!
  252. LDR R2, [PC, #handle-$-8]
  253. BLX R2
  254. ADD SP, SP, #4
  255. LDMIA SP!, {R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR}
  256. MOVS PC, LR
  257. handle:
  258. d32 HandleInterrupt
  259. END SoftwareInterruptHandler;
  260. PROCEDURE {NOPAF} PrefetchAbortHandler;
  261. CODE
  262. STMDB SP!, {R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR}
  263. MOV R2, #PrefetchAbort
  264. STR R2, [SP, #-4]!
  265. LDR R2, [PC, #handle-$-8]
  266. BLX R2
  267. ADD SP, SP, #4
  268. LDMIA SP!, {R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR}
  269. SUBS PC, LR, #4
  270. handle:
  271. d32 HandleInterrupt
  272. END PrefetchAbortHandler;
  273. PROCEDURE {NOPAF} DataAbortHandler;
  274. CODE
  275. STMDB SP!, {R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR}
  276. MOV R2, #DataAbort
  277. STR R2, [SP, #-4]!
  278. LDR R2, [PC, #handle-$-8]
  279. BLX R2
  280. ADD SP, SP, #4
  281. LDMIA SP!, {R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR}
  282. SUBS PC, LR, #4
  283. handle:
  284. d32 HandleInterrupt
  285. END DataAbortHandler;
  286. PROCEDURE {NOPAF} IRQHandler;
  287. CODE
  288. STMDB SP!, {R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR}
  289. MOV R2, #IRQ
  290. STR R2, [SP, #-4]!
  291. LDR R2, [PC, #handle-$-8]
  292. BLX R2
  293. ADD SP, SP, #4
  294. LDMIA SP!, {R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR}
  295. SUBS PC, LR, #4
  296. handle:
  297. d32 HandleInterrupt
  298. END IRQHandler;
  299. (* compiler intrinsics *)
  300. TYPE ULONGINT = LONGINT; (* alias to make distinction between signed and unsigned more clear *)
  301. TYPE UHUGEINT = HUGEINT;
  302. PROCEDURE DivS8*(left, right: SHORTINT): SHORTINT;
  303. VAR result, dummy: LONGINT;
  304. BEGIN {UNCOOPERATIVE, UNCHECKED} DivModS32(left, right, result, dummy); RETURN SHORTINT(result)
  305. END DivS8;
  306. PROCEDURE DivS16*(left, right: INTEGER): INTEGER;
  307. VAR result, dummy: LONGINT;
  308. BEGIN {UNCOOPERATIVE, UNCHECKED} DivModS32(left, right, result, dummy); RETURN INTEGER(result)
  309. END DivS16;
  310. PROCEDURE DivS32*(left, right: LONGINT): LONGINT;
  311. VAR result, dummy: LONGINT;
  312. BEGIN {UNCOOPERATIVE, UNCHECKED} DivModS32(left, right, result, dummy); RETURN result
  313. END DivS32;
  314. PROCEDURE DivU32*(left, right: ULONGINT): ULONGINT;
  315. VAR result, dummy: LONGINT;
  316. BEGIN {UNCOOPERATIVE, UNCHECKED} DivModU32(left, right, result, dummy); RETURN result
  317. END DivU32;
  318. PROCEDURE DivS64*(left, right: HUGEINT): HUGEINT;
  319. VAR result, dummy: HUGEINT;
  320. BEGIN {UNCOOPERATIVE, UNCHECKED} DivModS64(left, right, result, dummy); RETURN result
  321. END DivS64;
  322. PROCEDURE ModS8*(left, right: SHORTINT): SHORTINT;
  323. VAR result, dummy: LONGINT;
  324. BEGIN {UNCOOPERATIVE, UNCHECKED} DivModS32(left, right, dummy, result); RETURN SHORTINT(result)
  325. END ModS8;
  326. PROCEDURE ModS16*(left, right: INTEGER): INTEGER;
  327. VAR result, dummy: LONGINT;
  328. BEGIN {UNCOOPERATIVE, UNCHECKED} DivModS32(left, right, dummy, result); RETURN INTEGER(result)
  329. END ModS16;
  330. PROCEDURE ModS32*(left, right: LONGINT): LONGINT;
  331. VAR result, dummy: LONGINT;
  332. BEGIN {UNCOOPERATIVE, UNCHECKED} DivModS32(left, right, dummy, result); RETURN result
  333. END ModS32;
  334. PROCEDURE ModU32*(left, right: ULONGINT): ULONGINT;
  335. VAR result, dummy: LONGINT;
  336. BEGIN {UNCOOPERATIVE, UNCHECKED} DivModU32(left, right, dummy, result); RETURN result
  337. END ModU32;
  338. PROCEDURE ModS64*(left, right: HUGEINT): HUGEINT;
  339. VAR result, dummy: HUGEINT;
  340. BEGIN {UNCOOPERATIVE, UNCHECKED}
  341. DivModS64(left, right, dummy, result); RETURN result
  342. END ModS64;
  343. (* signed division and modulus
  344. - note: this implements the mathematical definition of DIV and MOD in contrast to the symmetric one
  345. *)
  346. PROCEDURE DivModS32(dividend, divisor: LONGINT; VAR quotient, remainder: LONGINT);
  347. BEGIN {UNCOOPERATIVE, UNCHECKED}
  348. ASSERT(divisor > 0);
  349. IF dividend >= 0 THEN
  350. DivModU32(dividend, divisor, quotient, remainder)
  351. ELSE
  352. dividend := -dividend;
  353. DivModU32(dividend, divisor, quotient, remainder);
  354. quotient := -quotient;
  355. IF remainder # 0 THEN
  356. DEC(quotient);
  357. remainder := divisor - remainder
  358. END
  359. END
  360. END DivModS32;
  361. (*
  362. Fast 32-bit unsigned integer division/modulo (author Alexey Morozov)
  363. *)
  364. PROCEDURE DivModU32(dividend, divisor: ULONGINT; VAR quotient, remainder: ULONGINT);
  365. CODE
  366. MOV R2, #0 ; quotient will be stored in R2
  367. LDR R0, [FP,#dividend] ; R0 := dividend
  368. LDR R1, [FP,#divisor] ; R1 := divisor
  369. ; check for the case dividend < divisor
  370. CMP R0, R1
  371. BLT Exit ; nothing to do than setting quotient to 0 and remainder to dividend (R0)
  372. CLZ R3, R0 ; R3 := clz(dividend)
  373. CLZ R4, R1 ; R4 := clz(divisor)
  374. SUB R3, R4, R3 ; R2 := clz(divisor) - clz(dividend) , R2 >= 0
  375. LSL R1, R1, R3 ; scale divisor: divisor := LSH(divisor,clz(divisor)-clz(dividend))
  376. Loop:
  377. CMP R0, R1
  378. ADC R2, R2, R2
  379. SUBCS R0, R0, R1
  380. LSR R1, R1, #1
  381. SUBS R3, R3, #1
  382. BPL Loop
  383. ; R0 holds the remainder
  384. Exit:
  385. LDR R1, [FP,#quotient] ; R1 := address of quotient
  386. LDR R3, [FP,#remainder] ; R3 := address of remainder
  387. STR R2, [R1,#0] ; quotient := R1
  388. STR R0, [R3,#0] ; remainder := R0
  389. END DivModU32;
  390. (* signed division and modulus
  391. - note: this implements the mathematical definition of DIV and MOD in contrast to the symmetric one
  392. *)
  393. PROCEDURE DivModS64*(dividend, divisor: HUGEINT; VAR quotient, remainder: HUGEINT);
  394. BEGIN {UNCOOPERATIVE, UNCHECKED}
  395. ASSERT(divisor > 0);
  396. IF dividend >= 0 THEN
  397. DivModU64(dividend, divisor, quotient, remainder)
  398. ELSE
  399. dividend := -dividend;
  400. DivModU64(dividend, divisor, quotient, remainder);
  401. quotient := -quotient;
  402. IF remainder # 0 THEN
  403. DEC(quotient);
  404. remainder := divisor - remainder
  405. END
  406. END
  407. END DivModS64;
  408. (* Count leading zeros in a binary representation of a given 64-bit integer number *)
  409. PROCEDURE Clz64*(x: UHUGEINT): LONGINT;
  410. CODE
  411. ; high-half
  412. LDR R1, [FP,#x+4]
  413. CMP R1, #0 ; if high-half is zero count leading zeros of the low-half
  414. BEQ LowHalf
  415. CLZ R0, R1
  416. B Exit
  417. ; low-half
  418. LowHalf:
  419. LDR R1, [FP,#x]
  420. CLZ R0, R1
  421. ADD R0, R0, #32 ; add 32 zeros from the high-half
  422. Exit:
  423. END Clz64;
  424. (*
  425. Fast 64-bit unsigned integer division/modulo (Alexey Morozov)
  426. *)
  427. PROCEDURE DivModU64*(dividend, divisor: UHUGEINT; VAR quotient, remainder: UHUGEINT);
  428. VAR m: LONGINT;
  429. BEGIN {UNCOOPERATIVE, UNCHECKED}
  430. quotient := 0;
  431. IF dividend = 0 THEN remainder := 0; RETURN; END;
  432. IF dividend < divisor THEN remainder := dividend; RETURN; END;
  433. m := Clz64(divisor) - Clz64(dividend);
  434. ASSERT(m >= 0);
  435. divisor := LSH(divisor,m);
  436. WHILE m >= 0 DO
  437. quotient := LSH(quotient,1);
  438. IF dividend >= divisor THEN
  439. INC(quotient);
  440. DEC(dividend,divisor);
  441. END;
  442. divisor := LSH(divisor,-1);
  443. DEC(m);
  444. END;
  445. remainder := dividend;
  446. END DivModU64;
  447. END CPU.