BIOS.AMD64.Machine.Mod 121 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945
  1. GetMODULE Machine; (** AUTHOR "pjm"; PURPOSE "Bootstrapping, configuration and machine interface"; *)
  2. (* The code of this module body must be the first in the statically linked boot file. *)
  3. IMPORT SYSTEM, Trace;
  4. CONST
  5. Version = "A2 Revision 2958 (26.02.2010)";
  6. MaxCPU* = 8; (** maximum number of processors (up to 16) *)
  7. DefaultObjectFileExtension* = ".Abx";
  8. (** bits in features variable *)
  9. MTTR* = 12; MMX* = 23; HTT* = 28;
  10. MaxDisks = 2; (* maximum number of disks with BIOS parameters *)
  11. HeapAdr = 100000H;
  12. MaxMemTop = 4000000H * 4000000H; (* maximal 52bit wide physical address (architectural limit) *)
  13. DefaultDMASize = 20; (* default size of ISA DMA area in KB *)
  14. IsCooperative*= FALSE;
  15. CONST
  16. StrongChecks = FALSE; (* perform strong checks *)
  17. Stats* = FALSE; (* acquire statistics *)
  18. TimeCount = 0 (* 100000 *); (* number of lock tries before checking timeout - 0 to disable *)
  19. (** standard lock levels (in order) *) (* also refer to Traps.Show *)
  20. TraceOutput* = 0; (* Trace output *)
  21. Memory* = 1; (* Virtual memory management, stack and page allocation *)
  22. Heaps* = 2; (* Storage allocation and Garbage collection *)
  23. Interrupts* = 3 ; (* Interrupt handling. *)
  24. Modules* = 4; (* Module list *)
  25. Objects* = 5; (* Ready queue *)
  26. Processors* = 6; (* Interprocessor interrupts *)
  27. KernelLog* = 7; (* Atomic output *)
  28. (** highest level is all object locks *)
  29. Preemption* = 31; (** flag for BreakAll *)
  30. MaxLocks = 8; (* { <= 32 } *)
  31. LowestLock = 0; HighestLock = MaxLocks-1;
  32. CONST
  33. TraceVerbose = FALSE; (* write out verbose trace info *)
  34. AddressSize = SIZEOF(ADDRESS);
  35. SetSize = MAX (SET) + 1;
  36. (** error codes *)
  37. Ok* = 0;
  38. (* standard multipliers *)
  39. K = 1024; M = 100000H; (* 1K, 1M *)
  40. (* paging sizes *)
  41. PS = 4096; (* page size in bytes *)
  42. PSlog2 = 12; (* ASH(1, PSlog2) = PS *)
  43. TPS = 4096; (* translation page size *)
  44. PTEs = TPS DIV AddressSize; (* number of entries per translation page table *)
  45. RS = PTEs * PS; (* region covered by a page table in bytes *)
  46. ReservedPages = 8; (* pages reserved on page heap (not for normal heap use) *)
  47. NilAdr* = -1; (** nil value for addresses (not same as pointer NIL value) *)
  48. (* free page stack page node layout *)
  49. NodeSP = 0;
  50. NodeNext = AddressSize;
  51. NodePrev = AddressSize*2;
  52. MinSP = AddressSize*3; MaxSP = PS;
  53. (*
  54. 0 sp
  55. AddressSize nextAdr
  56. AddressSize*2 prevAdr
  57. AddressSize*3 first entry
  58. 4092 last entry
  59. *)
  60. (* virtual memory layout. no area will cross the 2G boundary, to avoid LONGINT sign problems. *)
  61. MapAreaAdr = (80000000H); (* dynamic mappings: bottom part of 2G..4G *)
  62. MapAreaSize = 64*M;
  63. IntelAreaAdr = (0FEE00000H); (* reserved by Intel for APIC: 4G-18M..4G-18M+4K *)
  64. IntelAreaSize = 00001000H;
  65. StackAreaAdr = MapAreaAdr+MapAreaSize; (* stacks: middle part of 2G..4G *)
  66. StackAreaSize = IntelAreaAdr-StackAreaAdr;
  67. (* stack sizes *)
  68. KernelStackSize = 2*PS; (* multiple of PS *)
  69. MaxUserStackSize = 128*K; (* multiple of PS *)
  70. InitUserStackSize = PS; (* must be PS (or change NewStack) *)
  71. UserStackGuardSize = PS; (* multiple of PS left unallocated at bottom of stack virtual area *)
  72. MaxUserStacks = StackAreaSize DIV MaxUserStackSize;
  73. (* physical memory layout *)
  74. LowAdr = PS; (* lowest physical address used *)
  75. LinkAdr = M; (* address where kernel is linked, also address where heap begins *)
  76. StaticBlockSize = 32; (* static heap block size *)
  77. BlockHeaderSize = 2 * AddressSize;
  78. RecordDescSize = 3 * AddressSize; (* needs to be adapted in case Heaps.RecordDesc is changed *)
  79. (* gdt indices *)
  80. TSSOfs = 8; (* offset in GDT of TSSs *)
  81. StackOfs = TSSOfs + MaxCPU; (* offset in GDT of stacks *)
  82. GDTSize = TSSOfs + MaxCPU * 2; (* TSS descriptors need 16 bytes each *)
  83. (* gdt selectors *)
  84. Kernel32CodeSel = 1*8; (* selector 1 in gdt, RPL 0 *)
  85. Kernel64CodeSel = 2*8; (* selector 2 in gdt, RPL 0 *)
  86. User32CodeSel = 3*8 + 3; (* selector 3 in gdt, RPL 3 *)
  87. User64CodeSel = 4*8 + 3; (* selector 4 in gdt, RPL 3 *)
  88. KernelStackSel = 5*8; (* selector 5 in gdt, RPL 0 *)
  89. UserStackSel = 6*8 + 3; (* selector 6 in gdt, RPL 3 *)
  90. DataSel = 7*8; (* selector 7 in gdt, RPL 0 *)
  91. KernelTR = TSSOfs*8; (* selector in gdt, RPL 0 *)
  92. (* paging flags *)
  93. PageNotPresent = 0; (* not present page *)
  94. KernelPage = 3; (* supervisor, present, r/w *)
  95. UserPage = 7; (* user, present, r/w *)
  96. HeapMin = 50; (* "minimum" heap size as percentage of total memory size (used for heap expansion in scope of GC ) *)
  97. HeapMax = 95; (* "maximum" heap size as percentage of total memory size (used for heap expansion in scope of GC) *)
  98. ExpandRate = 1; (* always extend heap with at least this percentage of total memory size *)
  99. Threshold = 10; (* periodic GC initiated when this percentage of total memory size bytes has "passed through" NewBlock *)
  100. InitialHeapIncrement = 4096;
  101. HeaderSize = 40H; (* cf. Linker0 *)
  102. EndBlockOfs = 38H; (* cf. Linker0 *)
  103. MemoryBlockOfs = BlockHeaderSize + RecordDescSize + BlockHeaderSize; (* memory block (including header) starts at offset HeaderSize *)
  104. CONST
  105. (** pre-defined interrupts 0-31, used with InstallHandler *)
  106. DE* = 0; DB* = 1; NMI* = 2; BP* = 3; OVF* = 4; BR* = 5; UD* = 6; NM* = 7;
  107. DF* = 8; TS* = 10; NP* = 11; SSF* = 12; GP* = 13; PF* = 14; MF*= 16; AC*= 17; MC* = 18;
  108. IRQ0* = 32; (* {IRQ0 MOD 8 = 0} *)
  109. IRQ2 = IRQ0 + 2;
  110. IRQ7 = IRQ0 + 7;
  111. IRQ8 = IRQ0 + 8;
  112. IRQ15 = 47;
  113. MaxIRQ* = IRQ15; (** hardware interrupt numbers *)
  114. MPKC* = 49; (** SMP: kernel call *)
  115. SoftInt* = 58; (** temporary software interrupt *)
  116. MPIPCLocal* = 59; (** SMP: local interprocessor interrupt *)
  117. MPTMR* = 60; (** SMP: timer interrupt *)
  118. MPIPC* = 61; (** SMP: interprocessor interrupt *)
  119. MPERR* = 62; (** SMP: error interrupt *)
  120. MPSPU* = 63; (** SMP: spurious interrupt {MOD 16 = 15} *)
  121. IDTSize = 64;
  122. MaxNumHandlers = 16;
  123. TraceSpurious = FALSE; (* no message on spurious hardware interrupts *)
  124. HandleSpurious = TRUE OR TraceSpurious; (* do not trap on spurious interrupts *)
  125. IntA0 = 020H; IntA1 = 021H; (* Interrupt Controller 1 *)
  126. IntB0 = 0A0H; IntB1 = 0A1H; (* Interrupt Controller 2 *)
  127. (** RFLAGS bits *)
  128. IFBit* = 9; VMBit* = 17;
  129. KernelLevel* = 0; UserLevel* = 3; (** CS MOD 4 *)
  130. Second* = 1000; (* frequency of ticks increments in Hz *)
  131. CONST
  132. Self* = 0; FrontBarrier* = 1; BackBarrier* = 2; (** Broadcast flags. *)
  133. TraceApic = FALSE;
  134. TraceProcessor = FALSE; (* remove this hack! *)
  135. ClockRateDelay = 50; (* ms - delay when timing bus clock rate *)
  136. TimerClock = 1193180; (* timer clock is 1.19318 MHz *)
  137. CONST
  138. (* low level tracing *)
  139. TraceV24 = 2; TraceScreen = 0;
  140. TraceWidth = 80; TraceHeight = 25;
  141. TraceLen = TraceWidth * SIZEOF (INTEGER);
  142. TraceSize = TraceLen * TraceHeight;
  143. TYPE
  144. Vendor* = ARRAY 13 OF CHAR;
  145. IDMap* = ARRAY 16 OF SHORTINT;
  146. TYPE
  147. Stack* = RECORD (** values are read-only *)
  148. low: ADDRESS; (* lowest virtual address that may be allocated for stack *)
  149. adr*: ADDRESS; (* lowest address on allocated stack *) (* exported for Objects only *)
  150. high*: ADDRESS; (* next virtual address after stack *) (* exported for Objects only *)
  151. END;
  152. (* task state segment *)
  153. TSSDesc = RECORD (* 1, p. 485 and p. 612 for required fields *)
  154. Reserved1: LONGINT;
  155. RSP0 {ALIGNED(4)}, RSP1{ALIGNED(4)}, RSP2{ALIGNED(4)}: HUGEINT;
  156. Reserved2, Reserved3: LONGINT;
  157. IST1 {ALIGNED(4)}, IST2 {ALIGNED(4)}, IST3 {ALIGNED(4)}, IST4{ALIGNED(4)}, IST5{ALIGNED(4)}, IST6{ALIGNED(4)}, IST7{ALIGNED(4)}: HUGEINT;
  158. Reserved4, Reserved5: LONGINT;
  159. Reserved6, IOMapBaseAddress: INTEGER;
  160. (* Implicit: IOBitmap: ARRAY 8192 DIV 4 OF SET *)
  161. END;
  162. Startup* = PROCEDURE; (** can not be a method *)
  163. (* global descriptor table *)
  164. SegDesc = RECORD
  165. low, high: LONGINT
  166. END;
  167. GDT = ARRAY GDTSize OF SegDesc;
  168. Range* = RECORD
  169. adr*: ADDRESS; size*: SIZE;
  170. END;
  171. TYPE
  172. (** processor state, ordering of record fields is predefined! *)
  173. State* = RECORD (* offsets used in FieldInterrupt, FieldIRQ and Objects.RestoreState *)
  174. R15*, R14*, R13*, R12*, R11*, R10*, R9*, R8*: HUGEINT;
  175. RDI*, RSI*, ERR*, RSP0*, RBX*, RDX*, RCX*, RAX*: HUGEINT; (** RSP0 = ADR(s.INT) *)
  176. INT*, BP*, PC*, CS*: HUGEINT; (* RBP and ERR are exchanged by glue code, for procedure link *)
  177. FLAGS*: SET;
  178. SP*, SS*: HUGEINT;
  179. END;
  180. (** exception state, ordering of record fields is predefined! *)
  181. ExceptionState* = RECORD
  182. halt*: SIZE; (** halt code *)
  183. pf*: ADDRESS; (** page fault address *)
  184. locks*: SET; (** active locks *)
  185. SP*: ADDRESS; (** actual RSP value at time of interrupt *)
  186. CR*: ARRAY 16 OF HUGEINT; (** control registers *)
  187. DR*: ARRAY 16 OF HUGEINT; (** debug registers *)
  188. FPU*: ARRAY 7 OF SET (** floating-point state *)
  189. END;
  190. Handler* = PROCEDURE {DELEGATE} (VAR state: State);
  191. HandlerRec = RECORD
  192. valid: BOOLEAN; (* offset 0 *)
  193. handler {ALIGNED(4)}: Handler (* offset 4 *)
  194. END;
  195. GateDescriptor = RECORD
  196. offsetBits0to15: INTEGER;
  197. selector: INTEGER;
  198. gateType: INTEGER;
  199. offsetBits16to31: INTEGER;
  200. offsetBits32to63: LONGINT;
  201. reserved: LONGINT;
  202. END;
  203. IDT = ARRAY IDTSize OF GateDescriptor;
  204. SSEState* = ARRAY (512+16) OF CHAR;
  205. TYPE
  206. MemoryBlock* = POINTER TO MemoryBlockDesc;
  207. MemoryBlockDesc* = RECORD
  208. next- {UNTRACED}: MemoryBlock;
  209. startAdr-: ADDRESS; (* unused field for I386 *)
  210. size-: SIZE; (* unused field for I386 *)
  211. beginBlockAdr-, endBlockAdr-: ADDRESS
  212. END;
  213. TYPE
  214. EventHandler = PROCEDURE (id: LONGINT; CONST state: State);
  215. Message* = POINTER TO RECORD END; (** Broadcast message. *)
  216. BroadcastHandler = PROCEDURE (id: LONGINT; CONST state: State; msg: Message);
  217. TimeArray = ARRAY MaxCPU OF HUGEINT;
  218. Address32* = LONGINT;
  219. VAR
  220. lowTop*: ADDRESS; (** top of low memory *)
  221. memTop*: ADDRESS; (** top of memory *)
  222. dmaSize*: SIZE; (** size of ISA dma area, above lowTop (for use in Aos.Diskettes) *)
  223. configMP: ADDRESS; (** MP spec config table physical address (outside reported RAM) *)
  224. revMP: CHAR; (** MP spec revision *)
  225. featureMP: ARRAY 5 OF CHAR; (** MP spec feature bytes 1-5 *)
  226. version-: ARRAY 64 OF CHAR; (** Aos version *)
  227. SSESupport-: BOOLEAN;
  228. SSE2Support-: BOOLEAN;
  229. SSE3Support-: BOOLEAN; (* PH 04/11*)
  230. SSSE3Support-: BOOLEAN;
  231. SSE41Support-: BOOLEAN;
  232. SSE42Support-: BOOLEAN;
  233. SSE5Support-: BOOLEAN;
  234. AVXSupport-: BOOLEAN;
  235. features-, features2-: SET; (** processor features *)
  236. fcr*: SET; (** default floating-point control register value (default rounding mode is towards -infinity, for ENTIER) *)
  237. mhz*: HUGEINT; (** clock rate of GetTimer in MHz, or 0 if not known *)
  238. chs: ARRAY MaxDisks OF RECORD cyls, hds, spt: LONGINT END;
  239. initRegs0, initRegs1: HUGEINT;
  240. initRegs: ARRAY 2 OF HUGEINT; (* kernel parameters *)
  241. config: ARRAY 2048 OF CHAR; (* config strings *)
  242. bootFlag: ADDRESS;
  243. idAdr: ADDRESS; (* address of processor ID register *)
  244. map: IDMap;
  245. bootID: LONGINT; (* ID of boot processor (0) *)
  246. numberOfProcessors: LONGINT; (* number of processors installed during start up *)
  247. coresPerProcessor : LONGINT; (* number of cores per physical package *)
  248. threadsPerCore : LONGINT; (* number of threads per core *)
  249. CONST
  250. CacheLineSize = 128;
  251. TYPE
  252. (* Synchronization variables should reside in own cache line. This data structure should be aligned to CacheLineSize. *)
  253. Lock = RECORD
  254. locked : BOOLEAN;
  255. filler : ARRAY CacheLineSize - 1 OF CHAR;
  256. END;
  257. VAR
  258. lock: ARRAY MaxLocks OF Lock; (** all locks *)
  259. (*
  260. Every element in the proc array belongs to one processor. It is therefore sufficient to disable interrupts to protect the consistency of these elements. Race conditions with interrupts handled on the same processor are avoided by disabling interrupts for the entire time that a lock is held (using locksHeld & state). The data structures are padded to CacheLineSize to separate the locks out on cache lines of their own, to avoid false sharing.
  261. *)
  262. proc-, trapState-: ARRAY MaxCPU OF RECORD
  263. locksHeld-: SET; (** locks held by a processor *)
  264. state-: SET; (** processor flags (interrupt state) at entry to its first lock *)
  265. preemptCount-: LONGINT; (** if 0, preemption is allowed *)
  266. padding : ARRAY CacheLineSize - 20 OF CHAR;
  267. END;
  268. (* the data structures above should be aligned to CacheLineSize *)
  269. padding : ARRAY 92 OF CHAR;
  270. trapLocksBusy-: SET;
  271. maxTime: HUGEINT;
  272. VAR
  273. gdt: GDT; (* global descriptor table *)
  274. procm: ARRAY MaxCPU OF RECORD (* indexed by ID () *)
  275. tss: TSSDesc;
  276. sp: ADDRESS; (* snapshot for GC *)
  277. stack: Stack
  278. END;
  279. kernelPML4: ADDRESS; (* physical address of page directory *)
  280. freeLowPage: ADDRESS; (* free low page stack pointer (link at offset 0 in page). All addresses physical. NIL = -1 *)
  281. freeLowPages, freeHighPages, totalPages: HUGEINT; (* number of free pages and total number of pages *)
  282. mapTop: ADDRESS; (* virtual address of end of memory mapping area *)
  283. heapEndAdr: ADDRESS; (* virtual address of end of heap (page aligned) *)
  284. topPageNum: HUGEINT; (* page containing byte memTop-1 *)
  285. pageHeapAdr: ADDRESS; (* address (physical and virtual) of bottom of page heap area *)
  286. pageStackAdr: ADDRESS; (* virtual address of top page of free page stack *)
  287. freeStack: ARRAY (MaxUserStacks+SetSize-1) DIV SetSize OF SET; (* free stack bitmap *)
  288. freeStackIndex: HUGEINT; (* current position in bitmap (rotates) *)
  289. Nbigskips-: LONGINT; (* number of times a stack was extended leaving a hole *)
  290. Nfilled-: LONGINT; (* number of times a "hole" in a stack was filled *)
  291. NnewStacks-, NnewStackLoops-, NnewStackInnerLoops-, NdisposeStacks-,
  292. NlostPages-, NreservePagesUsed-, NmaxUserStacks-: HUGEINT;
  293. VAR
  294. idt: IDT; (* interrupt descriptor table *)
  295. glue: ARRAY IDTSize OF ARRAY 15 OF CHAR; (* code *)
  296. intHandler: ARRAY IDTSize, MaxNumHandlers OF HandlerRec; (* array of handlers for interrupts, the table is only filled up to MaxNumHandlers - 1, the last element in each row acts as a sentinel *)
  297. stateTag: ADDRESS;
  298. default: HandlerRec;
  299. i, j, ticks*: LONGINT; (** timer ticks. Use Kernel.GetTicks() to read, don't write *)
  300. VAR
  301. ipcBusy, ipcFlags, ipcFrontBarrier, ipcBackBarrier: SET;
  302. ipcHandler: BroadcastHandler;
  303. ipcMessage: Message;
  304. numProcessors-: LONGINT; (* number of processors we attempted to boot (some may have failed) *)
  305. maxProcessors: LONGINT; (* max number of processors we are allowed to boot (-1 for uni) *)
  306. allProcessors-: SET; (* IDs of all successfully booted processors *)
  307. localAPIC: ADDRESS; (* address of local APIC, 0 if not present *)
  308. apicVer: ARRAY MaxCPU OF LONGINT; (* APIC version *)
  309. started: ARRAY MaxCPU OF BOOLEAN; (* CPU started successfully / CPU halted *)
  310. busHz0, busHz1: ARRAY MaxCPU OF LONGINT; (* unrounded and rounded bus speed in Hz *)
  311. timer: EventHandler;
  312. timerRate: LONGINT; (* Hz - rate at which CPU timers run - for timeslicing and profiling *)
  313. stopped: BOOLEAN; (* StopAll was called *)
  314. idMap: IDMap;
  315. revIDmap: ARRAY MaxCPU OF SHORTINT;
  316. time: TimeArray;
  317. eventCount, eventMax: LONGINT;
  318. event: Handler;
  319. expandMin, heapMinKB, heapMaxKB : SIZE;
  320. gcThreshold-: SIZE;
  321. memBlockHead-{UNTRACED}, memBlockTail-{UNTRACED}: MemoryBlock; (* refer to the same memory block for I386, not traced by GC *)
  322. initialMemBlock: MemoryBlockDesc;
  323. traceProcessorProc*: EventHandler; (** temp tracing *)
  324. traceProcessor: BOOLEAN;
  325. Timeslice*: Handler;
  326. start*: PROCEDURE;
  327. VAR
  328. traceMode: SET; (* tracing mode: Screen or V24 *)
  329. traceBase: ADDRESS; (* screen buffer base address *)
  330. tracePos: SIZE; (* current screen cursor *)
  331. tracePort: LONGINT; (* serial base port *)
  332. traceColor: SHORTINT; (* current screen tracing color *)
  333. (** -- Processor identification -- *)
  334. (** Return current processor ID (0 to MaxNum-1). *)
  335. PROCEDURE ID* (): LONGINT;
  336. CODE {SYSTEM.AMD64}
  337. ; todo: use MOV instead of LEA as soon as assembler returns address for global variables
  338. LEA RAX, idAdr ; get address of idAdr
  339. MOV RAX, [RAX] ; get value of idAdr
  340. MOV EAX, [RAX] ; dereference idAdr
  341. LEA RBX, map ; address of map
  342. SHR EAX, 24
  343. AND EAX, 15
  344. MOV AL, [RBX + RAX]
  345. END ID;
  346. (** -- Miscellaneous -- *)
  347. (** This procedure should be called in all spin loops as a hint to the processor (e.g. Pentium 4). *)
  348. PROCEDURE -SpinHint*;
  349. CODE {SYSTEM.AMD64}
  350. PAUSE
  351. END SpinHint;
  352. (** Fill "size" bytes at "destAdr" with "filler". "size" must be multiple of 4. *)
  353. PROCEDURE Fill32* (destAdr: ADDRESS; size: SIZE; filler: LONGINT);
  354. CODE {SYSTEM.AMD64}
  355. MOV RDI, [RBP + destAdr]
  356. MOV RCX, [RBP + size]
  357. MOV EAX, [RBP + filler]
  358. TEST RCX, 3
  359. JZ ok
  360. PUSH 8 ; ASSERT failure
  361. INT 3
  362. ok:
  363. SHR RCX, 2
  364. CLD
  365. REP STOSD
  366. END Fill32;
  367. (** Return timer value of the current processor, or 0 if not available. *)
  368. (* e.g. ARM does not have a fine-grained timer *)
  369. PROCEDURE -GetTimer* (): HUGEINT;
  370. CODE {SYSTEM.AMD64}
  371. XOR RAX, RAX
  372. RDTSC ; set EDX:EAX
  373. SHL RDX, 32
  374. OR RAX, RDX
  375. END GetTimer;
  376. (** Disable interrupts and return old interrupt state. *)
  377. PROCEDURE -DisableInterrupts* (): SET;
  378. CODE {SYSTEM.AMD64}
  379. PUSHFQ
  380. CLI
  381. POP RAX
  382. END DisableInterrupts;
  383. (** Restore interrupt state. Parameter s must be return value of earlier DisableInterrupts call on same processor. *)
  384. PROCEDURE -RestoreInterrupts* (s: SET);
  385. CODE {SYSTEM.AMD64}
  386. POPFQ
  387. END RestoreInterrupts;
  388. (** Return TRUE iff interrupts are enabled on the current processor. *)
  389. PROCEDURE -InterruptsEnabled* (): BOOLEAN;
  390. CODE {SYSTEM.AMD64}
  391. PUSHFQ
  392. POP RAX
  393. SHR RAX, 9
  394. AND AL, 1
  395. END InterruptsEnabled;
  396. (** -- Processor initialization -- *)
  397. PROCEDURE -SetFCR (s: SET);
  398. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  399. FLDCW WORD [RSP] ; parameter s
  400. POP RAX
  401. END SetFCR;
  402. PROCEDURE -FCR (): SET;
  403. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  404. PUSH 0
  405. FNSTCW WORD [RSP]
  406. FWAIT
  407. POP RAX
  408. END FCR;
  409. PROCEDURE -InitFPU;
  410. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  411. FNINIT
  412. END InitFPU;
  413. (** Setup FPU control word of current processor. *)
  414. PROCEDURE SetupFPU*;
  415. BEGIN
  416. InitFPU; SetFCR(fcr)
  417. END SetupFPU;
  418. (* Set up flags (3, p. 20)
  419. Bit
  420. 1,3,5,15,19..31 - no change
  421. 0,2,4,6..7,11 - CF,PF,AF,ZF,SF,OF off
  422. 8 - TF off
  423. 9 - IF off (no interrupts)
  424. 10 - DF off
  425. 12..13 - IOPL = 3
  426. 14 - NT off (no Windows)
  427. 16 - RF off (no Interference)
  428. 17- VM off (no virtual 8086 mode)
  429. 18 - AC off (no 486 alignment checks) *)
  430. PROCEDURE -SetupFlags;
  431. CODE {SYSTEM.AMD64}
  432. PUSHFD
  433. AND DWORD [RSP], 0FFF8802AH
  434. OR DWORD [RSP], 3000H
  435. POPFD
  436. END SetupFlags;
  437. (* Set up various 486-specific flags (3, p. 23)
  438. 1. Enable exception 16 on math errors.
  439. 2. Disable supervisor mode faults on write to read-only pages
  440. (386-compatible for stack checking).
  441. 3. Enable the Alignment Check field in RFLAGS *)
  442. PROCEDURE -Setup486Flags;
  443. CODE {SYSTEM.486, SYSTEM.Privileged}
  444. MOV EAX, CR0
  445. OR EAX, 00040020H
  446. AND EAX, 0FFFEFFFFH
  447. MOV CR0, EAX
  448. END Setup486Flags;
  449. (* Set up 586-specific things *)
  450. PROCEDURE -Setup586Flags;
  451. CODE {SYSTEM.586, SYSTEM.Privileged}
  452. MOV EAX, CR4
  453. BTR EAX, 2 ; clear TSD
  454. MOV CR4, EAX
  455. END Setup586Flags;
  456. (* setup SSE and SSE2 extension *)
  457. PROCEDURE SetupSSE2Ext;
  458. CONST
  459. FXSRFlag = 24; (*IN features from EBX*)
  460. SSEFlag = 25;
  461. SSE2Flag = 26;
  462. SSE3Flag = 0; (*IN features2 from ECX*) (*PH 04/11*)
  463. SSSE3Flag =9;
  464. SSE41Flag =19;
  465. SSE42Flag =20;
  466. SSE5Flag = 11;
  467. AVXFlag = 28;
  468. BEGIN
  469. SSE2Support := FALSE;
  470. SSE3Support := FALSE;
  471. SSSE3Support := FALSE;
  472. SSE41Support := FALSE;
  473. SSE42Support := FALSE;
  474. SSE5Support := FALSE;
  475. AVXSupport := FALSE;
  476. (* checking for SSE support *)
  477. IF SSEFlag IN features THEN
  478. SSESupport := TRUE;
  479. (* checking for SSE2 support *)
  480. IF SSE2Flag IN features THEN SSE2Support := TRUE;
  481. (* checking for SSE3... support*)(*PH 04/11*)
  482. IF SSE3Flag IN features2 THEN SSE3Support := TRUE;
  483. IF SSSE3Flag IN features2 THEN SSSE3Support := TRUE END;
  484. IF SSE41Flag IN features2 THEN SSE41Support := TRUE;
  485. IF SSE42Flag IN features2 THEN SSE42Support := TRUE END;
  486. END;
  487. IF SSE5Flag IN features2 THEN SSE5Support := TRUE END;
  488. IF AVXFlag IN features2 THEN AVXSupport := TRUE END;
  489. END;
  490. END;
  491. (* checking for support for the FXSAVE and FXRSTOR instruction *)
  492. IF FXSRFlag IN features THEN InitSSE END;
  493. END;
  494. END SetupSSE2Ext;
  495. PROCEDURE -InitSSE;
  496. CODE {SYSTEM.Pentium, SYSTEM.Privileged}
  497. MOV EAX, CR4
  498. OR EAX, 00000200H ; set bit 9 (OSFXSR)
  499. AND EAX, 0FFFFFBFFH ; delete bit 10 (OSXMMEXCPT)
  500. MOV CR4, EAX
  501. END InitSSE;
  502. (* Disable exceptions caused by math in new task. (1, p. 479) *)
  503. PROCEDURE -DisableMathTaskEx;
  504. CODE {SYSTEM.386, SYSTEM.Privileged}
  505. MOV EAX,CR0
  506. AND AL, 0F5H
  507. MOV CR0, EAX
  508. END DisableMathTaskEx;
  509. (* Disable math emulation (1, p. 479) , bit 2 of CR0 *)
  510. PROCEDURE -DisableEmulation;
  511. CODE {SYSTEM.386, SYSTEM.Privileged}
  512. MOV EAX, CR0
  513. AND AL, 0FBH
  514. MOV CR0, EAX
  515. END DisableEmulation;
  516. (** CPU identification *)
  517. PROCEDURE CPUID*(function : LONGINT; VAR eax, ebx, ecx, edx : SET);
  518. CODE {SYSTEM.AMD64}
  519. MOV EAX, [RBP+function] ; CPUID function parameter
  520. MOV RSI, [RBP+ecx] ; copy ecx into ECX (sometimes used as input parameter)
  521. MOV ECX, [RSI]
  522. CPUID ; execute CPUID
  523. MOV RSI, [RBP+eax] ; copy EAX into eax;
  524. MOV [RSI], EAX
  525. MOV RSI, [RBP+ebx] ; copy EBX into ebx
  526. MOV [RSI], EBX
  527. MOV RSI, [RBP+ecx] ; copy ECX into ecx
  528. MOV [RSI], ECX
  529. MOV RSI, [RBP+edx] ; copy EDX into edx
  530. MOV [RSI], EDX
  531. END CPUID;
  532. (* If the CPUID instruction is supported, the ID flag (bit 21) of the EFLAGS register is r/w *)
  533. PROCEDURE CpuIdSupported*() : BOOLEAN;
  534. CODE {SYSTEM.AMD64}
  535. PUSHFQ ; save RFLAGS
  536. POP RAX ; store RFLAGS in RAX
  537. MOV EBX, EAX ; save EBX for later testing
  538. XOR EAX, 00200000H ; toggle bit 21
  539. PUSH RAX ; push to stack
  540. POPFQ ; save changed RAX to RFLAGS
  541. PUSHFQ ; push RFLAGS to TOS
  542. POP RAX ; store RFLAGS in RAX
  543. CMP EAX, EBX ; see if bit 21 has changed
  544. SETNE AL; ; return TRUE if bit 21 has changed, FALSE otherwise
  545. END CpuIdSupported;
  546. (** Initialise current processor. Must be called by every processor. *)
  547. PROCEDURE InitProcessor*;
  548. BEGIN
  549. SetupFlags;
  550. Setup486Flags;
  551. Setup586Flags;
  552. DisableMathTaskEx;
  553. DisableEmulation;
  554. SetupFPU;
  555. END InitProcessor;
  556. (** Initialize APIC ID address. *)
  557. PROCEDURE InitAPICIDAdr* (adr: ADDRESS; CONST m: IDMap);
  558. VAR s: SET;
  559. BEGIN
  560. s := DisableInterrupts ();
  561. idAdr := adr; map := m;
  562. RestoreInterrupts (s)
  563. END InitAPICIDAdr;
  564. PROCEDURE InitBoot;
  565. VAR
  566. largestFunction, i: LONGINT;
  567. eax, ebx, ecx, edx : SET;
  568. logicalProcessorCount : LONGINT;
  569. u: ARRAY 8 OF CHAR; vendor : Vendor;
  570. PROCEDURE GetString(VAR string : ARRAY OF CHAR; offset : LONGINT; register : SET);
  571. BEGIN
  572. string[offset] :=CHR(SYSTEM.VAL(LONGINT, register * {0..7}));
  573. string[offset+1] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {8..15}, -8)));
  574. string[offset+2] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {16..23}, -16)));
  575. string[offset+3] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {24..31}, -24)));
  576. END GetString;
  577. BEGIN
  578. vendor := "Unknown"; features := {}; features2 := {};
  579. coresPerProcessor := 1; threadsPerCore := 1;
  580. IF CpuIdSupported() THEN
  581. (* Assume that all processors are the same *)
  582. (* CPUID standard function 0 returns: eax: largest CPUID standard function supported, ebx, edx, ecx: vendor string *)
  583. CPUID(0, eax, ebx, ecx, edx);
  584. largestFunction := SYSTEM.VAL(LONGINT, eax);
  585. ASSERT(LEN(vendor) >= 13);
  586. GetString(vendor, 0, ebx); GetString(vendor, 4, edx); GetString(vendor, 8, ecx); vendor[12] := 0X;
  587. IF (largestFunction >= 1) THEN
  588. (* CPUID standard function 1 returns: CPU features in ecx & edx *)
  589. CPUID(1, eax, ebx, ecx, edx);
  590. features := SYSTEM.VAL(SET, edx);
  591. features2 := SYSTEM.VAL(SET, ecx);
  592. (* The code below is used to determine the number of threads per processor core (hyperthreading). This is required
  593. since processors supporting hyperthreading are listed only once in the MP tables, so we need to know the
  594. exact number of threads per processor to start the processor correctly *)
  595. IF (HTT IN features) THEN (* multithreading supported by CPU *)
  596. (* logical processor count = number of cores * number of threads per core = total number of threads supported *)
  597. logicalProcessorCount := SYSTEM.VAL(LONGINT, LSH(ebx * {16..23}, -16));
  598. IF (vendor = "GenuineIntel") THEN
  599. IF (largestFunction >= 4) THEN
  600. (* CPUID standard function 4 returns: number of processor cores -1 on this die eax[26.31] *)
  601. ecx := SYSTEM.VAL(SET, 0); (* input parameter - must be set to 0 *)
  602. CPUID(4, eax, ebx, ecx, edx);
  603. coresPerProcessor := SYSTEM.VAL(LONGINT, LSH(eax * {26..31}, -26)) + 1;
  604. threadsPerCore := logicalProcessorCount DIV coresPerProcessor;
  605. ELSE
  606. threadsPerCore := logicalProcessorCount;
  607. END;
  608. ELSIF (vendor = "AuthenticAMD") THEN
  609. (* CPUID extended function 1 returns: largest extended function *)
  610. CPUID(LONGINT (80000000H), eax, ebx, ecx, edx);
  611. largestFunction := SYSTEM.VAL(LONGINT, eax - {31}); (* remove sign *)
  612. IF (largestFunction >= 8) THEN
  613. (* CPUID extended function 8 returns: *)
  614. CPUID(LONGINT (80000008H), eax, ebx, ecx, edx);
  615. coresPerProcessor := SYSTEM.VAL(LONGINT, ecx * {0..7}) + 1;
  616. threadsPerCore := logicalProcessorCount DIV coresPerProcessor;
  617. ELSIF (largestFunction >= 1) THEN
  618. (* CPUID extended function 1 returns CmpLegacy bit in ecx *)
  619. CPUID(LONGINT (80000001H), eax, ebx, ecx, edx);
  620. IF 1 IN ecx THEN (* CmpLegacy bit set -> no hyperthreading *)
  621. coresPerProcessor := logicalProcessorCount;
  622. threadsPerCore := 1;
  623. END;
  624. ELSE
  625. (* single-core, single-thread *)
  626. END;
  627. ELSE
  628. Trace.String("Machine: "); Trace.Yellow; Trace.String("Warning: Cannot detect hyperthreading, unknown CPU vendor ");
  629. Trace.String(vendor); Trace.Ln; Trace.Default;
  630. END;
  631. END;
  632. END;
  633. END;
  634. Trace.String("Machine: "); Trace.Int(coresPerProcessor, 0); Trace.String(" cores per physical package, ");
  635. Trace.Int(threadsPerCore, 0); Trace.String(" threads per core.");
  636. Trace.Ln;
  637. InitFPU;
  638. fcr := (FCR () - {0, 2, 3, 10, 11}) + {0 .. 5, 8, 9}; (* default FCR RC=00B *)
  639. bootID := 0; map[0] := 0;
  640. idAdr := ADDRESSOF (bootID);
  641. (* allow user to specify GetTimer rate, for tracing purposes *)
  642. GetConfig ("MHz", u);
  643. i := 0; mhz := StrToInt (i, u);
  644. END InitBoot;
  645. (** -- Configuration and bootstrapping -- *)
  646. (** Return the value of the configuration string specified by parameter name in parameter val. Returns val = "" if the string was not found, or has an empty value. *)
  647. PROCEDURE GetConfig* (CONST name: ARRAY OF CHAR; VAR val: ARRAY OF CHAR);
  648. VAR i, src: LONGINT; ch: CHAR;
  649. BEGIN
  650. ASSERT (name[0] # "="); (* no longer supported, use GetInit instead *)
  651. src := 0;
  652. LOOP
  653. ch := config[src];
  654. IF ch = 0X THEN EXIT END;
  655. i := 0;
  656. LOOP
  657. ch := config[src];
  658. IF (ch # name[i]) OR (name[i] = 0X) THEN EXIT END;
  659. INC (i); INC (src)
  660. END;
  661. IF (ch = 0X) & (name[i] = 0X) THEN (* found: (src^ = 0X) & (name[i] = 0X) *)
  662. i := 0;
  663. REPEAT
  664. INC (src); ch := config[src]; val[i] := ch; INC (i);
  665. IF i = LEN(val) THEN val[i - 1] := 0X; RETURN END (* val too short *)
  666. UNTIL ch = 0X;
  667. val[i] := 0X; RETURN
  668. ELSE
  669. WHILE ch # 0X DO (* skip to end of name *)
  670. INC (src); ch := config[src]
  671. END;
  672. INC (src);
  673. REPEAT (* skip to end of value *)
  674. ch := config[src]; INC (src)
  675. UNTIL ch = 0X
  676. END
  677. END;
  678. val[0] := 0X
  679. END GetConfig;
  680. (** Get CHS parameters of first two BIOS-supported hard disks. *)
  681. PROCEDURE GetDiskCHS* (d: LONGINT; VAR cyls, hds, spt: LONGINT);
  682. BEGIN
  683. cyls := chs[d].cyls; hds := chs[d].hds; spt := chs[d].spt
  684. END GetDiskCHS;
  685. (** Get parameter values from Init string. If n = 0, return val = ASH(bx, 16) + ax, and if n = 1, return val = ASH(dx, 16) + cx, where ax, bx, cx, dx are the register values after the OBL boot loader or noboot.exe have executed the 16-bit x86 code in the Init string. *)
  686. PROCEDURE GetInit* (n: LONGINT; VAR val: LONGINT);
  687. BEGIN
  688. val := LONGINT(initRegs[n])
  689. END GetInit;
  690. (** Convert a string to an integer. Parameter i specifies where in the string scanning should begin (usually 0 in the first call). Scanning stops at the first non-valid character, and i returns the updated position. Parameter s is the string to be scanned. The value is returned as result, or 0 if not valid. Syntax: number = ["-"] digit {digit} ["H" | "h"] . digit = "0" | ... "9" | "A" .. "F" | "a" .. "f" . If the number contains any hexdecimal letter, or if it ends in "H" or "h", it is interpreted as hexadecimal. *)
  691. PROCEDURE StrToInt* (VAR i: LONGINT; CONST s: ARRAY OF CHAR): LONGINT;
  692. VAR vd, vh, sgn, d: LONGINT; hex: BOOLEAN;
  693. BEGIN
  694. vd := 0; vh := 0; hex := FALSE;
  695. IF s[i] = "-" THEN sgn := -1; INC (i) ELSE sgn := 1 END;
  696. LOOP
  697. IF (s[i] >= "0") & (s[i] <= "9") THEN d := ORD (s[i])-ORD ("0")
  698. ELSIF (CAP (s[i]) >= "A") & (CAP (s[i]) <= "F") THEN d := ORD (CAP (s[i]))-ORD ("A") + 10; hex := TRUE
  699. ELSE EXIT
  700. END;
  701. vd := 10*vd + d; vh := 16*vh + d;
  702. INC (i)
  703. END;
  704. IF CAP (s[i]) = "H" THEN hex := TRUE; INC (i) END; (* optional H *)
  705. IF hex THEN vd := vh END;
  706. RETURN sgn * vd
  707. END StrToInt;
  708. (* Delay for IO *)
  709. PROCEDURE -Wait*;
  710. CODE {SYSTEM.AMD64}
  711. JMP N1
  712. N1: JMP N2
  713. N2: JMP N3
  714. N3:
  715. END Wait;
  716. (* Reset processor by causing a double fault. *)
  717. PROCEDURE Reboot;
  718. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  719. PUSH DWORD 0
  720. PUSH DWORD 0
  721. LIDT [RSP]
  722. INT 3
  723. END Reboot;
  724. (** Shut down the system. If parameter reboot is set, attempt to reboot the system. *)
  725. PROCEDURE Shutdown* (reboot: BOOLEAN);
  726. VAR i: LONGINT;
  727. BEGIN
  728. Cli;
  729. IF reboot THEN (* attempt reboot *)
  730. Portout8 (70H, 8FX); (* Reset type: p. 5-37 AT Tech. Ref. *)
  731. Wait; Portout8 (71H, 0X); (* Note: soft boot flag was set in InitMemory *)
  732. Wait; Portout8 (70H, 0DX);
  733. Wait; Portout8 (64H, 0FEX); (* reset CPU *)
  734. FOR i := 1 TO 10000 DO END;
  735. Reboot
  736. END;
  737. LOOP END
  738. END Shutdown;
  739. (* Get hard disk parameters. *)
  740. PROCEDURE GetPar (p: ADDRESS; ofs: LONGINT): LONGINT;
  741. VAR ch: CHAR;
  742. BEGIN
  743. SYSTEM.GET (p + 12 + ofs, ch);
  744. RETURN ORD (ch)
  745. END GetPar;
  746. (* Read boot table. *)
  747. PROCEDURE ReadBootTable (bt: ADDRESS);
  748. VAR i, p: ADDRESS; j, d, type, addr, size, heapSize: LONGINT; ch: CHAR;
  749. BEGIN
  750. heapSize := 0; lowTop := 0;
  751. p := bt; d := 0;
  752. LOOP
  753. SYSTEM.GET (p, type);
  754. IF type = -1 THEN
  755. EXIT (* end *)
  756. ELSIF type = 3 THEN (* boot memory/top of low memory *)
  757. SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size);
  758. lowTop := addr + size
  759. ELSIF type = 4 THEN (* free memory/extended memory size *)
  760. SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size);
  761. IF addr = HeapAdr THEN heapSize := size END
  762. ELSIF type = 5 THEN (* HD config *)
  763. IF d < MaxDisks THEN
  764. chs[d].cyls := GetPar (p, 0) + 100H * GetPar (p, 1);
  765. chs[d].hds := GetPar (p, 2); chs[d].spt := GetPar (p, 14);
  766. INC (d)
  767. END
  768. ELSIF type = 8 THEN (* config strings *)
  769. i := p + 8; j := 0; (* copy the config strings over *)
  770. LOOP
  771. SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j);
  772. IF ch = 0X THEN EXIT END;
  773. REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X; (* end of name *)
  774. REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X (* end of value *)
  775. END
  776. END;
  777. SYSTEM.GET (p + 4, size); INC (p, size)
  778. END;
  779. ASSERT((heapSize # 0) & (lowTop # 0));
  780. memTop := HeapAdr + heapSize
  781. END ReadBootTable;
  782. (** Read a byte from the non-volatile setup memory. *)
  783. PROCEDURE GetNVByte* (ofs: LONGINT): CHAR;
  784. VAR c: CHAR;
  785. BEGIN
  786. Portout8 (70H, CHR(ofs)); Wait; Portin8(71H, c);
  787. RETURN c
  788. END GetNVByte;
  789. (** Write a byte to the non-volatile setup memory. *)
  790. PROCEDURE PutNVByte* (ofs: LONGINT; val: CHAR);
  791. BEGIN
  792. Portout8 (70H, CHR(ofs)); Wait; Portout8 (71H, val)
  793. END PutNVByte;
  794. (** Compute a checksum for the Intel SMP spec floating pointer structure. *)
  795. PROCEDURE ChecksumMP* (adr: ADDRESS; size: SIZE): LONGINT;
  796. VAR sum: LONGINT; x: ADDRESS; ch: CHAR;
  797. BEGIN
  798. sum := 0;
  799. FOR x := adr TO adr + size-1 DO
  800. SYSTEM.GET (x, ch);
  801. sum := (sum + ORD(ch)) MOD 256
  802. END;
  803. RETURN sum
  804. END ChecksumMP;
  805. (* Search for MP floating pointer structure. *)
  806. PROCEDURE SearchMem (adr: ADDRESS; size: SIZE): ADDRESS;
  807. VAR x, len: LONGINT; ch: CHAR;
  808. BEGIN
  809. WHILE size > 0 DO
  810. SYSTEM.GET (adr, x);
  811. IF x = 05F504D5FH THEN (* "_MP_" found *)
  812. SYSTEM.GET (adr + 8, ch); len := ORD(ch)*16;
  813. IF len > 0 THEN
  814. SYSTEM.GET (adr + 9, ch);
  815. IF (ch = 1X) OR (ch >= 4X) THEN (* version 1.1 or 1.4 or higher *)
  816. IF ChecksumMP(adr, len) = 0 THEN
  817. RETURN adr (* found *)
  818. END
  819. END
  820. END
  821. END;
  822. INC (adr, 16); DEC (size, 16)
  823. END;
  824. RETURN NilAdr (* not found *)
  825. END SearchMem;
  826. (* Search for MP spec info. *)
  827. PROCEDURE SearchMP;
  828. VAR adr: ADDRESS;
  829. BEGIN
  830. adr := 0;
  831. SYSTEM.GET (040EH, SYSTEM.VAL (INTEGER, adr)); (* EBDA address *)
  832. adr := adr*16;
  833. IF adr < 100000H THEN adr := SearchMem(adr, 1024) (* 1. look in EBDA *)
  834. ELSE adr := NilAdr
  835. END;
  836. IF adr = NilAdr THEN (* 2. look in last kb of base memory *)
  837. adr := SearchMem(lowTop + (-lowTop) MOD 10000H - 1024, 1024);
  838. IF adr = NilAdr THEN (* 3. look at top of physical memory *)
  839. adr := SearchMem(memTop - 1024, 1024);
  840. IF adr = NilAdr THEN (* 4. look in BIOS ROM space *)
  841. adr := SearchMem(0E0000H, 20000H)
  842. END
  843. END
  844. END;
  845. IF adr = NilAdr THEN
  846. revMP := 0X; configMP := NilAdr
  847. ELSE
  848. SYSTEM.GET (adr + 9, revMP);
  849. SYSTEM.MOVE(adr + 11, ADDRESSOF(featureMP[0]), 5); (* feature bytes *)
  850. configMP := SYSTEM.GET32 (adr + 4); (* physical address outside reported RAM (spec 1.4 p. 4-2) *)
  851. IF configMP = 0 THEN configMP := NilAdr END
  852. END
  853. END SearchMP;
  854. (* Allocate area for ISA DMA. *)
  855. PROCEDURE AllocateDMA;
  856. VAR old: ADDRESS;
  857. BEGIN
  858. old := lowTop;
  859. dmaSize := DefaultDMASize*1024;
  860. ASSERT((dmaSize >= 0) & (dmaSize <= 65536));
  861. IF (lowTop-dmaSize) DIV 65536 # (lowTop-1) DIV 65536 THEN (* crosses 64KB boundary *)
  862. DEC (lowTop, lowTop MOD 65536) (* round down to 64KB boundary *)
  863. END;
  864. DEC (lowTop, dmaSize); (* allocate memory *)
  865. dmaSize := old - lowTop (* how much was allocated (including rounding) *)
  866. END AllocateDMA;
  867. (* Check if the specified address is RAM. *)
  868. PROCEDURE IsRAM(adr: ADDRESS): BOOLEAN;
  869. CONST Pattern1 = LONGINT (0BEEFC0DEH); Pattern2 = LONGINT (0AA55FF00H);
  870. VAR save, x: LONGINT; ok: BOOLEAN;
  871. BEGIN
  872. ok := FALSE;
  873. SYSTEM.GET (adr, save);
  874. SYSTEM.PUT (adr, Pattern1); (* attempt 1st write *)
  875. x := Pattern2; (* write something else *)
  876. SYSTEM.GET (adr, x); (* attempt 1st read *)
  877. IF x = Pattern1 THEN (* first test passed *)
  878. SYSTEM.PUT (adr, Pattern2); (* attempt 2nd write *)
  879. x := Pattern1; (* write something else *)
  880. SYSTEM.GET (adr, x); (* attempt 2nd read *)
  881. ok := (x = Pattern2)
  882. END;
  883. SYSTEM.PUT (adr, save);
  884. RETURN ok
  885. END IsRAM;
  886. (* Map the physical address in the second virtual page *)
  887. PROCEDURE -InvalidateTLB (address: ADDRESS);
  888. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  889. POP RAX
  890. INVLPG [RAX]
  891. END InvalidateTLB;
  892. PROCEDURE -GetPML4Base (): ADDRESS;
  893. CODE {SYSTEM.AMD64}
  894. MOV RAX, CR3
  895. END GetPML4Base;
  896. PROCEDURE -INVLPG (adr: ADDRESS);
  897. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  898. POP RAX
  899. INVLPG [RAX]
  900. END INVLPG;
  901. (* Check amount of memory available and update memTop. *)
  902. PROCEDURE CheckMemory;
  903. CONST K = 1024; M = K * K; PS = 2 * M; ExtMemAdr = M;
  904. TPS = 4 * K; UserPage = 7; PageNotPresent = 0;
  905. VAR s: ARRAY 16 OF CHAR; i: LONGINT;
  906. physicalAddress, pml4Base, pdpBase, pdBase: ADDRESS;
  907. pml4e, pdpe, pde, lastTable: ADDRESS;
  908. PROCEDURE AllocateTranslationTable (VAR baseAddress, firstEntry: ADDRESS);
  909. BEGIN
  910. baseAddress := lastTable;
  911. firstEntry := baseAddress;
  912. INC (lastTable, TPS);
  913. Fill32 (baseAddress, TPS, PageNotPresent)
  914. END AllocateTranslationTable;
  915. BEGIN
  916. GetConfig("ExtMemSize", s); (* in MB *)
  917. IF s[0] # 0X THEN (* override detection *)
  918. i := 0;
  919. memTop := ExtMemAdr + (StrToInt(i, s)) * M
  920. END;
  921. pml4Base := GetPML4Base ();
  922. DEC (pml4Base, pml4Base MOD TPS);
  923. SYSTEM.GET (pml4Base, pdpBase);
  924. DEC (pdpBase, pdpBase MOD TPS);
  925. SYSTEM.GET (pdpBase, pdBase);
  926. DEC (pdBase, pdBase MOD TPS);
  927. physicalAddress := PS;
  928. lastTable := pdBase + TPS;
  929. pml4e := pml4Base;
  930. pdpe := pdpBase;
  931. pde := pdBase;
  932. WHILE (pml4e < pml4Base + TPS) DO
  933. WHILE (pdpe < pdpBase + TPS) DO
  934. WHILE (pde < pdBase + TPS) DO
  935. INC (pde, 8);
  936. SYSTEM.PUT (pde, physicalAddress + UserPage + 80H);
  937. INVLPG (physicalAddress);
  938. INC (physicalAddress, PS);
  939. IF physicalAddress >= memTop THEN RETURN END;
  940. END;
  941. INC (pdpe, 8);
  942. AllocateTranslationTable (pdBase, pde);
  943. SYSTEM.PUT (pdpe, pde + UserPage);
  944. END;
  945. INC (pml4e, 8);
  946. AllocateTranslationTable (pdpBase, pdpe);
  947. SYSTEM.PUT (pml4e, pdpe + UserPage);
  948. END;
  949. HALT (99);
  950. END CheckMemory;
  951. (* Initialize locks. *)
  952. PROCEDURE InitLocks;
  953. VAR i: LONGINT; s: ARRAY 12 OF CHAR;
  954. BEGIN
  955. IF TimeCount # 0 THEN
  956. GetConfig("LockTimeout", s);
  957. i := 0; maxTime := StrToInt(i, s);
  958. IF maxTime > MAX(LONGINT) DIV 1000000 THEN
  959. maxTime := MAX(LONGINT)
  960. ELSE
  961. maxTime := maxTime * 1000000
  962. END
  963. END;
  964. FOR i := 0 TO MaxCPU-1 DO
  965. proc[i].locksHeld := {}; proc[i].preemptCount := 0
  966. END;
  967. FOR i := 0 TO MaxLocks-1 DO
  968. lock[i].locked := FALSE
  969. END
  970. END InitLocks;
  971. (* Return flags state. *)
  972. PROCEDURE -GetFlags (): SET;
  973. CODE {SYSTEM.AMD64}
  974. PUSHFQ
  975. POP RAX
  976. END GetFlags;
  977. (* Set flags state. *)
  978. PROCEDURE -SetFlags (s: SET);
  979. CODE {SYSTEM.AMD64}
  980. POPFQ
  981. END SetFlags;
  982. PROCEDURE -PushFlags*;
  983. CODE {SYSTEM.AMD64}
  984. PUSHFQ
  985. END PushFlags;
  986. PROCEDURE -PopFlags*;
  987. CODE {SYSTEM.AMD64}
  988. POPFQ
  989. END PopFlags;
  990. (** Disable preemption on the current processor (increment the preemption counter). Returns the current processor ID as side effect. *)
  991. PROCEDURE AcquirePreemption* (): LONGINT;
  992. VAR id: LONGINT;
  993. BEGIN
  994. PushFlags; Cli;
  995. id := ID ();
  996. INC (proc[id].preemptCount);
  997. PopFlags;
  998. RETURN id
  999. END AcquirePreemption;
  1000. (** Enable preemption on the current processor (decrement the preemption counter). *)
  1001. PROCEDURE ReleasePreemption*;
  1002. VAR id: LONGINT;
  1003. BEGIN
  1004. PushFlags; Cli;
  1005. id := ID ();
  1006. IF StrongChecks THEN
  1007. ASSERT(proc[id].preemptCount > 0)
  1008. END;
  1009. DEC (proc[id].preemptCount);
  1010. PopFlags
  1011. END ReleasePreemption;
  1012. (** Return the preemption counter of the current processor (specified in parameter). *)
  1013. PROCEDURE PreemptCount* (id: LONGINT): LONGINT;
  1014. BEGIN
  1015. IF StrongChecks THEN
  1016. (*ASSERT(~(9 IN GetFlags ()));*) (* interrupts off *) (* commented out because check is too strong *)
  1017. ASSERT(id = ID ()) (* caller must specify current processor *)
  1018. END;
  1019. RETURN proc[id].preemptCount
  1020. END PreemptCount;
  1021. (* Spin waiting for a lock. Return AL = 1X iff timed out. *)
  1022. PROCEDURE AcquireSpinTimeout(VAR locked: BOOLEAN; count: LONGINT; flags: SET): CHAR;
  1023. CODE {SYSTEM.AMD64}
  1024. MOV RSI, [RBP + flags] ; RSI := flags
  1025. MOV EDI, [RBP + count] ; RDI := count
  1026. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  1027. MOV AL, 1 ; AL := 1
  1028. CLI ; switch interrupts off before acquiring lock
  1029. test:
  1030. CMP [RBX], AL ; locked? { AL = 1 }
  1031. JE wait ; yes, go wait
  1032. XCHG [RBX], AL ; set and read the lock atomically. LOCK prefix implicit.
  1033. CMP AL, 1 ; was locked?
  1034. JNE exit ; no, we have it now, interrupts are off, and AL # 1
  1035. wait:
  1036. ; ASSERT(AL = 1)
  1037. XOR RCX, RCX ; just in case some processor interprets REP this way
  1038. REP NOP ; PAUSE instruction (* see SpinHint *)
  1039. TEST RSI, 200H ; bit 9 - IF
  1040. JZ intoff
  1041. STI ; restore interrupt state quickly to allow pending interrupts (e.g. AosProcessors.StopAll/Broadcast)
  1042. NOP ; NOP required, otherwise STI; CLI not interruptable
  1043. CLI ; disable interrupts
  1044. intoff:
  1045. DEC EDI ; counter
  1046. JNZ test ; not timed out yet
  1047. OR EDI, [RBP + count] ; re-fetch original value & set flags
  1048. JZ test ; if count = 0, retry forever
  1049. ; timed out (AL = 1)
  1050. exit:
  1051. END AcquireSpinTimeout;
  1052. (** Acquire a spin-lock and disable interrupts. *)
  1053. PROCEDURE Acquire* (level: LONGINT);
  1054. VAR id, i: LONGINT; flags: SET; start: HUGEINT;
  1055. BEGIN
  1056. id := AcquirePreemption ();
  1057. flags := GetFlags (); (* store state of interrupt flag *)
  1058. IF StrongChecks THEN
  1059. ASSERT(~(9 IN flags) OR (proc[id].locksHeld = {})); (* interrupts enabled => no locks held *)
  1060. ASSERT(~(level IN proc[id].locksHeld)) (* recursive locks not allowed *)
  1061. END;
  1062. IF (TimeCount = 0) OR (maxTime = 0) THEN
  1063. IF AcquireSpinTimeout(lock[level].locked, 0, flags) = 0X THEN END; (* {interrupts off} *)
  1064. ELSE
  1065. start := GetTimer ();
  1066. WHILE AcquireSpinTimeout(lock[level].locked, TimeCount, flags) = 1X DO
  1067. IF GetTimer () - start > maxTime THEN
  1068. trapState := proc;
  1069. trapLocksBusy := {};
  1070. FOR i := 0 TO MaxLocks-1 DO
  1071. IF lock[i].locked THEN INCL(trapLocksBusy, i) END
  1072. END;
  1073. HALT(1301) (* Lock timeout - see Traps *)
  1074. END
  1075. END
  1076. END;
  1077. IF proc[id].locksHeld = {} THEN
  1078. proc[id].state := flags
  1079. END;
  1080. INCL(proc[id].locksHeld, level); (* we now hold the lock *)
  1081. IF StrongChecks THEN (* no lower-level locks currently held by this processor *)
  1082. ASSERT((level = 0) OR (proc[id].locksHeld * {0..level-1} = {}))
  1083. END
  1084. END Acquire;
  1085. (** Release a spin-lock. Switch on interrupts when last lock released. *)
  1086. PROCEDURE Release* (level: LONGINT);
  1087. VAR id: LONGINT; flags: SET;
  1088. BEGIN (* {interrupts off} *)
  1089. id := ID ();
  1090. IF StrongChecks THEN
  1091. ASSERT(~(9 IN GetFlags ())); (* {interrupts off} *)
  1092. ASSERT(lock[level].locked);
  1093. ASSERT(level IN proc[id].locksHeld)
  1094. END;
  1095. EXCL(proc[id].locksHeld, level);
  1096. IF proc[id].locksHeld = {} THEN
  1097. flags := proc[id].state ELSE flags := GetFlags ()
  1098. END;
  1099. lock[level].locked := FALSE;
  1100. SetFlags(flags);
  1101. ReleasePreemption
  1102. END Release;
  1103. (** Acquire all locks. Only for exceptional cases. *)
  1104. PROCEDURE AcquireAll*;
  1105. VAR lock: LONGINT;
  1106. BEGIN
  1107. FOR lock := HighestLock TO LowestLock BY -1 DO Acquire(lock) END
  1108. END AcquireAll;
  1109. (** Release all locks. Reverse of AcquireAll. *)
  1110. PROCEDURE ReleaseAll*;
  1111. VAR lock: LONGINT;
  1112. BEGIN
  1113. FOR lock := LowestLock TO HighestLock DO Release(lock) END
  1114. END ReleaseAll;
  1115. (** Break all locks held by current processor (for exception handling). Returns levels released. *)
  1116. PROCEDURE BreakAll* (): SET;
  1117. VAR id, level: LONGINT; released: SET;
  1118. BEGIN
  1119. id := AcquirePreemption ();
  1120. PushFlags; Cli;
  1121. released := {};
  1122. FOR level := 0 TO MaxLocks-1 DO
  1123. IF level IN proc[id].locksHeld THEN
  1124. lock[level].locked := FALSE; (* break the lock *)
  1125. EXCL(proc[id].locksHeld, level);
  1126. INCL(released, level)
  1127. END
  1128. END;
  1129. IF proc[id].preemptCount > 1 THEN INCL(released, Preemption) END;
  1130. proc[id].preemptCount := 0; (* clear preemption flag *)
  1131. PopFlags;
  1132. RETURN released
  1133. END BreakAll;
  1134. (** Acquire a fine-grained lock on an active object. *)
  1135. PROCEDURE AcquireObject* (VAR locked: BOOLEAN);
  1136. CODE {SYSTEM.AMD64}
  1137. PUSHFQ
  1138. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  1139. MOV AL, 1
  1140. test:
  1141. CMP [RBX], AL ; locked? { AL = 1 }
  1142. JNE try
  1143. STI
  1144. PAUSE ; PAUSE instruction (* see SpinHint *)
  1145. CLI
  1146. JMP test
  1147. try:
  1148. XCHG [RBX], AL ; set and read the lock atomically. LOCK prefix implicit.
  1149. CMP AL, 1 ; was locked?
  1150. JE test ; yes, try again
  1151. POPFQ
  1152. END AcquireObject;
  1153. (** Release an active object lock. *)
  1154. PROCEDURE ReleaseObject* (VAR locked: BOOLEAN);
  1155. CODE {SYSTEM.AMD64}
  1156. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  1157. MOV BYTE [RBX], 0
  1158. END ReleaseObject;
  1159. (* Load global descriptor table *)
  1160. PROCEDURE LoadGDT(base: ADDRESS; size: SIZE);
  1161. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1162. ; LGDT needs 10 bytes: 2 for the 16-bit limit and 8 for the 64-bit base address in this order
  1163. ; Assumption: size argument in front of base -> promote size value to upper 48 bits of size
  1164. SHL QWORD [RBP + size], 64-16
  1165. LGDT [RBP + size + (64-16) / 8]
  1166. END LoadGDT;
  1167. (* Load segment registers *)
  1168. PROCEDURE LoadSegRegs(data: INTEGER);
  1169. CODE {SYSTEM.AMD64}
  1170. MOV AX, [RBP + data]
  1171. MOV DS, AX
  1172. XOR AX, AX
  1173. MOV ES, AX
  1174. MOV FS, AX
  1175. MOV GS, AX
  1176. END LoadSegRegs;
  1177. (* Return CS. *)
  1178. PROCEDURE -CS* (): INTEGER;
  1179. CODE {SYSTEM.AMD64}
  1180. MOV AX, CS
  1181. END CS;
  1182. (** -- Memory management -- *)
  1183. (* Allocate a physical page below 1M. Parameter adr returns physical and virtual address (or NilAdr).*)
  1184. PROCEDURE NewLowPage(VAR adr: ADDRESS);
  1185. BEGIN
  1186. adr := freeLowPage;
  1187. IF freeLowPage # NilAdr THEN
  1188. SYSTEM.GET (freeLowPage, freeLowPage); (* freeLowPage := freeLowPage.next *)
  1189. DEC(freeLowPages)
  1190. END
  1191. END NewLowPage;
  1192. (* Allocate a directly-mapped page. Parameter adr returns physical and virtual address (or NilAdr). *)
  1193. PROCEDURE NewDirectPage(VAR adr: ADDRESS);
  1194. BEGIN
  1195. IF pageHeapAdr # heapEndAdr THEN
  1196. DEC(pageHeapAdr, PS); adr := pageHeapAdr;
  1197. DEC(freeHighPages)
  1198. ELSE
  1199. adr := NilAdr
  1200. END
  1201. END NewDirectPage;
  1202. (* Allocate a physical page. *)
  1203. PROCEDURE NewPage(VAR physAdr: ADDRESS);
  1204. VAR sp, prev: ADDRESS;
  1205. BEGIN
  1206. SYSTEM.GET(pageStackAdr + NodeSP, sp);
  1207. ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *)
  1208. IF sp > MinSP THEN (* stack not empty, pop entry *)
  1209. DEC(sp, AddressSize);
  1210. SYSTEM.GET (pageStackAdr+sp, physAdr);
  1211. SYSTEM.PUT (pageStackAdr+NodeSP, sp);
  1212. SYSTEM.GET (pageStackAdr+NodePrev, prev);
  1213. IF (sp = MinSP) & (prev # NilAdr) THEN
  1214. pageStackAdr := prev
  1215. END;
  1216. DEC(freeHighPages)
  1217. ELSE
  1218. NewDirectPage(physAdr)
  1219. END
  1220. END NewPage;
  1221. (* Deallocate a physical page. *)
  1222. PROCEDURE DisposePage(physAdr: ADDRESS);
  1223. VAR sp, next, newAdr: ADDRESS;
  1224. BEGIN
  1225. SYSTEM.GET (pageStackAdr + NodeSP, sp);
  1226. ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *)
  1227. IF sp = MaxSP THEN (* current stack full *)
  1228. SYSTEM.GET (pageStackAdr + NodeNext, next);
  1229. IF next # NilAdr THEN (* next stack exists, make it current *)
  1230. pageStackAdr := next;
  1231. SYSTEM.GET (pageStackAdr+NodeSP, sp);
  1232. ASSERT(sp = MinSP) (* must be empty *)
  1233. ELSE (* allocate next stack *)
  1234. NewDirectPage(newAdr);
  1235. IF newAdr = NilAdr THEN
  1236. NewLowPage(newAdr); (* try again from reserve *)
  1237. IF newAdr = NilAdr THEN
  1238. IF Stats THEN INC(NlostPages) END;
  1239. RETURN (* give up (the disposed page is lost) *)
  1240. ELSE
  1241. IF Stats THEN INC(NreservePagesUsed) END
  1242. END
  1243. END;
  1244. sp := MinSP; (* will be written to NodeSP below *)
  1245. SYSTEM.PUT (newAdr + NodeNext, next);
  1246. SYSTEM.PUT (newAdr + NodePrev, pageStackAdr);
  1247. pageStackAdr := newAdr
  1248. END
  1249. END;
  1250. (* push entry on current stack *)
  1251. SYSTEM.PUT (pageStackAdr + sp, physAdr);
  1252. SYSTEM.PUT (pageStackAdr + NodeSP, sp + AddressSize);
  1253. INC(freeHighPages)
  1254. END DisposePage;
  1255. (* Allocate virtual address space for mapping. Parameter size must be multiple of page size. Parameter virtAdr returns virtual address or NilAdr on failure. *)
  1256. PROCEDURE NewVirtual(VAR virtAdr: ADDRESS; size: SIZE);
  1257. BEGIN
  1258. ASSERT(size MOD PS = 0);
  1259. (*
  1260. IF mapTop+size > MapAreaAdr+MapAreaSize THEN
  1261. virtAdr := NilAdr (* out of virtual space *)
  1262. ELSE
  1263. virtAdr := mapTop;
  1264. INC(mapTop, size)
  1265. END
  1266. *)
  1267. (* this code is commented because PACO produces weird behaviour when used with
  1268. 64-bit ADDRESS*)
  1269. virtAdr := mapTop;
  1270. INC(mapTop, size)
  1271. END NewVirtual;
  1272. PROCEDURE DisposeVirtual(virtAdr: ADDRESS; size: SIZE);
  1273. (* to do *)
  1274. END DisposeVirtual;
  1275. (* Map a physical page into the virtual address space. Parameter virtAdr is mapped address and phys is mapping value. Returns TRUE iff mapping successful. *)
  1276. PROCEDURE MapTable (base, index: ADDRESS): ADDRESS;
  1277. VAR pt: ADDRESS;
  1278. BEGIN
  1279. SYSTEM.GET (base + index * AddressSize, pt);
  1280. IF ODD (pt) THEN (* pt present *)
  1281. DEC (pt, pt MOD TPS)
  1282. ELSE
  1283. NewPage(pt);
  1284. IF pt = NilAdr THEN RETURN NilAdr END;
  1285. SYSTEM.PUT (base + index * AddressSize, pt + UserPage);
  1286. Fill32 (pt, TPS, PageNotPresent)
  1287. END;
  1288. RETURN pt;
  1289. END MapTable;
  1290. PROCEDURE MapPage(virtAdr, phys: ADDRESS): BOOLEAN;
  1291. VAR i, pt: ADDRESS;
  1292. pml4e, pdpe, pde, pte: ADDRESS;
  1293. BEGIN
  1294. virtAdr := virtAdr DIV PS;
  1295. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1296. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1297. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1298. pml4e := virtAdr MOD PTEs;
  1299. pt := MapTable (kernelPML4, pml4e);
  1300. IF pt = NilAdr THEN RETURN FALSE END;
  1301. pt := MapTable (pt, pdpe);
  1302. IF pt = NilAdr THEN RETURN FALSE END;
  1303. pt := MapTable (pt, pde);
  1304. IF pt = NilAdr THEN RETURN FALSE END;
  1305. SYSTEM.PUT(pt + pte * AddressSize, phys);
  1306. RETURN TRUE;
  1307. END MapPage;
  1308. (* Return mapped page address for a given virtual address (ODD if mapped) *)
  1309. PROCEDURE MappedPage(virtAdr: ADDRESS): ADDRESS;
  1310. VAR pt: ADDRESS;
  1311. pml4e, pdpe, pde, pte: ADDRESS;
  1312. BEGIN
  1313. virtAdr := virtAdr DIV PS;
  1314. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1315. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1316. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1317. pml4e := virtAdr MOD PTEs;
  1318. SYSTEM.GET(kernelPML4 + pml4e * AddressSize, pt);
  1319. IF ~ODD(pt) THEN RETURN 0 END;
  1320. DEC (pt, pt MOD 1000H);
  1321. SYSTEM.GET(pt + pdpe * AddressSize, pt);
  1322. IF ~ODD(pt) THEN RETURN 0 END;
  1323. DEC (pt, pt MOD 1000H);
  1324. SYSTEM.GET(pt + pde * AddressSize, pt);
  1325. IF ~ODD(pt) THEN RETURN 0 END;
  1326. DEC (pt, pt MOD 1000H);
  1327. SYSTEM.GET (pt + pte * AddressSize, pt);
  1328. RETURN pt;
  1329. END MappedPage;
  1330. (* Unmap a page and return the previous mapping, like MappedPage (). Caller must flush TLB. *)
  1331. PROCEDURE UnmapPage(virtAdr: ADDRESS): ADDRESS;
  1332. VAR t, pt: ADDRESS;
  1333. pml4e, pdpe, pde, pte: ADDRESS;
  1334. BEGIN
  1335. virtAdr := virtAdr DIV PS;
  1336. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1337. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1338. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1339. pml4e := virtAdr MOD PTEs;
  1340. SYSTEM.GET(kernelPML4 + pml4e * AddressSize, pt);
  1341. IF ~ODD(pt) THEN RETURN 0 END;
  1342. DEC (pt, pt MOD 1000H);
  1343. SYSTEM.GET(pt + pdpe * AddressSize, pt);
  1344. IF ~ODD(pt) THEN RETURN 0 END;
  1345. DEC (pt, pt MOD 1000H);
  1346. SYSTEM.GET(pt + pde * AddressSize, pt);
  1347. IF ~ODD(pt) THEN RETURN 0 END;
  1348. DEC (pt, pt MOD 1000H);
  1349. SYSTEM.GET(pt + pte * AddressSize, t);
  1350. SYSTEM.PUT(pt + pte * AddressSize, NIL);
  1351. INVLPG (t);
  1352. RETURN t;
  1353. END UnmapPage;
  1354. (* Map area [virtAdr..virtAdr+size) directly to area [Adr(phys)..Adr(phys)+size). Returns TRUE iff successful. *)
  1355. PROCEDURE MapDirect(virtAdr: ADDRESS; size: SIZE; phys: ADDRESS): BOOLEAN;
  1356. BEGIN
  1357. (*
  1358. Trace.String("MapDirect "); Trace.Address (virtAdr); Trace.Char(' '); Trace.Address (phys); Trace.Char (' '); Trace.Int (size, 0);
  1359. Trace.Int(size DIV PS, 8); Trace.Ln;
  1360. *)
  1361. ASSERT((virtAdr MOD PS = 0) & (size MOD PS = 0));
  1362. WHILE size # 0 DO
  1363. IF ~ODD(MappedPage(virtAdr)) THEN
  1364. IF ~MapPage(virtAdr, phys) THEN RETURN FALSE END
  1365. END;
  1366. INC(virtAdr, PS); INC(phys, PS); DEC(size, PS)
  1367. END;
  1368. RETURN TRUE
  1369. END MapDirect;
  1370. (* Policy decision for heap expansion. NewBlock for the same block has failed try times. *)
  1371. PROCEDURE ExpandNow(try: LONGINT): BOOLEAN;
  1372. VAR size: SIZE;
  1373. BEGIN
  1374. size := LSH(memBlockTail.endBlockAdr - memBlockHead.beginBlockAdr, -10); (* heap size in KB *)
  1375. RETURN (~ODD(try) OR (size < heapMinKB)) & (size < heapMaxKB)
  1376. END ExpandNow;
  1377. (* Try to expand the heap by at least "size" bytes *)
  1378. PROCEDURE ExpandHeap*(try: LONGINT; size: SIZE; VAR memBlock: MemoryBlock; VAR beginBlockAdr, endBlockAdr: ADDRESS);
  1379. BEGIN
  1380. IF ExpandNow(try) THEN
  1381. IF size < expandMin THEN size := expandMin END;
  1382. beginBlockAdr := memBlockHead.endBlockAdr;
  1383. endBlockAdr := beginBlockAdr;
  1384. INC(endBlockAdr, size);
  1385. SetHeapEndAdr(endBlockAdr); (* in/out parameter *)
  1386. memBlock := memBlockHead;
  1387. (* endBlockAdr of memory block is set by caller after free block has been set in memory block - this process is part of lock-free heap expansion *)
  1388. ELSE
  1389. beginBlockAdr := memBlockHead.endBlockAdr;
  1390. endBlockAdr := memBlockHead.endBlockAdr;
  1391. memBlock := NIL
  1392. END
  1393. END ExpandHeap;
  1394. (* Set memory block end address *)
  1395. PROCEDURE SetMemoryBlockEndAddress*(memBlock: MemoryBlock; endBlockAdr: ADDRESS);
  1396. BEGIN
  1397. ASSERT(endBlockAdr >= memBlock.beginBlockAdr);
  1398. memBlock.endBlockAdr := endBlockAdr
  1399. END SetMemoryBlockEndAddress;
  1400. (* Free unused memory block *)
  1401. PROCEDURE FreeMemBlock*(memBlock: MemoryBlock);
  1402. BEGIN
  1403. HALT(515) (* impossible to free heap in I386 native A2 version *)
  1404. END FreeMemBlock;
  1405. (** Attempt to set the heap end address to the specified address. The returned value is the actual new end address (never smaller than previous value). *)
  1406. PROCEDURE SetHeapEndAdr(VAR endAdr: ADDRESS);
  1407. VAR n, m: SIZE;
  1408. BEGIN
  1409. Acquire(Memory);
  1410. n := LSH(endAdr+(PS-1), -PSlog2) - LSH(heapEndAdr, -PSlog2); (* pages requested *)
  1411. m := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2) - ReservedPages; (* max pages *)
  1412. IF n > m THEN n := m END;
  1413. IF n > 0 THEN INC(heapEndAdr, n*PS); DEC(freeHighPages, n) END;
  1414. endAdr := heapEndAdr;
  1415. Release(Memory)
  1416. END SetHeapEndAdr;
  1417. (** Map a physical memory area (physAdr..physAdr+size-1) into the virtual address space. Parameter virtAdr returns the virtual address of mapped region, or NilAdr on failure. *)
  1418. PROCEDURE MapPhysical*(physAdr: ADDRESS; size: SIZE; VAR virtAdr: ADDRESS);
  1419. VAR ofs: ADDRESS;
  1420. BEGIN
  1421. IF (LSH(physAdr, -PSlog2) <= topPageNum) &
  1422. (LSH(physAdr+size-1, -PSlog2) <= topPageNum) &
  1423. (LSH(physAdr, -PSlog2) >= LSH(LowAdr, -PSlog2)) THEN
  1424. virtAdr := physAdr (* directly mapped *)
  1425. ELSE
  1426. ofs := physAdr MOD PS;
  1427. DEC(physAdr, ofs); INC(size, ofs); (* align start to page boundary *)
  1428. INC(size, (-size) MOD PS); (* align end to page boundary *)
  1429. Acquire(Memory);
  1430. NewVirtual(virtAdr, size);
  1431. IF virtAdr # NilAdr THEN
  1432. IF ~MapDirect(virtAdr, size, physAdr + UserPage) THEN
  1433. DisposeVirtual(virtAdr, size);
  1434. virtAdr := NilAdr
  1435. END
  1436. END;
  1437. Release(Memory);
  1438. IF TraceVerbose THEN
  1439. Acquire (TraceOutput);
  1440. Trace.String("Mapping ");
  1441. Trace.IntSuffix(size, 1, "B"); Trace.String(" at ");
  1442. Trace.Address (physAdr); Trace.String (" - "); Trace.Address (physAdr+size-1);
  1443. IF virtAdr = NilAdr THEN
  1444. Trace.String(" failed")
  1445. ELSE
  1446. Trace.String (" to "); Trace.Address (virtAdr);
  1447. IF ofs # 0 THEN Trace.String (", offset "); Trace.Int(ofs, 0) END
  1448. END;
  1449. Trace.Ln;
  1450. Release (TraceOutput);
  1451. END;
  1452. IF virtAdr # NilAdr THEN INC(virtAdr, ofs) END (* adapt virtual address to correct offset *)
  1453. END
  1454. END MapPhysical;
  1455. (** Unmap an area previously mapped with MapPhysical. *)
  1456. PROCEDURE UnmapPhysical*(virtAdr: ADDRESS; size: SIZE);
  1457. (* to do *)
  1458. END UnmapPhysical;
  1459. (** Return the physical address of the specified range of memory, or NilAdr if the range is not contiguous. It is the caller's responsibility to assure the range remains allocated during the time it is in use. *)
  1460. PROCEDURE PhysicalAdr*(adr: ADDRESS; size: SIZE): ADDRESS;
  1461. VAR physAdr, mapped, expected: ADDRESS;
  1462. BEGIN
  1463. IF (LSH(adr, -PSlog2) <= topPageNum) & (LSH(adr+size-1, -PSlog2) <= topPageNum) THEN
  1464. RETURN adr (* directly mapped *)
  1465. ELSE
  1466. Acquire(Memory);
  1467. mapped := MappedPage(adr);
  1468. Release(Memory);
  1469. IF ODD(mapped) & (size > 0) THEN (* mapped, and range not empty or too big *)
  1470. physAdr := mapped - mapped MOD PS + adr MOD PS; (* strip paging bits and add page offset *)
  1471. (* now check if whole range is physically contiguous *)
  1472. DEC(size, PS - adr MOD PS); (* subtract distance to current page end *)
  1473. IF size > 0 THEN (* range crosses current page end *)
  1474. expected := LSH(mapped, -PSlog2)+1; (* expected physical page *)
  1475. LOOP
  1476. INC(adr, PS); (* step to next page *)
  1477. Acquire(Memory);
  1478. mapped := MappedPage(adr);
  1479. Release(Memory);
  1480. IF ~ODD(mapped) OR (LSH(mapped, -PSlog2) # expected) THEN
  1481. physAdr := NilAdr; EXIT
  1482. END;
  1483. DEC(size, PS);
  1484. IF size <= 0 THEN EXIT END; (* ok *)
  1485. INC(expected)
  1486. END
  1487. ELSE
  1488. (* ok, skip *)
  1489. END
  1490. ELSE
  1491. physAdr := NilAdr
  1492. END;
  1493. RETURN physAdr
  1494. END
  1495. END PhysicalAdr;
  1496. (** Translate a virtual address range to num ranges of physical address. num returns 0 on error. *)
  1497. PROCEDURE TranslateVirtual*(virtAdr: ADDRESS; size: SIZE; VAR num: LONGINT; VAR physAdr: ARRAY OF Range);
  1498. VAR ofs, phys1: ADDRESS; size1: SIZE;
  1499. BEGIN
  1500. Acquire(Memory);
  1501. num := 0;
  1502. LOOP
  1503. IF size = 0 THEN EXIT END;
  1504. IF num = LEN(physAdr) THEN num := 0; EXIT END; (* index check *)
  1505. ofs := virtAdr MOD PS; (* offset in page *)
  1506. size1 := PS - ofs; (* distance to next page boundary *)
  1507. IF size1 > size THEN size1 := size END;
  1508. phys1 := MappedPage(virtAdr);
  1509. IF ~ODD(phys1) THEN num := 0; EXIT END; (* page not present *)
  1510. physAdr[num].adr := phys1 - phys1 MOD PS + ofs;
  1511. physAdr[num].size := size1; INC(num);
  1512. INC(virtAdr, size1); DEC(size, size1)
  1513. END;
  1514. IF num = 0 THEN physAdr[0].adr := NilAdr; physAdr[0].size := 0 END;
  1515. Release(Memory)
  1516. END TranslateVirtual;
  1517. (** Return information on free memory in Kbytes. *)
  1518. PROCEDURE GetFreeK*(VAR total, lowFree, highFree: SIZE);
  1519. CONST KperPage = PS DIV 1024;
  1520. BEGIN
  1521. Acquire(Memory);
  1522. total := totalPages * KperPage;
  1523. lowFree := freeLowPages * KperPage;
  1524. highFree := freeHighPages * KperPage;
  1525. Release(Memory)
  1526. END GetFreeK;
  1527. (** -- Stack -- *)
  1528. (** Extend the stack to include the specified address, if possible. Returns TRUE iff ok. *)
  1529. PROCEDURE ExtendStack*(VAR s: Stack; virtAdr: ADDRESS): BOOLEAN;
  1530. VAR phys: ADDRESS; ok: BOOLEAN;
  1531. BEGIN
  1532. Acquire(Memory);
  1533. ok := FALSE;
  1534. IF (virtAdr < s.high) & (virtAdr >= s.low) THEN
  1535. DEC(virtAdr, virtAdr MOD PS); (* round down to page boundary *)
  1536. IF Stats & (virtAdr < s.adr-PS) THEN INC(Nbigskips) END;
  1537. IF ODD(MappedPage(virtAdr)) THEN (* already mapped *)
  1538. ok := TRUE
  1539. ELSE
  1540. NewPage(phys);
  1541. IF phys # NilAdr THEN
  1542. IF MapPage(virtAdr, phys + UserPage) THEN
  1543. IF virtAdr < s.adr THEN
  1544. s.adr := virtAdr
  1545. ELSE
  1546. IF Stats THEN INC(Nfilled) END
  1547. END;
  1548. ok := TRUE
  1549. ELSE
  1550. DisposePage(phys)
  1551. END
  1552. END
  1553. END
  1554. END;
  1555. Release(Memory);
  1556. RETURN ok
  1557. END ExtendStack;
  1558. (** Allocate a stack. Parameter initSP returns initial stack pointer value. *)
  1559. PROCEDURE NewStack*(VAR s: Stack; process: ANY; VAR initSP: ADDRESS);
  1560. VAR adr, phys: ADDRESS; old: HUGEINT; free: SET;
  1561. BEGIN
  1562. ASSERT(InitUserStackSize = PS); (* for now *)
  1563. Acquire(Memory);
  1564. IF Stats THEN INC(NnewStacks) END;
  1565. old := freeStackIndex;
  1566. LOOP
  1567. IF Stats THEN INC(NnewStackLoops) END;
  1568. free := freeStack[freeStackIndex];
  1569. IF free # {} THEN
  1570. adr := 0; WHILE ~(adr IN free) DO INC(adr) END; (* BTW: BSF instruction is not faster *)
  1571. IF Stats THEN INC(NnewStackInnerLoops, adr+1) END;
  1572. EXCL(freeStack[freeStackIndex], adr);
  1573. adr := 10000000H + (freeStackIndex*SetSize + adr)*MaxUserStackSize; (*StackAreaAdr *)
  1574. EXIT
  1575. END;
  1576. INC(freeStackIndex);
  1577. IF freeStackIndex = LEN(freeStack) THEN freeStackIndex := 0 END;
  1578. IF freeStackIndex = old THEN HALT(1503) END (* out of stack space *)
  1579. END;
  1580. NewPage(phys); ASSERT(phys # NilAdr); (* allocate one physical page at first *)
  1581. s.high := adr + MaxUserStackSize; s.low := adr + UserStackGuardSize;
  1582. s.adr := s.high - InitUserStackSize; (* at the top of the virtual area *)
  1583. initSP := s.high-AddressSize;
  1584. IF ~MapPage(s.adr, phys + UserPage) THEN HALT(99) END;
  1585. SYSTEM.PUT (initSP, process);
  1586. Release(Memory)
  1587. END NewStack;
  1588. (** Return the process pointer set when the current user stack was created (must be running on user stack). *)
  1589. PROCEDURE -GetProcessPtr* (): ANY;
  1590. CODE {SYSTEM.AMD64}
  1591. MOV RAX, -MaxUserStackSize
  1592. AND RAX, RSP
  1593. MOV RAX, [RAX + MaxUserStackSize - 8]
  1594. POP RBX; pointer return passed via stack
  1595. MOV [RBX], RAX
  1596. END GetProcessPtr;
  1597. (** True iff current process works on a kernel stack *)
  1598. PROCEDURE WorkingOnKernelStack* (): BOOLEAN;
  1599. VAR id: LONGINT; sp: ADDRESS;
  1600. BEGIN
  1601. ASSERT(KernelStackSize # MaxUserStackSize - UserStackGuardSize); (* detection does only work with this assumption *)
  1602. sp := CurrentSP ();
  1603. id := ID ();
  1604. RETURN (sp >= procm[id].stack.low) & (sp <= procm[id].stack.high)
  1605. END WorkingOnKernelStack;
  1606. (** Deallocate a stack. Current thread should not dispose its own stack. Uses privileged instructions. *)
  1607. PROCEDURE DisposeStack*(CONST s: Stack);
  1608. VAR adr, phys: ADDRESS;
  1609. BEGIN
  1610. (* First make sure there are no references to virtual addresses of the old stack in the TLBs. This is required because we are freeing the pages, and they could be remapped later at different virtual addresses. DisposeStack will only be called from the thread finalizer, which ensures that the user will no longer be referencing this memory. Therefore we can make this upcall from outside the locked region, avoiding potential deadlock. *)
  1611. GlobalFlushTLB; (* finalizers are only called after Processors has initialized this upcall *)
  1612. Acquire(Memory);
  1613. IF Stats THEN INC(NdisposeStacks) END;
  1614. adr := s.adr; (* unmap and deallocate all pages of stack *)
  1615. REPEAT
  1616. phys := UnmapPage(adr); (* TLB was flushed and no intermediate references possible to unreachable stack *)
  1617. IF ODD(phys) THEN DisposePage(phys - phys MOD PS) END;
  1618. INC(adr, PS)
  1619. UNTIL adr = s.high;
  1620. adr := (adr - MaxUserStackSize - StackAreaAdr) DIV MaxUserStackSize;
  1621. INCL(freeStack[adr DIV 32], adr MOD 32);
  1622. Release(Memory)
  1623. END DisposeStack;
  1624. (** Check if the specified stack is valid. *)
  1625. PROCEDURE ValidStack*(CONST s: Stack; sp: ADDRESS): BOOLEAN;
  1626. VAR valid: BOOLEAN;
  1627. BEGIN
  1628. Acquire(Memory);
  1629. valid := (sp MOD 4 = 0) & (sp >= s.adr) & (sp <= s.high);
  1630. WHILE valid & (sp < s.high) DO
  1631. valid := ODD(MappedPage(sp));
  1632. INC(sp, PS)
  1633. END;
  1634. Release(Memory);
  1635. RETURN valid
  1636. END ValidStack;
  1637. (** Update the stack snapshot of the current processor. (for Processors) *)
  1638. PROCEDURE UpdateState*;
  1639. VAR id: LONGINT;
  1640. BEGIN
  1641. ASSERT(CS () MOD 4 = 0); (* to get kernel stack pointer *)
  1642. id := ID ();
  1643. ASSERT(procm[id].stack.high # 0); (* current processor stack has been assigned *)
  1644. procm[id].sp := CurrentBP () (* instead of ESP, just fetch EBP of current procedure (does not contain pointers) *)
  1645. END UpdateState;
  1646. (** Get kernel stack regions for garbage collection. (for Heaps) *)
  1647. PROCEDURE GetKernelStacks*(VAR stack: ARRAY OF Stack);
  1648. VAR i: LONGINT;
  1649. BEGIN (* {UpdateState has been called by each processor} *)
  1650. FOR i := 0 TO MaxCPU-1 DO
  1651. stack[i].adr := procm[i].sp;
  1652. stack[i].high := procm[i].stack.high
  1653. END
  1654. END GetKernelStacks;
  1655. (* Init page tables (paging still disabled until EnableMM is called). *)
  1656. PROCEDURE InitPages;
  1657. VAR i, j: HUGEINT; phys, lTop, mTop: ADDRESS;
  1658. BEGIN
  1659. (* get top of high and low memory *)
  1660. mTop := memTop;
  1661. DEC(mTop, mTop MOD PS); (* mTop MOD PS = 0 *)
  1662. topPageNum := LSH(mTop-1, -PSlog2);
  1663. lTop := lowTop;
  1664. DEC(lTop, lTop MOD PS); (* lTop MOD PS = 0 *)
  1665. (* initialize NewDirectPage and SetHeapEndAdr (get kernel range) *)
  1666. SYSTEM.GET (LinkAdr + EndBlockOfs, heapEndAdr);
  1667. (* ug *) (*
  1668. SYSTEM.PUT (heapEndAdr, NIL); (* set tag to NIL *)
  1669. INC(heapEndAdr, AddressSize); (* space for NIL *)
  1670. *)
  1671. (* ug: not needed, extension of heap done in GetStaticHeap anyway
  1672. INC(heapEndAdr, K); (* space for free heap block descriptor of type Heaps.HeapBlockDesc at heapEndAdr, initialization is done in Heaps *)
  1673. INC(heapEndAdr, (-heapEndAdr) MOD PS); (* round up to page size *)
  1674. *)
  1675. pageHeapAdr := mTop;
  1676. freeHighPages := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2);
  1677. IF TraceVerbose THEN
  1678. Trace.String("Kernel: "); Trace.Address (LinkAdr); Trace.String(" .. ");
  1679. Trace.Address (heapEndAdr-1); Trace.Ln;
  1680. Trace.String ("High: "); Trace.Address (heapEndAdr); Trace.String(" .. ");
  1681. Trace.Address (pageHeapAdr-1); Trace.String(" = "); Trace.Int (SHORT(freeHighPages),0);
  1682. Trace.StringLn (" free pages")
  1683. END;
  1684. (* initialize empty free page stack *)
  1685. NewDirectPage(pageStackAdr); ASSERT(pageStackAdr # NilAdr);
  1686. SYSTEM.PUT (pageStackAdr+NodeSP, SYSTEM.VAL (ADDRESS, MinSP));
  1687. SYSTEM.PUT (pageStackAdr+NodeNext, SYSTEM.VAL (ADDRESS, NilAdr));
  1688. SYSTEM.PUT (pageStackAdr+NodePrev, SYSTEM.VAL (ADDRESS, NilAdr));
  1689. (* free low pages *)
  1690. freeLowPage := NilAdr; freeLowPages := 0;
  1691. i := lTop DIV PS; j := LowAdr DIV PS;
  1692. IF TraceVerbose THEN
  1693. Trace.String("Low: "); Trace.Address (j*PS); Trace.String (".."); Trace.Address (i*PS-1)
  1694. END;
  1695. REPEAT
  1696. DEC(i); phys := i*PS;
  1697. SYSTEM.PUT (phys, freeLowPage); (* phys.next := freeLowPage *)
  1698. freeLowPage := phys; INC(freeLowPages)
  1699. UNTIL i = j;
  1700. IF TraceVerbose THEN
  1701. Trace.String(" = "); Trace.Int(SHORT(freeLowPages), 1); Trace.StringLn (" free pages")
  1702. END;
  1703. totalPages := LSH(memTop - M + lowTop + dmaSize + PS, -PSlog2); (* what BIOS gave us *)
  1704. (* stacks *)
  1705. ASSERT((StackAreaAdr MOD MaxUserStackSize = 0) & (StackAreaSize MOD MaxUserStackSize = 0));
  1706. FOR i := 0 TO LEN(freeStack)-1 DO freeStack[i] := {0..SetSize-1} END;
  1707. FOR i := MaxUserStacks TO LEN(freeStack)*SetSize-1 DO EXCL(freeStack[i DIV SetSize], i MOD SetSize) END;
  1708. freeStackIndex := 0;
  1709. (* mappings *)
  1710. mapTop := MapAreaAdr;
  1711. (* create the address space *)
  1712. NewPage(kernelPML4); ASSERT(kernelPML4 # NilAdr);
  1713. Fill32(kernelPML4, TPS, PageNotPresent);
  1714. IF ~MapDirect(LowAdr, memTop-LowAdr, LowAdr + UserPage) THEN HALT(99) END (* map heap direct *)
  1715. END InitPages;
  1716. (* Generate a memory segment descriptor. type IN {0..7} & dpl IN {0..3}.
  1717. type
  1718. 0 data, expand-up, read-only
  1719. 1 data, expand-up, read-write
  1720. 2 data, expand-down, read-only
  1721. 3 data, expand-down, read-write
  1722. 4 code, non-conforming, execute-only
  1723. 5 code, non-conforming, execute-read
  1724. 6 code, conforming, execute-only
  1725. 7 code, conforming, execute-read
  1726. *)
  1727. PROCEDURE GenCodeSegDesc (dpl, base, limit: LONGINT; conforming, longmode: BOOLEAN; VAR sd: SegDesc);
  1728. VAR s: SET;
  1729. BEGIN
  1730. sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H;
  1731. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1732. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1733. s := s + {9, 11, 12, 15, 23}; (* present=1, D = 0*)
  1734. IF conforming THEN INCL(s, 10) END;
  1735. IF longmode THEN INCL(s, 21) ELSE INCL (s, 22) END; (* long mode flag or default 32-bit operand *)
  1736. sd.high := SYSTEM.VAL(LONGINT, s)
  1737. END GenCodeSegDesc;
  1738. PROCEDURE GenDataSegDesc (dpl, base, limit: LONGINT; VAR sd: SegDesc);
  1739. VAR s: SET;
  1740. BEGIN
  1741. sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H;
  1742. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1743. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1744. s := s + {9, 12, 15, 22, 23}; (* present=1 *)
  1745. sd.high := SYSTEM.VAL(LONGINT, s)
  1746. END GenDataSegDesc;
  1747. (* Generate a 64-bit TSS descriptor (16bytes). *)
  1748. PROCEDURE GenTSSDesc(base: ADDRESS; limit, dpl: LONGINT; VAR sdl, sdh: SegDesc);
  1749. VAR s: SET;
  1750. BEGIN
  1751. sdl.low := SYSTEM.VAL(LONGINT, ASH(base MOD 10000H, 16) + limit MOD 10000H);
  1752. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1753. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1754. s := s + {8, 11, 15}; (* type=non-busy TSS, present=1, AVL=0, 32-bit=0 *)
  1755. sdl.high := SYSTEM.VAL(LONGINT, s);
  1756. sdh.low := SYSTEM.VAL(LONGINT, base DIV 10000000H);
  1757. sdh.high := 0;
  1758. END GenTSSDesc;
  1759. (* Initialize segmentation. *)
  1760. PROCEDURE InitSegments;
  1761. VAR i: LONGINT;
  1762. BEGIN
  1763. (* limits and bases are ignored in 64-bit mode *)
  1764. (* GDT 0: Null segment *)
  1765. gdt[0].low := 0; gdt[0].high := 0;
  1766. (* GDT 1: 32-bit Kernel code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1767. GenCodeSegDesc(0, 0, M-1, FALSE, FALSE, gdt[1]);
  1768. (* GDT 2: 64-bit Kernel code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1769. GenCodeSegDesc(0, 0, M-1, FALSE, TRUE, gdt[2]);
  1770. (* GDT 3: 32-bit User code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1771. GenCodeSegDesc(0, 0, M-1, TRUE, FALSE, gdt[3]);
  1772. (* GDT 4: 64-bit User code: conforming, execute-read, base 0, limit 4G, PL 0 *)
  1773. GenCodeSegDesc(0, 0, M-1, TRUE, TRUE, gdt[4]);
  1774. (* GDT 5: Kernel stack: read-write, base 0, limit 4G, PL 0 *)
  1775. GenDataSegDesc(0, 0, M-1, gdt[5]);
  1776. (* GDT 6: User stack: read-write, base 0, limit 4G, PL 3 *)
  1777. GenDataSegDesc(3, 0, M-1, gdt[6]);
  1778. (* GDT 7: User/Kernel data: expand-up, read-write, base 0, limit 4G, PL 3 *)
  1779. GenDataSegDesc(3, 0, M-1, gdt[7]);
  1780. FOR i := 0 TO MaxCPU-1 DO
  1781. GenTSSDesc(ADDRESSOF(procm[i].tss), SIZEOF(TSSDesc)-1, 0, gdt[TSSOfs+i*2], gdt[TSSOfs+i*2 + 1]);
  1782. procm[i].sp := 0; procm[i].stack.high := 0
  1783. END
  1784. END InitSegments;
  1785. (* Enable segmentation on the current processor. *)
  1786. PROCEDURE EnableSegments;
  1787. BEGIN
  1788. LoadGDT(ADDRESSOF(gdt[0]), SIZEOF(GDT)-1);
  1789. LoadSegRegs(DataSel)
  1790. END EnableSegments;
  1791. (* Allocate a kernel stack. *)
  1792. PROCEDURE NewKernelStack(VAR stack: Stack);
  1793. VAR phys, virt: ADDRESS; size: SIZE;
  1794. BEGIN
  1795. size := KernelStackSize;
  1796. NewVirtual(virt, size + PS); (* add one page for overflow protection *)
  1797. ASSERT(virt # NilAdr, 1502);
  1798. INC(virt, PS); (* leave page open at bottom *)
  1799. stack.low := virt;
  1800. stack.adr := virt; (* return stack *)
  1801. REPEAT
  1802. NewPage(phys); ASSERT(phys # NilAdr);
  1803. IF ~MapPage(virt, phys + KernelPage) THEN HALT(99) END;
  1804. DEC(size, PS); INC(virt, PS)
  1805. UNTIL size = 0;
  1806. stack.high := virt
  1807. END NewKernelStack;
  1808. (* Set task register *)
  1809. PROCEDURE -SetTR(tr: ADDRESS);
  1810. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1811. POP RAX
  1812. LTR AX
  1813. END SetTR;
  1814. (* Enable memory management and switch to new stack in virtual space.
  1815. Stack layout:
  1816. caller1 return
  1817. caller1 RBP <-- caller0 RBP
  1818. [caller0 locals]
  1819. 04 caller0 return
  1820. 00 caller0 RBP <-- RBP
  1821. locals <-- RSP
  1822. *)
  1823. PROCEDURE -EnableMM(pml4Base, rsp: ADDRESS);
  1824. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1825. POP RBX
  1826. POP RAX
  1827. MOV RCX, [RBP + 8] ; caller0 return
  1828. MOV RDX, [RBP] ; caller0 RBP
  1829. MOV RDX, [RDX + 8] ; caller 1 return
  1830. MOV CR3, RAX ; pml4 page translation base address
  1831. XOR RAX, RAX
  1832. MOV [RBX - 8], RAX ; not UserStackSel (cf. GetUserStack)
  1833. MOV [RBX - 16], RDX ; caller1 return on new stack
  1834. MOV [RBX - 24], RAX ; caller1 RBP on new stack
  1835. LEA RBP, [RBX - 24] ; new stack top
  1836. MOV RSP, RBP
  1837. JMP RCX
  1838. END EnableMM;
  1839. (** -- Initialization -- *)
  1840. (** Initialize memory management.
  1841. o every processor calls this once during initialization
  1842. o mutual exclusion with other processors must be guaranteed by the caller
  1843. o interrupts must be off
  1844. o segmentation and paging is enabled
  1845. o return is on the new stack => caller must have no local variables
  1846. *)
  1847. PROCEDURE InitMemory*;
  1848. VAR id: LONGINT;
  1849. BEGIN
  1850. EnableSegments;
  1851. (* allocate stack *)
  1852. id := ID ();
  1853. NewKernelStack(procm[id].stack);
  1854. procm[id].sp := 0;
  1855. (* initialize TSS *)
  1856. Fill32(ADDRESSOF(procm[id].tss), SIZEOF(TSSDesc), 0);
  1857. procm[id].tss.RSP0 := procm[id].stack.high; (* kernel stack org *)
  1858. procm[id].tss.IOMapBaseAddress := -1; (* no bitmap *)
  1859. (* enable paging and switch stack *)
  1860. SetTR(KernelTR + id*16);
  1861. EnableMM(kernelPML4, procm[id].tss.RSP0)
  1862. END InitMemory;
  1863. (** Initialize a boot page for MP booting. Parameter physAdr returns the physical address of a low page. *)
  1864. PROCEDURE InitBootPage*(start: Startup; VAR physAdr: ADDRESS);
  1865. CONST BootOfs = 800H;
  1866. VAR adr, a: ADDRESS;
  1867. BEGIN
  1868. Acquire(Memory);
  1869. NewLowPage(physAdr);
  1870. Release(Memory);
  1871. ASSERT((physAdr # NilAdr) & (physAdr >= 0) & (physAdr < M) & (physAdr MOD PS = 0));
  1872. adr := physAdr + BootOfs;
  1873. a := adr;
  1874. (* put binary code copy of SMP.Bin to address a (cf. BinToCode.Mod ) *)
  1875. SYSTEM.PUT32(a, 0002F10EBH); INC (a, 4);
  1876. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1877. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1878. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1879. SYSTEM.PUT32(a, 031660000H); INC (a, 4);
  1880. SYSTEM.PUT32(a, 066C88CC0H); INC (a, 4);
  1881. SYSTEM.PUT32(a, 02E04E0C1H); INC (a, 4);
  1882. SYSTEM.PUT32(a, 04A060966H); INC (a, 4);
  1883. SYSTEM.PUT32(a, 0010F2E08H); INC (a, 4);
  1884. SYSTEM.PUT32(a, 02E08081EH); INC (a, 4);
  1885. SYSTEM.PUT32(a, 00216010FH); INC (a, 4);
  1886. SYSTEM.PUT32(a, 0C4896608H); INC (a, 4);
  1887. SYSTEM.PUT32(a, 000C48166H); INC (a, 4);
  1888. SYSTEM.PUT32(a, 00F000008H); INC (a, 4);
  1889. SYSTEM.PUT32(a, 00F66C020H); INC (a, 4);
  1890. SYSTEM.PUT32(a, 00F00E8BAH); INC (a, 4);
  1891. SYSTEM.PUT32(a, 0662EC022H); INC (a, 4);
  1892. SYSTEM.PUT32(a, 0080E1E8BH); INC (a, 4);
  1893. SYSTEM.PUT32(a, 00850EA66H); INC (a, 4);
  1894. SYSTEM.PUT32(a, 000080000H); INC (a, 4);
  1895. SYSTEM.PUT32(a, 00FE0200FH); INC (a, 4);
  1896. SYSTEM.PUT32(a, 00F05E8BAH); INC (a, 4);
  1897. SYSTEM.PUT32(a, 0220FE022H); INC (a, 4);
  1898. SYSTEM.PUT32(a, 00080B9DBH); INC (a, 4);
  1899. SYSTEM.PUT32(a, 0320FC000H); INC (a, 4);
  1900. SYSTEM.PUT32(a, 008E8BA0FH); INC (a, 4);
  1901. SYSTEM.PUT32(a, 0200F300FH); INC (a, 4);
  1902. SYSTEM.PUT32(a, 0E8BA0FC0H); INC (a, 4);
  1903. SYSTEM.PUT32(a, 0C0220F1FH); INC (a, 4);
  1904. SYSTEM.PUT32(a, 0000000EAH); INC (a, 4);
  1905. SYSTEM.PUT16(a, 01000H); INC (a, 2);
  1906. SYSTEM.PUT8(a, 000H); INC (a);
  1907. (* the following offsets must be patched and can be reported
  1908. by the assembler when assembling SMP.S with: PCAAMD64.Assemble SMP.S l~ *)
  1909. SYSTEM.PUT32 (adr+14, SYSTEM.VAL (LONGINT, kernelPML4)); (* cf. label PML4BASE *)
  1910. SYSTEM.PUT32 (adr+117, SYSTEM.VAL (LONGINT, start)); (* not a method *) (* cf. label KENTRY *)
  1911. SYSTEM.PUT32 (adr+4, SYSTEM.VAL (LONGINT, ADDRESSOF(gdt[0]))); (* cf. label GDT *)
  1912. (* jump at start *)
  1913. SYSTEM.PUT8(physAdr, 0EAX); (* jmp far *)
  1914. SYSTEM.PUT32(physAdr + 1, ASH(physAdr, 16-4) + BootOfs) (* seg:ofs *)
  1915. END InitBootPage;
  1916. (** The BP in a MP system calls this to map the APIC physical address directly. *)
  1917. PROCEDURE InitAPICArea*(adr: ADDRESS; size: SIZE);
  1918. BEGIN
  1919. (* ASSERT((size = PS) & (adr >= IntelAreaAdr) & (adr+size-1 < IntelAreaAdr+IntelAreaSize)); *)
  1920. IF ~MapDirect(adr, size, adr + UserPage) THEN HALT(99) END
  1921. END InitAPICArea;
  1922. (* Set machine-dependent parameters gcThreshold, expandMin, heapMinKB and heapMaxKB *)
  1923. PROCEDURE SetGCParams*;
  1924. VAR size, t: SIZE;
  1925. BEGIN
  1926. GetFreeK(size, t, t); (* size is total memory size in KB *)
  1927. heapMinKB := size * HeapMin DIV 100;
  1928. heapMaxKB := size * HeapMax DIV 100;
  1929. expandMin := size * ExpandRate DIV 100 * 1024;
  1930. IF expandMin < 0 THEN expandMin := MAX(LONGINT) END;
  1931. gcThreshold := size * Threshold DIV 100 * 1024;
  1932. IF gcThreshold < 0 THEN gcThreshold := MAX(LONGINT) END
  1933. END SetGCParams;
  1934. (** Get first memory block and first free address, heap area in first memory block is automatically expanded to account for the first
  1935. few calls to NEW *)
  1936. PROCEDURE GetStaticHeap*(VAR beginBlockAdr, endBlockAdr, freeBlockAdr: ADDRESS);
  1937. BEGIN
  1938. beginBlockAdr := initialMemBlock.beginBlockAdr;
  1939. endBlockAdr := initialMemBlock.endBlockAdr;
  1940. freeBlockAdr := beginBlockAdr;
  1941. END GetStaticHeap;
  1942. (* returns if an address is a currently allocated heap address *)
  1943. PROCEDURE ValidHeapAddress*(p: ADDRESS): BOOLEAN;
  1944. BEGIN
  1945. RETURN (p >= memBlockHead.beginBlockAdr) & (p <= memBlockTail.endBlockAdr)
  1946. OR (p>=401000H) & (p<=500000H) (*! guess until kernel size known *)
  1947. END ValidHeapAddress;
  1948. (** Jump from kernel to user mode. Every processor calls this during initialization. *)
  1949. PROCEDURE JumpToUserLevel*(userRBP: ADDRESS);
  1950. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1951. PUSH UserStackSel ; SS3
  1952. PUSH QWORD [RBP + userRBP] ; RSP3
  1953. PUSHFQ ; RFLAGS3
  1954. PUSH User64CodeSel ; CS3
  1955. CALL DWORD L1 ; PUSH L1 (RIP3)
  1956. L1:
  1957. ADD QWORD [RSP], BYTE 7 ; adjust RIP3 to L2 (L2-L1 should be 7)
  1958. IRETQ ; switch to level 3 and continue at following instruction
  1959. L2:
  1960. POP RBP ; from level 3 stack (refer to AosActive.NewProcess)
  1961. RET ; jump to body of first active object; cf. Objects.NewProcess
  1962. END JumpToUserLevel;
  1963. (* should ensure that a given address can be represented in the legacy 4GB address space
  1964. replacement for unsafe: x := SYSTEM.VAL (LONGINT, y) with y of type ADDRESS
  1965. -> better rewrite client code! this procedure should be redundant and removable in the end! *)
  1966. PROCEDURE Ensure32BitAddress*(adr: ADDRESS): Address32;
  1967. BEGIN
  1968. (* TODO *)
  1969. ASSERT (Is32BitAddress (adr), 9876);
  1970. RETURN SYSTEM.VAL (Address32, adr)
  1971. END Ensure32BitAddress;
  1972. PROCEDURE Is32BitAddress*(adr: ADDRESS): BOOLEAN;
  1973. BEGIN RETURN SYSTEM.VAL (Address32, adr) = adr;
  1974. END Is32BitAddress;
  1975. (**
  1976. * Flush Data Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1977. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1978. * left empty on Intel architecture.
  1979. *)
  1980. PROCEDURE FlushDCacheRange * (adr: ADDRESS; len: LONGINT);
  1981. END FlushDCacheRange;
  1982. (**
  1983. * Invalidate Data Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1984. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1985. * left empty on Intel architecture.
  1986. *)
  1987. PROCEDURE InvalidateDCacheRange * (adr: ADDRESS; len: LONGINT);
  1988. END InvalidateDCacheRange;
  1989. (**
  1990. * Invalidate Instruction Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1991. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1992. * left empty on Intel architecture.
  1993. *)
  1994. PROCEDURE InvalidateICacheRange * (adr: ADDRESS; len: LONGINT);
  1995. END InvalidateICacheRange;
  1996. (* Unexpected - Default interrupt handler *)
  1997. PROCEDURE Unexpected(VAR state: State);
  1998. VAR int: HUGEINT; isr, irr: CHAR;
  1999. BEGIN
  2000. int := state.INT;
  2001. IF HandleSpurious & ((int >= IRQ0) & (int <= MaxIRQ) OR (int = MPSPU)) THEN (* unexpected IRQ, get more info *)
  2002. IF (int >= IRQ8) & (int <= IRQ15) THEN
  2003. Portout8 (IntB0, 0BX); Portin8(IntB0, isr);
  2004. Portout8 (IntB0, 0AX); Portin8(IntB0, irr)
  2005. ELSIF (int >= IRQ0) & (int <= IRQ7) THEN
  2006. Portout8 (IntA0, 0BX); Portin8(IntA0, isr);
  2007. Portout8 (IntA0, 0AX); Portin8(IntA0, irr)
  2008. ELSE
  2009. isr := 0X; irr := 0X
  2010. END;
  2011. IF TraceSpurious THEN
  2012. Acquire (TraceOutput);
  2013. Trace.String("INT"); Trace.Int(SHORT(int), 1);
  2014. Trace.Hex(ORD(isr), -3); Trace.Hex(ORD(irr), -2); Trace.Ln;
  2015. Release (TraceOutput);
  2016. END
  2017. ELSE
  2018. Acquire (TraceOutput);
  2019. Trace.StringLn ("Unexpected interrupt");
  2020. Trace.Memory(ADDRESSOF(state), SIZEOF(State)-4*8); (* exclude last 4 fields *)
  2021. IF int = 3 THEN (* was a HALT or ASSERT *)
  2022. (* It seems that no trap handler is installed (Traps not linked), so wait endlessly, while holding trace lock. This should quiten down the system, although other processors may possibly still run processes. *)
  2023. LOOP END
  2024. ELSE
  2025. Release (TraceOutput);
  2026. SetRAX(int);
  2027. HALT(1801) (* unexpected interrupt *)
  2028. END
  2029. END
  2030. END Unexpected;
  2031. (* InEnableIRQ - Enable a hardware interrupt (caller must hold module lock). *)
  2032. PROCEDURE -InEnableIRQ (int: HUGEINT);
  2033. CODE {SYSTEM.AMD64}
  2034. POP RBX
  2035. CMP RBX, IRQ7
  2036. JG cont2
  2037. IN AL, IntA1
  2038. SUB RBX, IRQ0
  2039. BTR RAX, RBX
  2040. OUT IntA1, AL
  2041. JMP end
  2042. cont2:
  2043. IN AL, IntB1
  2044. SUB RBX, IRQ8
  2045. BTR RAX, RBX
  2046. OUT IntB1, AL
  2047. end:
  2048. END InEnableIRQ;
  2049. (* InDisableIRQ - Disable a hardware interrupt (caller must hold module lock). *)
  2050. PROCEDURE -InDisableIRQ (int: HUGEINT);
  2051. CODE {SYSTEM.AMD64}
  2052. POP RBX
  2053. CMP RBX, IRQ7
  2054. JG cont2
  2055. IN AL, IntA1
  2056. SUB RBX, IRQ0
  2057. BTS RAX, RBX
  2058. OUT IntA1, AL
  2059. JMP end
  2060. cont2:
  2061. IN AL, IntB1
  2062. SUB RBX, IRQ8
  2063. BTS RAX, RBX
  2064. OUT IntB1, AL
  2065. end:
  2066. END InDisableIRQ;
  2067. (** EnableIRQ - Enable a hardware interrupt (also done automatically by InstallHandler). *)
  2068. PROCEDURE EnableIRQ* (int: HUGEINT);
  2069. BEGIN
  2070. (* ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2)); *)
  2071. Acquire(Interrupts); (* protect interrupt mask register *)
  2072. InEnableIRQ(int);
  2073. Release(Interrupts)
  2074. END EnableIRQ;
  2075. (** DisableIRQ - Disable a hardware interrupt. *)
  2076. PROCEDURE DisableIRQ* (int: HUGEINT);
  2077. BEGIN
  2078. ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2));
  2079. Acquire(Interrupts); (* protect interrupt mask register *)
  2080. InDisableIRQ(int);
  2081. Release(Interrupts)
  2082. END DisableIRQ;
  2083. (** InstallHandler - Install interrupt handler & enable IRQ if necessary.
  2084. On entry to h interrupts are disabled and may be enabled with Sti. After handling the interrupt
  2085. the state of interrupts are restored. The acknowledgement of a hardware interrupt is done automatically.
  2086. IRQs are mapped from IRQ0 to MaxIRQ. *)
  2087. PROCEDURE InstallHandler* (h: Handler; int: LONGINT);
  2088. VAR (* n: HandlerList; *) i: LONGINT; unexpected: Handler;
  2089. BEGIN
  2090. ASSERT(default.valid); (* initialized *)
  2091. ASSERT(int # IRQ2); (* IRQ2 is used for cascading and remapped to IRQ9 *)
  2092. Acquire(Interrupts);
  2093. (* FieldInterrupt may traverse list while it is being modified *)
  2094. i := 0;
  2095. unexpected := Unexpected;
  2096. IF intHandler[int, 0].handler # unexpected THEN
  2097. WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO
  2098. INC(i)
  2099. END;
  2100. IF i < MaxNumHandlers - 1 THEN
  2101. intHandler[int, i].valid := TRUE;
  2102. intHandler[int, i].handler := h;
  2103. ELSE
  2104. Acquire(TraceOutput);
  2105. Trace.String("Machine.InstallHandler: handler could not be installed for interrupt "); Trace.Int(int, 0);
  2106. Trace.String(" - too many handlers per interrupt number"); Trace.Ln;
  2107. Release(TraceOutput)
  2108. END
  2109. ELSE
  2110. intHandler[int, 0].handler := h;
  2111. IF (int >= IRQ0) & (int <= IRQ15) THEN InEnableIRQ(int) END
  2112. END;
  2113. Release(Interrupts)
  2114. END InstallHandler;
  2115. (** RemoveHandler - Uninstall interrupt handler & disable IRQ if necessary *)
  2116. PROCEDURE RemoveHandler* (h: Handler; int: LONGINT);
  2117. VAR (* p, c: HandlerList; *) i, j, foundIndex: LONGINT;
  2118. BEGIN
  2119. ASSERT(default.valid); (* initialized *)
  2120. Acquire(Interrupts);
  2121. (* find h *)
  2122. i := 0;
  2123. foundIndex := -1;
  2124. WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO
  2125. IF intHandler[int, i].handler = h THEN foundIndex := i END;
  2126. INC(i)
  2127. END;
  2128. IF foundIndex # -1 THEN
  2129. (* h found -> copy interrupt handlers higher than foundIndex *)
  2130. FOR j := foundIndex TO i - 2 DO
  2131. intHandler[int, j] := intHandler[int, j + 1]
  2132. END
  2133. END;
  2134. IF ~intHandler[int, 0].valid THEN
  2135. (* handler h was the only interrupt handler for interrupt int -> install the default handler *)
  2136. intHandler[int, 0] := default;
  2137. IF (int >= IRQ0) & (int <= IRQ15) THEN DisableIRQ(int) END
  2138. END;
  2139. Release(Interrupts)
  2140. END RemoveHandler;
  2141. (* Get control registers. *)
  2142. PROCEDURE GetCR0to4(VAR cr: ARRAY OF HUGEINT);
  2143. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2144. MOV RDI, [RBP + cr]
  2145. MOV RAX, CR0
  2146. XOR RBX, RBX ; CR1 is not documented
  2147. MOV RCX, CR2
  2148. MOV RDX, CR3
  2149. MOV [RDI + 0], RAX
  2150. MOV [RDI + 8], RBX
  2151. MOV [RDI + 16], RCX
  2152. MOV [RDI + 24], RDX
  2153. MOV RAX, CR4 ; Pentium only
  2154. MOV [RDI + 32], RAX
  2155. END GetCR0to4;
  2156. (* GetDR0to7 - Get debug registers. *)
  2157. PROCEDURE GetDR0to7(VAR dr: ARRAY OF HUGEINT);
  2158. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2159. MOV RDI, [RBP + dr]
  2160. MOV RAX, DR0
  2161. MOV RBX, DR1
  2162. MOV RCX, DR2
  2163. MOV RDX, DR3
  2164. MOV [RDI + 0], RAX
  2165. MOV [RDI + 8], RBX
  2166. MOV [RDI + 16], RCX
  2167. MOV [RDI + 24], RDX
  2168. XOR RAX, RAX ; DR4 is not documented
  2169. XOR RBX, RBX ; DR5 is not documented
  2170. MOV RCX, DR6
  2171. MOV RDX, DR7
  2172. MOV [RDI + 32], RAX
  2173. MOV [RDI + 40], RBX
  2174. MOV [RDI + 48], RCX
  2175. MOV [RDI + 56], RDX
  2176. END GetDR0to7;
  2177. (* CLTS - Clear task-switched flag. *)
  2178. PROCEDURE -CLTS;
  2179. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2180. CLTS
  2181. END CLTS;
  2182. (* GetFPU - Store floating-point environment (28 bytes) and mask all floating-point exceptions. *)
  2183. PROCEDURE -GetFPU(adr: ADDRESS);
  2184. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2185. POP RBX
  2186. FNSTENV [RBX] ; also masks all exceptions
  2187. FWAIT
  2188. END GetFPU;
  2189. (* CR2 - Get page fault address. *)
  2190. PROCEDURE -CR2* (): ADDRESS;
  2191. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2192. MOV RAX, CR2
  2193. END CR2;
  2194. (** GetExceptionState - Get exception state from interrupt state (and switch on interrupts). *)
  2195. PROCEDURE GetExceptionState* (VAR int: State; VAR exc: ExceptionState);
  2196. VAR id: LONGINT; level0: BOOLEAN;
  2197. BEGIN
  2198. (* save all state information while interrupts are still disabled *)
  2199. exc.halt := -int.INT; id := ID ();
  2200. IF int.INT = PF THEN exc.pf := CR2 () ELSE exc.pf := 0 END;
  2201. GetCR0to4(exc.CR);
  2202. GetDR0to7(exc.DR);
  2203. CLTS; (* ignore task switch flag *)
  2204. IF int.INT = MF THEN
  2205. GetFPU(ADDRESSOF(exc.FPU[0]));
  2206. int.PC := SYSTEM.VAL (ADDRESS, exc.FPU[3]); (* modify PC according to FPU info *)
  2207. (* set halt code according to FPU info *)
  2208. IF 2 IN exc.FPU[1] THEN exc.halt := -32 (* division by 0 *)
  2209. ELSIF 3 IN exc.FPU[1] THEN exc.halt := -33 (* overflow *)
  2210. ELSIF 0 IN exc.FPU[1] THEN exc.halt := -34 (* operation invalid *)
  2211. ELSIF 6 IN exc.FPU[1] THEN exc.halt := -35 (* stack fault *)
  2212. ELSIF 1 IN exc.FPU[1] THEN exc.halt := -36 (* denormalized *)
  2213. ELSIF 4 IN exc.FPU[1] THEN exc.halt := -37 (* underflow *)
  2214. ELSIF 5 IN exc.FPU[1] THEN exc.halt := -38 (* precision loss *)
  2215. ELSE (* {exc.halt = -16} *)
  2216. END
  2217. ELSE
  2218. Fill32(ADDRESSOF(exc.FPU[0]), LEN(exc.FPU)*SIZEOF(SET), 0)
  2219. END;
  2220. SetupFPU;
  2221. level0 := (int.CS MOD 4 = KernelLevel);
  2222. IF int.INT = BP THEN (* breakpoint (HALT) *)
  2223. IF level0 THEN
  2224. exc.halt := int.SP (* get halt code *)
  2225. (* if HALT(MAX(INTEGER)), leave halt code on stack when returning, but not serious problem.*)
  2226. ELSE
  2227. SYSTEM.GET (int.SP, exc.halt); (* get halt code from outer stack *)
  2228. IF exc.halt >= MAX(INTEGER) THEN INC (int.SP, AddressSize) END (* pop halt code from outer stack *)
  2229. END;
  2230. IF exc.halt < MAX(INTEGER) THEN DEC (int.PC) END; (* point to the INT 3 instruction (assume 0CCX, not 0CDX 3X) *)
  2231. ELSIF int.INT = OVF THEN (* overflow *)
  2232. DEC (int.PC) (* point to the INTO instruction (assume 0CEX, not 0CDX 4X) *)
  2233. ELSIF int.INT = PF THEN (* page fault *)
  2234. IF int.PC = 0 THEN (* reset PC to return address of indirect CALL to 0 *)
  2235. IF level0 THEN int.PC := int.SP (* ret adr *) ELSE SYSTEM.GET (int.SP, int.PC) END
  2236. END
  2237. END;
  2238. (* get segment registers *)
  2239. IF level0 THEN (* from same level, no ESP, SS etc. on stack *)
  2240. exc.SP := ADDRESSOF(int.SP) (* stack was here when interrupt happened *)
  2241. ELSE (* from outer level *)
  2242. exc.SP := int.SP
  2243. END
  2244. END GetExceptionState;
  2245. (* FieldInterrupt and FieldIRQ *)
  2246. (*
  2247. At entry to a Handler procedure the stack is as follows:
  2248. -- if (VMBit IN .RFLAGS) --
  2249. 176 -- .SS
  2250. 168 -- .RSP ; or haltcode
  2251. -- (VMBit IN .RFLAGS) OR (CS MOD 4 < .CS MOD 4) --
  2252. 160 -- .RFLAGS
  2253. 152 -- .CS
  2254. 144 -- .RIP ; rest popped by IRETD
  2255. 136 -- .ERR/RBP ; pushed by processor or glue code, popped by POP RBP
  2256. 128 -- .INT <-- .RSP0 ; pushed by glue code, popped by POP RBP
  2257. 120 -- .RAX
  2258. 112 -- .RCX
  2259. 104 -- .RDX
  2260. 96 -- .RBX
  2261. 88 -- .RSP0
  2262. 80 -- .RBP/ERR ; exchanged by glue code
  2263. 72 -- .RSI
  2264. 64 -- .RDI
  2265. 56 -- .R8
  2266. 48 -- .R9
  2267. 40 -- .R10
  2268. 32 -- .R11
  2269. 24 -- .R12
  2270. 16 -- .R13
  2271. 08 -- .R14
  2272. 00 48 .R15 <--- state: State
  2273. -- 40 ptr
  2274. -- 32 object pointer for DELEGATE
  2275. -- 24 TAG(state)
  2276. -- 16 ADR(state)
  2277. -- 08 RIP' (RET to FieldInterrupt)
  2278. -- 00 RBP' <-- RBP
  2279. -- -- locals <-- RSP
  2280. *)
  2281. PROCEDURE {NOPAF} FieldInterrupt;
  2282. CONST SizeOfHandlerRec = SIZEOF(HandlerRec);
  2283. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2284. entry:
  2285. ; fake PUSHAD (not available in 64-bit mode)
  2286. PUSH RAX
  2287. PUSH RCX
  2288. PUSH RDX
  2289. PUSH RBX ; (error code)
  2290. LEA RAX, [RSP - 4 * 8] ; (RSP minus the four pushed 64-bit registers)
  2291. PUSH RAX ; original value of RSP
  2292. PUSH RBP
  2293. PUSH RSI
  2294. PUSH RDI
  2295. PUSH R8
  2296. PUSH R9
  2297. PUSH R10
  2298. PUSH R11
  2299. PUSH R12
  2300. PUSH R13
  2301. PUSH R14
  2302. PUSH R15
  2303. LEA RBP, [RSP + 136]
  2304. MOV RBX, [RSP + 128] ; RBX = int number
  2305. IMUL RBX, RBX, MaxNumHandlers
  2306. IMUL RBX, RBX, SizeOfHandlerRec
  2307. ; todo: replace LEA by MOV when compiler supports this
  2308. LEA RAX, intHandler
  2309. ADD RAX, RBX ; address of intHandler[int, 0]
  2310. ; todo: replace LEA by MOV when compiler supports this
  2311. LEA RDX, stateTag
  2312. loop: ; call all handlers for the interrupt
  2313. MOV RCX, RSP
  2314. PUSH RAX ; save ptr for table
  2315. PUSH QWORD [RAX + 12] ; delegate
  2316. PUSH RDX ; TAG(state)
  2317. PUSH RCX ; ADR(state)
  2318. CALL QWORD [RAX+4] ; call handler
  2319. ADD RSP, 24
  2320. CLI ; handler may have re-enabled interrupts
  2321. POP RAX
  2322. ADD RAX, SizeOfHandlerRec
  2323. MOV RBX, [RAX]
  2324. CMP RBX, 0
  2325. JNE loop
  2326. ; fake POPAD (not available in 64-bit mode)
  2327. POP R15
  2328. POP R14
  2329. POP R13
  2330. POP R12
  2331. POP R11
  2332. POP R10
  2333. POP R9
  2334. POP R8
  2335. POP RDI
  2336. POP RSI
  2337. POP RBP
  2338. ADD RSP, 8 ;POP RSP
  2339. POP RBX
  2340. POP RDX
  2341. POP RCX
  2342. POP RAX ; now EBP = error code
  2343. POP RBP ; now EBP = INT
  2344. POP RBP ; now EBP = caller RBP
  2345. IRETQ
  2346. END FieldInterrupt;
  2347. PROCEDURE {NOPAF} FieldIRQ;
  2348. CONST SizeOfHandlerRec = SIZEOF(HandlerRec);
  2349. CODE {SYSTEM.AMD64}
  2350. entry:
  2351. ; fake PUSHAD (not available in 64-bit mode)
  2352. PUSH RAX
  2353. PUSH RCX
  2354. PUSH RDX
  2355. PUSH RBX ; (error code)
  2356. LEA RAX, [RSP - 4 * 8] ; (RSP minus the four pushed 64-bit registers)
  2357. PUSH RAX ; original value of RSP
  2358. PUSH RBP
  2359. PUSH RSI
  2360. PUSH RDI
  2361. PUSH R8
  2362. PUSH R9
  2363. PUSH R10
  2364. PUSH R11
  2365. PUSH R12
  2366. PUSH R13
  2367. PUSH R14
  2368. PUSH R15
  2369. LEA RBP, [RSP + 136]
  2370. ;; PUSH 32[ESP] ; int number
  2371. ;; CALL traceInterruptIn
  2372. MOV RBX, [RSP + 128] ; RBX = int number
  2373. IMUL RBX, RBX, MaxNumHandlers
  2374. IMUL RBX, RBX, SizeOfHandlerRec
  2375. ; todo: replace LEA by MOV when compiler supports this
  2376. LEA RAX, intHandler
  2377. ADD RAX, RBX ; address of intHandler[int, 0]
  2378. ; todo: replace LEA by MOV when compiler supports this
  2379. LEA RDX, stateTag
  2380. loop: ; call all handlers for the interrupt
  2381. MOV RCX, RSP
  2382. PUSH RAX ; save ptr for linked list
  2383. PUSH QWORD [RAX + 12] ; delegate
  2384. PUSH RDX ; TAG(state)
  2385. PUSH RCX ; ADR(state)
  2386. CALL QWORD [RAX + 4] ; call handler
  2387. ADD RSP, 24
  2388. CLI ; handler may have re-enabled interrupts
  2389. POP RAX
  2390. ADD RAX, SizeOfHandlerRec
  2391. MOV RBX, [RAX]
  2392. CMP RBX, 0
  2393. JNE loop
  2394. ;; PUSH 32[ESP] ; int number
  2395. ;; CALL traceInterruptOut
  2396. ; ack interrupt
  2397. MOV AL, 20H ; undoc PC ed. 2 p. 1018
  2398. CMP BYTE [RSP + 128], IRQ8
  2399. JB irq0
  2400. OUT IntB0, AL ; 2nd controller
  2401. irq0:
  2402. OUT IntA0, AL ; 1st controller
  2403. ; fake POPAD (not available in 64-bit mode)
  2404. POP R15
  2405. POP R14
  2406. POP R13
  2407. POP R12
  2408. POP R11
  2409. POP R10
  2410. POP R9
  2411. POP R8
  2412. POP RDI
  2413. POP RSI
  2414. POP RBP
  2415. ADD RSP, 8 ;POP RSP
  2416. POP RBX
  2417. POP RDX
  2418. POP RCX
  2419. POP RAX ; now RBP = error code
  2420. POP RBP ; now RBP = INT
  2421. POP RBP ; now RBP = caller RBP
  2422. IRETQ
  2423. END FieldIRQ;
  2424. (* LoadIDT - Load interrupt descriptor table *)
  2425. PROCEDURE LoadIDT(base: ADDRESS; size: SIZE);
  2426. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2427. ; LIDT needs 10 bytes: 2 for the 16-bit limit and 8 for the 64-bit base address
  2428. ; Assumption: size in front of base -> promote size value to upper 48 bits of size
  2429. SHL QWORD [RBP + size], 64-16
  2430. LIDT [RBP + size + (64-16) / 8]
  2431. END LoadIDT;
  2432. (** Init - Initialize interrupt handling. Called once during initialization. Uses NEW. *)
  2433. (*
  2434. The glue code is:
  2435. entry0: ; entry point for interrupts without error code
  2436. PUSH 0 ; fake error code
  2437. entry1: ; entry point for interrupts with error code
  2438. XCHG [ESP], EBP ; exchange error code and caller EBP
  2439. PUSH int ; interrupt number
  2440. JMP FieldInterrupt:entry
  2441. *)
  2442. PROCEDURE InitInterrupts*;
  2443. VAR a: ADDRESS; o, i: LONGINT; p: PROCEDURE; mask: SET;
  2444. BEGIN
  2445. stateTag := SYSTEM.TYPECODE(State);
  2446. (* initialise 8259 interrupt controller chips *)
  2447. Portout8 (IntA0, 11X); Portout8 (IntA1, CHR(IRQ0));
  2448. Portout8 (IntA1, 4X); Portout8 (IntA1, 1X); Portout8 (IntA1, 0FFX);
  2449. Portout8 (IntB0, 11X); Portout8 (IntB1, CHR(IRQ8));
  2450. Portout8 (IntB1, 2X); Portout8 (IntB1, 1X); Portout8 (IntB1, 0FFX);
  2451. (* enable interrupts from second interrupt controller, chained to line 2 of controller 1 *)
  2452. Portin8(IntA1, SYSTEM.VAL (CHAR, mask));
  2453. EXCL(mask, IRQ2-IRQ0);
  2454. Portout8 (IntA1, SYSTEM.VAL (CHAR, mask));
  2455. (*
  2456. NEW(default); default.next := NIL; default.handler := Unexpected;
  2457. *)
  2458. (*
  2459. newrec (SYSTEM.VAL (ANY, default), SYSTEM.TYPECODE (HandlerList));
  2460. *)
  2461. (* default.next := NIL; default.handler := Unexpected; *)
  2462. default.valid := TRUE; default.handler := Unexpected;
  2463. FOR i := 0 TO IDTSize-1 DO (* set up glue code *)
  2464. intHandler[i, 0] := default; o := 0;
  2465. (* PUSH error code, int num & regs *)
  2466. glue[i][o] := 6AX; INC (o); glue[i][o] := 0X; INC (o); (* PUSH 0 ; {o = 2} *)
  2467. glue[i][o] := 48X; INC(o); glue[i][o] := 87X; INC(o); glue[i][o] := 2CX; INC(o); glue[i][o] := 24X; INC(o); (* XCHG [RSP], RBP *)
  2468. glue[i][o] := 6AX; INC (o); glue[i][o] := CHR(i); INC (o); (* PUSH i *)
  2469. IF (i >= IRQ0) & (i <= IRQ15) THEN p := FieldIRQ ELSE p := FieldInterrupt END;
  2470. a := SYSTEM.VAL(ADDRESS, p) - (ADDRESSOF(glue[i][o])+5);
  2471. (* a must be a 32-bit offset to be used with the followingjump instruction, ensured since
  2472. both the glue code array and the interrupt functions are inside this module *)
  2473. glue[i][o] := 0E9X; INC (o); (* JMP FieldInterrupt.entry *)
  2474. SYSTEM.PUT32 (ADDRESSOF(glue[i][o]), a);
  2475. (* set up IDT entry *)
  2476. IF (i > 31) OR ~(i IN {8, 10..14, 17}) THEN a := ADDRESSOF(glue[i][0]) (* include PUSH 0 *)
  2477. ELSE a := ADDRESSOF(glue[i][2]) (* skip PUSH 0, processor supplies error code *)
  2478. END;
  2479. idt[i].offsetBits0to15 := INTEGER(a MOD 10000H);
  2480. (* IRQ0 must be at level 0 because time slicing in Objects needs to set interrupted process' ESP *)
  2481. (* all irq's are handled at level 0, because of priority experiment in Objects.FieldIRQ *)
  2482. IF TRUE (* (i < IRQ0) OR (i > IRQ15) OR (i = IRQ0) OR (i = IRQ0 + 1)*) THEN
  2483. idt[i].selector := Kernel64CodeSel; (* gdt[1] -> non-conformant segment => level 0 *)
  2484. idt[i].gateType := SYSTEM.VAL(INTEGER, 0EE00H) (* present, DPL 3, system, 64-bit interrupt gate *)
  2485. ELSE (* {IRQ0..IRQ15} - {IRQ0 + 1} *)
  2486. idt[i].selector := User64CodeSel; (* gdt[3] -> conformant segment => level 0 or 3 *)
  2487. idt[i].gateType := SYSTEM.VAL(INTEGER, 08E00H) (* present, DPL 0, system, 64-bit interrupt gate *)
  2488. END;
  2489. idt[i].offsetBits16to31 := INTEGER(a DIV 10000H);
  2490. idt[i].offsetBits32to63 := LONGINT(a DIV 100000000H);
  2491. idt[i].reserved := 0;
  2492. END
  2493. END InitInterrupts;
  2494. (** Start - Start handling interrupts. Every processor calls this once during initialization. *)
  2495. PROCEDURE Start*;
  2496. BEGIN
  2497. ASSERT(default.valid); (* initialized *)
  2498. LoadIDT(ADDRESSOF(idt[0]), SIZEOF(IDT)-1);
  2499. Sti
  2500. END Start;
  2501. (* Return current instruction pointer *)
  2502. PROCEDURE CurrentPC* (): ADDRESS;
  2503. CODE {SYSTEM.AMD64}
  2504. MOV RAX, [RBP + 8]
  2505. END CurrentPC;
  2506. (* Return current frame pointer *)
  2507. PROCEDURE -CurrentBP* (): ADDRESS;
  2508. CODE {SYSTEM.AMD64}
  2509. MOV RAX, RBP
  2510. END CurrentBP;
  2511. (* Set current frame pointer *)
  2512. PROCEDURE -SetBP* (bp: ADDRESS);
  2513. CODE {SYSTEM.AMD64}
  2514. POP RBP
  2515. END SetBP;
  2516. (* Return current stack pointer *)
  2517. PROCEDURE -CurrentSP* (): ADDRESS;
  2518. CODE {SYSTEM.AMD64}
  2519. MOV RAX, RSP
  2520. END CurrentSP;
  2521. (* Set current stack pointer *)
  2522. PROCEDURE -SetSP* (sp: ADDRESS);
  2523. CODE {SYSTEM.AMD64}
  2524. POP RSP
  2525. END SetSP;
  2526. PROCEDURE Portin8*(port: LONGINT; VAR val: CHAR);
  2527. CODE{SYSTEM.AMD64}
  2528. MOV EDX,[RBP+port]
  2529. IN AL, DX
  2530. MOV RCX, [RBP+val]
  2531. MOV [RCX], AL
  2532. END Portin8;
  2533. PROCEDURE Portin16*(port: LONGINT; VAR val: INTEGER);
  2534. CODE{SYSTEM.AMD64}
  2535. MOV EDX,[RBP+port]
  2536. IN AX, DX
  2537. MOV RCX, [RBP+val]
  2538. MOV [RCX], AX
  2539. END Portin16;
  2540. PROCEDURE Portin32*(port: LONGINT; VAR val: LONGINT);
  2541. CODE{SYSTEM.AMD64}
  2542. MOV EDX,[RBP+port]
  2543. IN EAX, DX
  2544. MOV RCX, [RBP+val]
  2545. MOV [RCX], EAX
  2546. END Portin32;
  2547. PROCEDURE Portout8*(port: LONGINT; val: CHAR);
  2548. CODE{SYSTEM.AMD64}
  2549. MOV AL,[RBP+val]
  2550. MOV EDX,[RBP+port]
  2551. OUT DX,AL
  2552. END Portout8;
  2553. PROCEDURE Portout16*(port: LONGINT; val: INTEGER);
  2554. CODE{SYSTEM.AMD64}
  2555. MOV AX,[RBP+val]
  2556. MOV EDX,[RBP+port]
  2557. OUT DX,AX
  2558. END Portout16;
  2559. PROCEDURE Portout32*(port: LONGINT; val: LONGINT);
  2560. CODE{SYSTEM.AMD64}
  2561. MOV EAX,[RBP+val]
  2562. MOV EDX,[RBP+port]
  2563. OUT DX,EAX
  2564. END Portout32;
  2565. PROCEDURE -Cli*;
  2566. CODE{SYSTEM.AMD64}
  2567. CLI
  2568. END Cli;
  2569. PROCEDURE -Sti*;
  2570. CODE{SYSTEM.AMD64}
  2571. STI
  2572. END Sti;
  2573. (* Save minimal FPU state (for synchronous process switches). *)
  2574. (* saving FPU state takes 108 bytes memory space, no alignment required *)
  2575. PROCEDURE -FPUSaveMin* (VAR state: SSEState);
  2576. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2577. POP RAX
  2578. FNSTCW [RAX] ; control word is at state[0]
  2579. FWAIT
  2580. END FPUSaveMin;
  2581. (* Restore minimal FPU state. *)
  2582. PROCEDURE -FPURestoreMin* (VAR state: SSEState);
  2583. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2584. POP RAX
  2585. FLDCW [RAX] ; control word is at state[0]
  2586. END FPURestoreMin;
  2587. (* Save full FPU state (for asynchronous process switches). *)
  2588. PROCEDURE -FPUSaveFull* (VAR state: SSEState);
  2589. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2590. POP RAX
  2591. FSAVE [RAX]
  2592. END FPUSaveFull;
  2593. (* Restore full FPU state. *)
  2594. PROCEDURE -FPURestoreFull* (VAR state: SSEState);
  2595. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2596. POP RAX
  2597. FRSTOR [RAX]
  2598. END FPURestoreFull;
  2599. (* stateAdr must be the address of a 16-byte aligned memory area of at least 512 bytes *)
  2600. PROCEDURE -SSESaveFull* (stateAdr: ADDRESS);
  2601. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2602. POP RAX
  2603. FXSAVE [RAX]
  2604. FWAIT
  2605. FNINIT
  2606. END SSESaveFull;
  2607. PROCEDURE -SSERestoreFull* (stateAdr: ADDRESS);
  2608. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2609. POP RAX
  2610. FXRSTOR [RAX]
  2611. END SSERestoreFull;
  2612. PROCEDURE -SSESaveMin* (stateAdr: ADDRESS);
  2613. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2614. POP RAX
  2615. FNSTCW [RAX]
  2616. FWAIT
  2617. STMXCSR [RAX + 24]
  2618. END SSESaveMin;
  2619. PROCEDURE -SSERestoreMin* (stateAdr: ADDRESS);
  2620. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2621. POP RAX
  2622. FLDCW [RAX]
  2623. LDMXCSR [RAX + 24]
  2624. END SSERestoreMin;
  2625. (* Helper functions for SwitchTo. *)
  2626. PROCEDURE -PushState* (CONST state: State);
  2627. CODE {SYSTEM.AMD64}
  2628. POP RAX ; ADR (state)
  2629. POP RBX ; TYPECODE (state), ignored
  2630. PUSH QWORD [RAX + 176] ; SS
  2631. PUSH QWORD [RAX + 168] ; SP
  2632. PUSH QWORD [RAX + 160] ; FLAGS
  2633. PUSH QWORD [RAX + 152] ; CS
  2634. PUSH QWORD [RAX + 144] ; PC
  2635. PUSH QWORD [RAX + 120] ; RAX
  2636. PUSH QWORD [RAX + 112] ; RCX
  2637. PUSH QWORD [RAX + 104] ; RDX
  2638. PUSH QWORD [RAX + 96] ; RBX
  2639. PUSH DWORD 0; ignored
  2640. PUSH QWORD [RAX + 136] ; RBP
  2641. PUSH QWORD [RAX + 72] ; RSI
  2642. PUSH QWORD [RAX + 64] ; RDI
  2643. PUSH QWORD [RAX + 56] ; R8
  2644. PUSH QWORD [RAX + 48] ; R9
  2645. PUSH QWORD [RAX + 40] ; R10
  2646. PUSH QWORD [RAX + 32] ; R11
  2647. PUSH QWORD [RAX + 24] ; R12
  2648. PUSH QWORD [RAX + 16] ; R13
  2649. PUSH QWORD [RAX + 8] ; R14
  2650. PUSH QWORD [RAX + 0] ; R15
  2651. END PushState;
  2652. PROCEDURE -JumpState*;
  2653. CODE {SYSTEM.AMD64}
  2654. POP R15
  2655. POP R14
  2656. POP R13
  2657. POP R12
  2658. POP R11
  2659. POP R10
  2660. POP R9
  2661. POP R8
  2662. POP RDI
  2663. POP RSI
  2664. POP RBP
  2665. POP RBX; ignored
  2666. POP RBX
  2667. POP RDX
  2668. POP RCX
  2669. POP RAX
  2670. IRETQ
  2671. END JumpState;
  2672. PROCEDURE -CallLocalIPC*;
  2673. CODE {SYSTEM.AMD64}
  2674. INT MPIPCLocal
  2675. END CallLocalIPC;
  2676. PROCEDURE -HLT*;
  2677. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2678. STI ; (* required according to ACPI 2.0 spec section 8.2.2 *)
  2679. HLT
  2680. END HLT;
  2681. (* Kernel mode upcall to perform global processor halt. *)
  2682. PROCEDURE KernelCallHLT*;
  2683. CODE {SYSTEM.AMD64}
  2684. MOV EAX, 2
  2685. INT MPKC
  2686. END KernelCallHLT;
  2687. (* Parse processor entry in MP config table. *)
  2688. PROCEDURE CPUID1*(): LONGINT;
  2689. CODE {SYSTEM.AMD64}
  2690. MOV EAX, 1
  2691. CPUID
  2692. MOV EAX, EBX
  2693. END CPUID1;
  2694. (** -- Atomic operations -- *)
  2695. (** Atomic INC(x). *)
  2696. PROCEDURE -AtomicInc*(VAR x: LONGINT);
  2697. CODE {SYSTEM.AMD64}
  2698. POP RAX
  2699. LOCK
  2700. INC DWORD [RAX]
  2701. END AtomicInc;
  2702. (** Atomic DEC(x). *)
  2703. PROCEDURE -AtomicDec*(VAR x: LONGINT);
  2704. CODE {SYSTEM.AMD64}
  2705. POP RAX
  2706. LOCK
  2707. DEC DWORD [RAX]
  2708. END AtomicDec;
  2709. (** Atomic EXCL. *)
  2710. PROCEDURE AtomicExcl* (VAR s: SET; bit: LONGINT);
  2711. CODE {SYSTEM.AMD64}
  2712. MOV EAX, [RBP + bit]
  2713. MOV RBX, [RBP + s]
  2714. LOCK
  2715. BTR [RBX], EAX
  2716. END AtomicExcl;
  2717. (** Atomic INC(x, y). *)
  2718. PROCEDURE -AtomicAdd*(VAR x: LONGINT; y: LONGINT);
  2719. CODE {SYSTEM.AMD64}
  2720. POP EBX
  2721. POP RAX
  2722. LOCK
  2723. ADD DWORD [RAX], EBX
  2724. END AtomicAdd;
  2725. (** Atomic test-and-set. Set x = TRUE and return old value of x. *)
  2726. PROCEDURE -AtomicTestSet*(VAR x: BOOLEAN): BOOLEAN;
  2727. CODE {SYSTEM.AMD64}
  2728. POP RBX
  2729. MOV AL, 1
  2730. XCHG [RBX], AL
  2731. END AtomicTestSet;
  2732. (* Atomic compare-and-swap. Set x = new if x = old and return old value of x *)
  2733. PROCEDURE -AtomicCAS* (VAR x: LONGINT; old, new: LONGINT): LONGINT;
  2734. CODE {SYSTEM.AMD64}
  2735. POP EBX ; new
  2736. POP EAX ; old
  2737. POP RCX ; address of x
  2738. LOCK CMPXCHG [RCX], EBX ; atomicly compare x with old and set it to new if equal
  2739. END AtomicCAS;
  2740. PROCEDURE CopyState* (CONST from: State; VAR to: State);
  2741. BEGIN
  2742. to.R15 := from.R15;
  2743. to.R14 := from.R14;
  2744. to.R13 := from.R13;
  2745. to.R12 := from.R12;
  2746. to.R11 := from.R11;
  2747. to.R10 := from.R10;
  2748. to.R9 := from.R9;
  2749. to.R8 := from.R8;
  2750. to.RDI := from.RDI;
  2751. to.RSI := from.RSI;
  2752. to.RBX := from.RBX;
  2753. to.RDX := from.RDX;
  2754. to.RCX := from.RCX;
  2755. to.RAX := from.RAX;
  2756. to.BP := from.BP;
  2757. to.PC := from.PC;
  2758. to.CS := from.CS;
  2759. to.SP := from.SP;
  2760. to.SS := from.SS;
  2761. to.FLAGS := from.FLAGS;
  2762. END CopyState;
  2763. (* function returning the number of processors that are available to Aos *)
  2764. PROCEDURE NumberOfProcessors*( ): LONGINT;
  2765. BEGIN
  2766. RETURN numberOfProcessors
  2767. END NumberOfProcessors;
  2768. (*! non portable code, for native Aos only *)
  2769. PROCEDURE SetNumberOfProcessors*(num: LONGINT);
  2770. BEGIN
  2771. numberOfProcessors := num;
  2772. END SetNumberOfProcessors;
  2773. (* function for changing byte order *)
  2774. PROCEDURE ChangeByteOrder* (n: LONGINT): LONGINT;
  2775. CODE {SYSTEM.AMD64}
  2776. MOV EAX, [RBP + n] ; load n in eax
  2777. BSWAP EAX ; swap byte order
  2778. END ChangeByteOrder;
  2779. (* Write a value to the APIC. *)
  2780. PROCEDURE ApicPut(ofs: SIZE; val: SET);
  2781. BEGIN
  2782. IF TraceApic THEN
  2783. Acquire(TraceOutput);
  2784. Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" := "); Trace.Hex(SYSTEM.VAL (LONGINT, val), 9); Trace.Ln;
  2785. Release(TraceOutput);
  2786. END;
  2787. SYSTEM.PUT(localAPIC+ofs, SYSTEM.VAL (LONGINT, val))
  2788. END ApicPut;
  2789. (* Read a value from the APIC. *)
  2790. PROCEDURE ApicGet(ofs: SIZE): SET;
  2791. VAR val: SET;
  2792. BEGIN
  2793. SYSTEM.GET(localAPIC+ofs, SYSTEM.VAL (LONGINT, val));
  2794. IF TraceApic THEN
  2795. Acquire(TraceOutput);
  2796. Trace.String(" ("); Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" = ");
  2797. Trace.Hex(SYSTEM.VAL(LONGINT, val), 9); Trace.StringLn (")");
  2798. Release(TraceOutput);
  2799. END;
  2800. RETURN val
  2801. END ApicGet;
  2802. (* Handle interprocessor interrupt. During upcall interrupts are off and processor is at kernel level. *)
  2803. PROCEDURE HandleIPC(VAR state: State);
  2804. VAR id: LONGINT;
  2805. BEGIN
  2806. id := ID();
  2807. IF ~TraceProcessor OR (id IN allProcessors) THEN
  2808. IF FrontBarrier IN ipcFlags THEN
  2809. AtomicExcl(ipcFrontBarrier, id);
  2810. WHILE ipcFrontBarrier # {} DO SpinHint END (* wait for all *)
  2811. END;
  2812. ipcHandler(id, state, ipcMessage); (* interrupts off and at kernel level *)
  2813. IF BackBarrier IN ipcFlags THEN
  2814. AtomicExcl(ipcBackBarrier, id);
  2815. WHILE ipcBackBarrier # {} DO SpinHint END (* wait for all *)
  2816. END;
  2817. AtomicExcl(ipcBusy, id) (* ack - after this point we do not access shared variables for this broadcast *)
  2818. END;
  2819. IF state.INT = MPIPC THEN
  2820. ApicPut(0B0H, {}) (* EOI (not needed for NMI or local call, see 7.4.10.6) *)
  2821. END
  2822. END HandleIPC;
  2823. (* Handle MP error interrupt. *)
  2824. PROCEDURE HandleError(VAR state: State);
  2825. VAR esr: SET; (* int: LONGINT; *)
  2826. BEGIN
  2827. (* int := state.INT; *) esr := ApicGet(280H);
  2828. ApicPut(0B0H, {}); (* EOI *)
  2829. HALT(2302) (* SMP error *)
  2830. END HandleError;
  2831. (* Interprocessor broadcasting. Lock level SMP. *)
  2832. PROCEDURE LocalBroadcast(h: BroadcastHandler; msg: Message; flags: SET);
  2833. BEGIN
  2834. IF Self IN flags THEN ipcBusy := allProcessors
  2835. ELSE ipcBusy := allProcessors - {ID()}
  2836. END;
  2837. ipcFrontBarrier := ipcBusy; ipcBackBarrier := ipcBusy;
  2838. ipcHandler := h; ipcMessage := msg; ipcFlags := flags;
  2839. IF numProcessors > 1 THEN (* ICR: Fixed, Physical, Edge, All Excl. Self, INT IPC *)
  2840. ApicPut(300H, {18..19} + SYSTEM.VAL (SET, MPIPC));
  2841. (*REPEAT UNTIL ~(12 IN ApicGet(300H))*) (* wait for send to finish *)
  2842. END;
  2843. IF Self IN flags THEN CallLocalIPC END; (* "send" to self also *)
  2844. WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack before we release locks *)
  2845. ipcHandler := NIL; ipcMessage := NIL (* no race, because we have IPC lock *)
  2846. END LocalBroadcast;
  2847. (** Broadcast an operation to all processors. *)
  2848. PROCEDURE Broadcast* (h: BroadcastHandler; msg: Message; flags: SET);
  2849. BEGIN
  2850. Acquire(Processors);
  2851. LocalBroadcast(h, msg, flags);
  2852. Release(Processors)
  2853. END Broadcast;
  2854. (* Start all halted processors. *) (* Lock level Processors. *)
  2855. PROCEDURE StartAll*;
  2856. BEGIN
  2857. Acquire(Processors); (* wait for any pending Stops to finish, and disallow further Stops *)
  2858. ASSERT(stopped & (ipcBusy = {}));
  2859. ipcBusy := allProcessors - {ID()};
  2860. stopped := FALSE;
  2861. WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack *)
  2862. Release(Processors)
  2863. END StartAll;
  2864. PROCEDURE HandleFlushTLB(id: LONGINT; CONST state: State; msg: Message);
  2865. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2866. MOV EAX, CR3
  2867. MOV CR3, EAX
  2868. END HandleFlushTLB;
  2869. (** Flush the TLBs on all processors (multiprocessor-safe). *)
  2870. PROCEDURE GlobalFlushTLB;
  2871. BEGIN
  2872. Acquire(Processors);
  2873. LocalBroadcast(HandleFlushTLB, NIL, {Self, FrontBarrier, BackBarrier});
  2874. Release(Processors)
  2875. END GlobalFlushTLB;
  2876. PROCEDURE HandleFlushCache(id: LONGINT; CONST state: State; msg: Message);
  2877. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2878. WBINVD ; write back and invalidate internal cache and initiate write back and invalidation of external caches
  2879. END HandleFlushCache;
  2880. (** Flush the caches on all processors (multiprocessor-safe). *)
  2881. PROCEDURE GlobalFlushCache;
  2882. BEGIN
  2883. Acquire(Processors);
  2884. LocalBroadcast(HandleFlushCache, NIL, {Self, FrontBarrier, BackBarrier});
  2885. Release(Processors)
  2886. END GlobalFlushCache;
  2887. (* Activate the garbage collector in single-processor mode. Lock level ALL. *)
  2888. PROCEDURE HandleKernelCall(VAR state: State);
  2889. BEGIN (* level 0 *)
  2890. IF IFBit IN state.FLAGS THEN
  2891. Sti (* re-enable interrupts *)
  2892. END;
  2893. CASE state.RAX OF (* see KernelCall* *)
  2894. |2: (* HLT *)
  2895. IF IFBit IN state.FLAGS THEN
  2896. HLT
  2897. END
  2898. END
  2899. END HandleKernelCall;
  2900. (*
  2901. (** Activate the garbage collector immediately (multiprocessor-safe). *)
  2902. PROCEDURE GlobalGC*;
  2903. BEGIN
  2904. Acquire(Processors);
  2905. gcBarrier := allProcessors;
  2906. LocalBroadcast(HandleGC, NIL, {Self, BackBarrier});
  2907. Release(Processors);
  2908. END GlobalGC;
  2909. *)
  2910. PROCEDURE HandleGetTimestamp(id: LONGINT; CONST state: State; msg: Message);
  2911. BEGIN
  2912. time[id] := GetTimer()
  2913. END HandleGetTimestamp;
  2914. (** Get timestamp on all processors (for testing). *)
  2915. PROCEDURE GlobalGetTimestamp;
  2916. VAR t: TimeArray; i: LONGINT; mean, var, n: HUGEINT;
  2917. BEGIN
  2918. Acquire(Processors);
  2919. LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier});
  2920. LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier});
  2921. t := time;
  2922. Release(Processors);
  2923. Acquire (TraceOutput);
  2924. FOR i := 0 TO numProcessors-1 DO Trace.HIntHex(t[i], 17) END;
  2925. IF numProcessors > 1 THEN
  2926. mean := 0;
  2927. n := numProcessors;
  2928. FOR i := 0 TO numProcessors-1 DO
  2929. INC (mean, t[i])
  2930. END;
  2931. mean := mean DIV n;
  2932. var := 0;
  2933. FOR i := 0 TO numProcessors-1 DO
  2934. n := t[i] - mean;
  2935. INC (var, n * n)
  2936. END;
  2937. var := var DIV (numProcessors - 1);
  2938. Trace.String(" mean="); Trace.HIntHex(mean, 16);
  2939. Trace.String(" var="); Trace.HIntHex(var, 16);
  2940. Trace.String(" var="); Trace.Int(SHORT (var), 1);
  2941. Trace.String(" diff:");
  2942. FOR i := 0 TO numProcessors-1 DO
  2943. Trace.Int(SHORT (t[i] - mean), 1); Trace.Char(" ")
  2944. END
  2945. END;
  2946. Release (TraceOutput);
  2947. END GlobalGetTimestamp;
  2948. PROCEDURE ParseProcessor(adr: ADDRESS);
  2949. VAR id, idx, signature, family, feat, ver, log: LONGINT; flags: SET; string : ARRAY 8 OF CHAR;
  2950. BEGIN
  2951. SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, flags));
  2952. id := ASH(SYSTEM.VAL (LONGINT, flags * {8..15}), -8);
  2953. ver := ASH(SYSTEM.VAL (LONGINT, flags * {16..23}), -16);
  2954. SYSTEM.GET (adr+4, signature);
  2955. family := ASH(signature, -8) MOD 10H;
  2956. SYSTEM.GET (adr+8, feat);
  2957. idx := -1;
  2958. IF (family # 0) & (signature MOD 1000H # 0FFFH) & (24 IN flags) & (id < LEN(idMap)) & (idMap[id] = -1) THEN
  2959. IF 25 IN flags THEN idx := 0 (* boot processor *)
  2960. ELSIF numProcessors < maxProcessors THEN idx := numProcessors; INC(numProcessors)
  2961. ELSE (* skip *)
  2962. END
  2963. END;
  2964. IF idx # -1 THEN apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx)) END;
  2965. Trace.String(" Processor "); Trace.Int(id, 1);
  2966. Trace.String(", APIC"); Trace.Hex(ver, -3);
  2967. Trace.String(", ver "); Trace.Int(family, 1);
  2968. Trace.Char("."); Trace.Int(ASH(signature, -4) MOD 10H, 1);
  2969. Trace.Char("."); Trace.Int(signature MOD 10H, 1);
  2970. Trace.String(", features "); Trace.Hex(feat, 9);
  2971. Trace.String(", ID "); Trace.Int(idx, 1);
  2972. IF (threadsPerCore > 1) THEN Trace.String(" ("); Trace.Int(threadsPerCore, 0); Trace.String(" threads)"); END;
  2973. Trace.Ln;
  2974. IF (threadsPerCore > 1) THEN
  2975. GetConfig("DisableHyperthreading", string);
  2976. IF (string = "1") THEN
  2977. Trace.String("Machine: Hyperthreading disabled."); Trace.Ln;
  2978. RETURN;
  2979. END;
  2980. log := (LSH(CPUID1(), -16) MOD 256);
  2981. WHILE log > 1 DO
  2982. INC(id); DEC(log);
  2983. IF numProcessors < maxProcessors THEN
  2984. idx := numProcessors; INC(numProcessors);
  2985. apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx))
  2986. END
  2987. END
  2988. END
  2989. END ParseProcessor;
  2990. (* Parse MP configuration table. *)
  2991. PROCEDURE ParseMPConfig;
  2992. VAR adr, x: ADDRESS; i: LONGINT; entries: INTEGER; ch: CHAR; s: SET; str: ARRAY 8 OF CHAR;
  2993. BEGIN
  2994. localAPIC := 0; numProcessors := 1; allProcessors := {0};
  2995. FOR i := 0 TO LEN(idMap)-1 DO idMap[i] := -1 END; (* all unassigned *)
  2996. FOR i := 0 TO MaxCPU-1 DO started[i] := FALSE END;
  2997. adr := configMP;
  2998. GetConfig("MaxProcs", str);
  2999. i := 0; maxProcessors := StrToInt(i, str);
  3000. IF maxProcessors = 0 THEN maxProcessors := MaxCPU END;
  3001. IF (maxProcessors > 0) & (adr # NilAdr) THEN (* MP config table present, possible multi-processor *)
  3002. Trace.String("Machine: Intel MP Spec "); Trace.Int(ORD(revMP) DIV 10H + 1, 1);
  3003. Trace.Char("."); Trace.Int(ORD(revMP) MOD 10H, 1); Trace.Ln;
  3004. IF TraceVerbose THEN
  3005. IF ODD(ASH(ORD(featureMP[1]), -7)) THEN
  3006. Trace.StringLn (" PIC mode");
  3007. (* to do: enable SymIO *)
  3008. ELSE
  3009. Trace.StringLn (" Virtual wire mode");
  3010. END
  3011. END;
  3012. IF featureMP[0] # 0X THEN (* pre-defined configuration *)
  3013. Trace.String(" Default config "); Trace.Int(ORD(featureMP[0]), 1); Trace.Ln;
  3014. localAPIC := (0FEE00000H);
  3015. apicVer[0] := 0; apicVer[1] := 0
  3016. ELSE (* configuration defined in table *)
  3017. MapPhysical(adr, 68*1024, adr); (* 64K + 4K header *)
  3018. SYSTEM.GET (adr, i); ASSERT(i = 504D4350H); (* check signature *)
  3019. SYSTEM.GET (adr+4, i); (* length *)
  3020. ASSERT(ChecksumMP(adr, i MOD 10000H) = 0);
  3021. IF TraceVerbose THEN
  3022. Trace.String(" ID: ");
  3023. FOR x := adr+8 TO adr+27 DO
  3024. SYSTEM.GET (x, ch); Trace.Char(ch);
  3025. IF x = adr+15 THEN Trace.Char(" ") END
  3026. END;
  3027. Trace.Ln
  3028. END;
  3029. localAPIC := 0; SYSTEM.GET(adr+36, SYSTEM.VAL (LONGINT, localAPIC));
  3030. IF TraceVerbose THEN Trace.String(" Local APIC:"); Trace.Address (localAPIC); Trace.Ln END;
  3031. SYSTEM.GET (adr+34, entries);
  3032. INC(adr, 44); (* skip header *)
  3033. WHILE entries > 0 DO
  3034. SYSTEM.GET (adr, ch); (* type *)
  3035. CASE ORD(ch) OF
  3036. 0: (* processor *)
  3037. ParseProcessor(adr);
  3038. INC(adr, 20)
  3039. |1: (* bus *)
  3040. IF TraceVerbose THEN
  3041. SYSTEM.GET (adr+1, ch);
  3042. Trace.String(" Bus "); Trace.Int(ORD(ch), 1); Trace.String(": ");
  3043. FOR x := adr+2 TO adr+7 DO SYSTEM.GET (x, ch); Trace.Char(ch) END;
  3044. Trace.Ln
  3045. END;
  3046. INC(adr, 8)
  3047. |2: (* IO APIC *)
  3048. IF TraceVerbose THEN
  3049. SYSTEM.GET (adr+1, ch); Trace.String(" IO APIC ID:"); Trace.Hex(ORD(ch), -3);
  3050. SYSTEM.GET (adr+2, ch); Trace.String(", version "); Trace.Int(ORD(ch), 1);
  3051. SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, s)); IF ~(24 IN s) THEN Trace.String(" (disabled)") END;
  3052. Trace.Ln
  3053. END;
  3054. INC(adr, 8)
  3055. |3: (* IO interrupt assignment *)
  3056. INC(adr, 8)
  3057. |4: (* Local interrupt assignment *)
  3058. INC(adr, 8)
  3059. END; (* CASE *)
  3060. DEC(entries)
  3061. END
  3062. END
  3063. END;
  3064. IF localAPIC = 0 THEN (* single processor *)
  3065. Trace.StringLn ("Machine: Single-processor");
  3066. apicVer[0] := 0
  3067. END;
  3068. started[0] := TRUE;
  3069. FOR i := 0 TO MaxCPU-1 DO revIDmap[i] := -1 END;
  3070. FOR i := 0 TO LEN(idMap)-1 DO
  3071. x := idMap[i];
  3072. IF x # -1 THEN
  3073. ASSERT(revIDmap[x] = -1); (* no duplicate APIC ids *)
  3074. revIDmap[x] := SHORT(SHORT(i))
  3075. END
  3076. END;
  3077. (* timer configuration *)
  3078. GetConfig("TimerRate", str);
  3079. i := 0; timerRate := StrToInt(i, str);
  3080. IF timerRate = 0 THEN timerRate := 1000 END;
  3081. IF TraceProcessor THEN
  3082. GetConfig("TraceProc", str);
  3083. i := 0; traceProcessor := StrToInt(i, str) # 0
  3084. END
  3085. END ParseMPConfig;
  3086. (* Return the current average measured bus clock speed in Hz. *)
  3087. PROCEDURE GetBusClockRate(): LONGINT;
  3088. VAR timer: LONGINT; t: LONGINT;
  3089. BEGIN
  3090. t := ticks;
  3091. REPEAT UNTIL ticks # t; (* wait for edge *)
  3092. timer := ticks + ClockRateDelay;
  3093. ApicPut(380H, SYSTEM.VAL (SET, MAX(LONGINT))); (* initial count *)
  3094. REPEAT UNTIL timer - ticks <= 0;
  3095. t := MAX(LONGINT) - SYSTEM.VAL (LONGINT, ApicGet(390H)); (* current count *)
  3096. IF t <= MAX(LONGINT) DIV 1000 THEN
  3097. RETURN 1000 * t DIV ClockRateDelay
  3098. ELSE
  3099. RETURN t DIV ClockRateDelay * 1000
  3100. END
  3101. END GetBusClockRate;
  3102. (* Initialize APIC timer for timeslicing. *)
  3103. PROCEDURE InitMPTimer;
  3104. VAR rate: LONGINT;
  3105. BEGIN
  3106. IF timerRate > 0 THEN
  3107. ApicPut(3E0H, {0,1,3}); (* divide by 1 *)
  3108. ApicPut(320H, {16} + SYSTEM.VAL (SET, MPTMR)); (* masked, one-shot *)
  3109. rate := GetBusClockRate();
  3110. busHz0[ID()] := rate;
  3111. rate := (rate+500000) DIV 1000000 * 1000000; (* round to nearest MHz *)
  3112. busHz1[ID()] := rate;
  3113. ApicPut(320H, {17} + SYSTEM.VAL (SET, MPTMR)); (* unmasked, periodic *)
  3114. ApicPut(380H, SYSTEM.VAL (SET, rate DIV timerRate)) (* initial count *)
  3115. END
  3116. END InitMPTimer;
  3117. (* Handle multiprocessor timer interrupt. *)
  3118. PROCEDURE HandleMPTimer(VAR state: State);
  3119. BEGIN (* {interrupts off} *)
  3120. timer(ID(), state);
  3121. ApicPut(0B0H, {}); (* EOI *)
  3122. Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *)
  3123. Timeslice(state) (* fixme: check recursive interrupt *)
  3124. END HandleMPTimer;
  3125. (* Handle uniprocessor timer interrupt. *)
  3126. PROCEDURE HandleUPTimer(VAR state: State);
  3127. BEGIN (* {interrupts off} *)
  3128. timer(0, state);
  3129. Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *)
  3130. Timeslice(state)
  3131. END HandleUPTimer;
  3132. PROCEDURE DummyEvent(id: LONGINT; CONST state: State);
  3133. END DummyEvent;
  3134. (** Install a processor timer event handler. *)
  3135. PROCEDURE InstallEventHandler* (h: EventHandler);
  3136. BEGIN
  3137. IF h # NIL THEN timer := h ELSE timer := DummyEvent END
  3138. END InstallEventHandler;
  3139. (* Initialize APIC for current processor. *)
  3140. PROCEDURE InitAPIC;
  3141. BEGIN
  3142. (* enable APIC, set focus checking & set spurious interrupt handler *)
  3143. ASSERT(MPSPU MOD 16 = 15); (* low 4 bits set, p. 7-29 *)
  3144. ApicPut(0F0H, {8} + SYSTEM.VAL (SET, MPSPU));
  3145. (* set error interrupt handler *)
  3146. ApicPut(370H, SYSTEM.VAL (SET, MPERR));
  3147. InitMPTimer
  3148. END InitAPIC;
  3149. (* Start processor activity. *)
  3150. PROCEDURE StartMP;
  3151. VAR id: LONGINT; state: State;
  3152. BEGIN (* running at kernel level with interrupts on *)
  3153. InitAPIC;
  3154. id := ID(); (* timeslicing is disabled, as we are running at kernel level *)
  3155. Acquire (TraceOutput);
  3156. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" running");
  3157. Release (TraceOutput);
  3158. IF TraceProcessor & traceProcessor & (id = numProcessors-1) THEN
  3159. DEC(numProcessors) (* exclude from rest of activity *)
  3160. ELSE
  3161. INCL(allProcessors, id)
  3162. END;
  3163. (* synchronize with boot processor - end of mutual exclusion *)
  3164. started[id] := TRUE;
  3165. IF TraceProcessor & ~(id IN allProcessors) THEN
  3166. Acquire (TraceOutput);
  3167. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" tracing");
  3168. Release (TraceOutput);
  3169. LOOP
  3170. IF traceProcessorProc # NIL THEN traceProcessorProc(id, state) END;
  3171. SpinHint
  3172. END
  3173. END;
  3174. (* wait until woken up *)
  3175. WHILE stopped DO SpinHint END;
  3176. (* now fully functional, including storage allocation *)
  3177. AtomicExcl(ipcBusy, id); (* ack *)
  3178. Acquire (TraceOutput);
  3179. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn(" scheduling");
  3180. Release (TraceOutput);
  3181. ASSERT(id = ID()); (* still running on same processor *)
  3182. start;
  3183. END StartMP;
  3184. (* Subsequent processors start executing here. *)
  3185. PROCEDURE EnterMP;
  3186. (* no local variables allowed, because stack is switched. *)
  3187. BEGIN (* running at kernel level with interrupts off *)
  3188. InitProcessor;
  3189. InitMemory; (* switch stack *)
  3190. Start;
  3191. StartMP
  3192. END EnterMP;
  3193. (* Start another processor. *)
  3194. PROCEDURE StartProcessor(phys: ADDRESS; apicid: LONGINT; startup: BOOLEAN);
  3195. VAR j, k: LONGINT; s: SET; timer: LONGINT;
  3196. BEGIN
  3197. (* clear APIC errors *)
  3198. ApicPut(280H, {}); s := ApicGet(280H);
  3199. (* assert INIT *)
  3200. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3201. ApicPut(300H, {8, 10, 14, 15}); (* set Dest, INIT, Phys, Assert, Level *)
  3202. timer := ticks + 5; (* > 200us *)
  3203. REPEAT UNTIL timer - ticks <= 0;
  3204. (* deassert INIT *)
  3205. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3206. ApicPut(300H, {8, 10, 15}); (* set Dest, INIT, Deassert, Phys, Level *)
  3207. IF startup THEN (* send STARTUP if required *)
  3208. j := 0; k := 2;
  3209. WHILE j # k DO
  3210. ApicPut(280H, {});
  3211. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3212. (* set Dest, Startup, Deassert, Phys, Edge *)
  3213. ApicPut(300H, {9, 10} + SYSTEM.VAL (SET, phys DIV 4096 MOD 256));
  3214. timer := ticks + 10; (* ~10ms *)
  3215. REPEAT UNTIL timer - ticks <= 0;
  3216. IF ~(12 IN ApicGet(300H)) THEN (* idle *)
  3217. IF ApicGet(280H) * {0..3, 5..7} = {} THEN k := j (* ESR success, exit *)
  3218. ELSE INC(j) (* retry *)
  3219. END
  3220. ELSE INC(j) (* retry *)
  3221. END
  3222. END
  3223. END
  3224. END StartProcessor;
  3225. (* Boot other processors, one at a time. *)
  3226. PROCEDURE BootMP;
  3227. VAR phys, page0Adr: ADDRESS; i: LONGINT; timer: LONGINT;
  3228. BEGIN
  3229. stopped := TRUE; ipcBusy := {}; (* other processors can be woken with StartAll *)
  3230. InitBootPage(EnterMP, phys);
  3231. MapPhysical(0, 4096, page0Adr); (* map in BIOS data area *)
  3232. Acquire(TraceOutput); Trace.String("Machine: Booting processors... "); Trace.Ln; Release(TraceOutput);
  3233. FOR i := 1 TO numProcessors-1 DO
  3234. (* set up booting for old processor types that reset on INIT & don't understand STARTUP *)
  3235. SYSTEM.PUT (page0Adr + 467H, ASH(phys, 16-4));
  3236. PutNVByte(15, 0AX); (* shutdown status byte *)
  3237. (* attempt to start another processor *)
  3238. Acquire(TraceOutput); Trace.String(" P0 starting P"); Trace.Int(i, 1); Trace.Ln; Release(TraceOutput);
  3239. StartProcessor(phys, revIDmap[i], apicVer[i] >= 10H); (* try booting processor i *)
  3240. (* wait for CPU to become active *)
  3241. timer := ticks + 5000; (* ~5s timeout *)
  3242. REPEAT SpinHint UNTIL started[i] OR (timer - ticks <= 0);
  3243. (* end of mutual exclusion *)
  3244. Acquire(TraceOutput);
  3245. IF started[i] THEN
  3246. Trace.String(" P0 recognized P"); Trace.Int(i, 1);
  3247. ELSE
  3248. Trace.String(" P0 timeout on P"); Trace.Int(i, 1);
  3249. END;
  3250. Trace.Ln;
  3251. Release(TraceOutput);
  3252. END;
  3253. SYSTEM.PUT (page0Adr + 467H, SYSTEM.VAL (LONGINT, 0));
  3254. UnmapPhysical(page0Adr, 4096);
  3255. PutNVByte(15, 0X) (* restore shutdown status *)
  3256. END BootMP;
  3257. (* Timer interrupt handler. *)
  3258. PROCEDURE TimerInterruptHandler(VAR state: State);
  3259. BEGIN
  3260. INC(ticks);
  3261. DEC(eventCount);
  3262. IF eventCount = 0 THEN
  3263. eventCount := eventMax; event(state)
  3264. END
  3265. END TimerInterruptHandler;
  3266. PROCEDURE Dummy(VAR state: State);
  3267. END Dummy;
  3268. PROCEDURE InitTicks;
  3269. CONST Div = (2*TimerClock + Second) DIV (2*Second); (* timer clock divisor *)
  3270. BEGIN
  3271. eventCount := 0; eventMax := 0; event := Dummy;
  3272. (* initialize timer hardware *)
  3273. ASSERT(Div <= 65535);
  3274. Portout8(43H, 34X); Wait; (* mode 2, rate generator *)
  3275. Portout8(40H, CHR(Div MOD 100H)); Wait;
  3276. Portout8(40H, CHR(ASH(Div, -8)));
  3277. InstallHandler(TimerInterruptHandler, IRQ0)
  3278. END InitTicks;
  3279. (* Set timer upcall. The handler procedure will be called at a rate of Second/divisor Hz. *)
  3280. PROCEDURE InstallTickHandler(handler: Handler; divisor: LONGINT);
  3281. BEGIN
  3282. eventMax := divisor; event := handler;
  3283. eventCount := eventMax
  3284. END InstallTickHandler;
  3285. (* Initialize processors *)
  3286. PROCEDURE InitProcessors*;
  3287. BEGIN
  3288. traceProcessor := FALSE; traceProcessorProc := NIL;
  3289. ASSERT(Second = 1000); (* use of Machine.ticks *)
  3290. InitTicks;
  3291. timer := DummyEvent;
  3292. ParseMPConfig;
  3293. InstallHandler(HandleIPC, MPIPCLocal);
  3294. IF localAPIC # 0 THEN (* APIC present *)
  3295. InitAPICArea(localAPIC, 4096);
  3296. InitAPICIDAdr(localAPIC+20H, idMap);
  3297. ASSERT(MPSPU MOD 16 = 15); (* use default handler (see 7.4.11.1) *)
  3298. InstallHandler(HandleError, MPERR);
  3299. InstallHandler(HandleMPTimer, MPTMR);
  3300. InstallHandler(HandleIPC, MPIPC);
  3301. InitAPIC;
  3302. IF numProcessors > 1 THEN BootMP END
  3303. ELSE
  3304. IF timerRate > 0 THEN
  3305. InstallTickHandler(HandleUPTimer, Second DIV timerRate)
  3306. END
  3307. END;
  3308. InstallHandler(HandleKernelCall, MPKC);
  3309. END InitProcessors;
  3310. (* Send and print character *)
  3311. PROCEDURE TraceChar (c: CHAR);
  3312. VAR status: SHORTINT;
  3313. (* Scroll the screen by one line. *)
  3314. PROCEDURE Scroll;
  3315. VAR adr: ADDRESS; off: SIZE;
  3316. BEGIN
  3317. adr := traceBase + TraceLen;
  3318. SYSTEM.MOVE (adr, adr - TraceLen, TraceSize - TraceLen);
  3319. adr := traceBase + TraceSize - TraceLen;
  3320. FOR off := 0 TO TraceLen - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (adr + off, 100H * 7H + 32) END
  3321. END Scroll;
  3322. BEGIN
  3323. IF TraceV24 IN traceMode THEN
  3324. REPEAT (* wait until port is ready to accept a character *)
  3325. Portin8 (tracePort + 5, SYSTEM.VAL(CHAR,status))
  3326. UNTIL ODD (status DIV 20H); (* THR empty *)
  3327. Portout8 (tracePort, c);
  3328. END;
  3329. IF TraceScreen IN traceMode THEN
  3330. IF c = 9X THEN c := 20X END;
  3331. IF c = 0DX THEN (* CR *)
  3332. DEC (tracePos, tracePos MOD TraceLen)
  3333. ELSIF c = 0AX THEN (* LF *)
  3334. IF tracePos < TraceSize THEN
  3335. INC (tracePos, TraceLen) (* down to next line *)
  3336. ELSE
  3337. Scroll
  3338. END
  3339. ELSE
  3340. IF tracePos >= TraceSize THEN
  3341. Scroll;
  3342. DEC (tracePos, TraceLen)
  3343. END;
  3344. SYSTEM.PUT16 (traceBase + tracePos, 100H * traceColor + ORD (c));
  3345. INC (tracePos, SIZEOF(INTEGER))
  3346. END
  3347. END
  3348. END TraceChar;
  3349. (* Change color *)
  3350. PROCEDURE TraceColor (c: SHORTINT);
  3351. BEGIN traceColor := c;
  3352. END TraceColor;
  3353. (* Initialise tracing. *)
  3354. PROCEDURE InitTrace;
  3355. CONST MaxPorts = 8;
  3356. VAR i, p, bps: LONGINT; off: SIZE; s, name: ARRAY 32 OF CHAR;
  3357. baselist: ARRAY MaxPorts OF LONGINT;
  3358. BEGIN
  3359. GetConfig ("TraceMode", s);
  3360. p := 0; traceMode := SYSTEM.VAL (SET, StrToInt (p, s));
  3361. IF TraceScreen IN traceMode THEN
  3362. GetConfig ("TraceMem", s);
  3363. p := 0; traceBase := SYSTEM.VAL (ADDRESS, StrToInt (p, s));
  3364. IF traceBase = 0 THEN traceBase := 0B8000H END; (* default screen buffer *)
  3365. FOR off := 0 TO TraceSize - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (traceBase + off, 100H * 7H + 32) END;
  3366. tracePos := 0;
  3367. Portout8(3D4H, 0EX);
  3368. Portout8(3D5H, CHR((TraceWidth*TraceHeight) DIV 100H));
  3369. Portout8(3D4H, 0FX);
  3370. Portout8(3D5H, CHR((TraceWidth*TraceHeight) MOD 100H))
  3371. END;
  3372. IF TraceV24 IN traceMode THEN
  3373. FOR i := 0 TO MaxPorts - 1 DO
  3374. COPY ("COMx", name); name[3] := CHR (ORD ("1") + i);
  3375. GetConfig (name, s); p := 0; baselist[i] := StrToInt (p, s);
  3376. END;
  3377. IF baselist[0] = 0 THEN baselist[0] := 3F8H END; (* COM1 port default values *)
  3378. IF baselist[1] = 0 THEN baselist[1] := 2F8H END; (* COM2 port default values *)
  3379. GetConfig("TracePort", s); p := 0; p := StrToInt(p, s); DEC(p);
  3380. IF (p >= 0) & (p < MaxPorts) THEN tracePort := baselist[p] ELSE tracePort := baselist[0] END;
  3381. ASSERT(tracePort > 0);
  3382. GetConfig("TraceBPS", s); p := 0; bps := StrToInt(p, s);
  3383. IF bps <= 0 THEN bps := 38400 END;
  3384. Portout8 (tracePort + 3, 80X); (* Set the Divisor Latch Bit - DLAB = 1 *)
  3385. bps := 115200 DIV bps; (* compiler DIV/PORTOUT bug workaround *)
  3386. Portout8 (tracePort + 1, CHR (bps DIV 100H)); (* Set the Divisor Latch MSB *)
  3387. Portout8 (tracePort, CHR (bps MOD 100H)); (* Set the Divisor Latch LSB *)
  3388. Portout8 (tracePort + 3, 3X); (* 8N1 *)
  3389. Portout8 (tracePort + 4, 3X); (* Set DTR, RTS on in the MCR *)
  3390. Portout8 (tracePort + 1, 0X); (* Disable receive interrupts *)
  3391. END;
  3392. traceColor := 7; Trace.Char := TraceChar; Trace.Color := TraceColor;
  3393. END InitTrace;
  3394. (* The following procedure is linked as the first block in the bootfile *)
  3395. PROCEDURE {NOPAF, FIXED(0100000H)} FirstAddress;
  3396. CODE{SYSTEM.AMD64}
  3397. ; relocate the bootfile from 0x1000 to target address 0x100000
  3398. PUSH RAX
  3399. PUSH RSI
  3400. PUSH RDI
  3401. MOV RSI,1000H
  3402. MOV RDI,100000H
  3403. MOV RCX, LastAddress
  3404. SUB RCX, RDI
  3405. CLD
  3406. REP MOVSB
  3407. POP RDI
  3408. POP RSI
  3409. POP RAX
  3410. ; continue in relocated bootfile
  3411. JMP DWORD 100000H - 1000H + Skip
  3412. Skip:
  3413. ; save arguments passed by bootloader
  3414. MOV bootFlag, RAX
  3415. MOV initRegs0,RSI
  3416. MOV initRegs1, RDI
  3417. END FirstAddress;
  3418. (* empty section allocated at end of bootfile *)
  3419. PROCEDURE {NOPAF} LastAddress;
  3420. CODE {SYSTEM.AMD64}
  3421. END LastAddress;
  3422. (* Init code called from OBL. EAX = boot table offset. ESI, EDI=initRegs. 2k stack is available. No trap handling. *)
  3423. BEGIN
  3424. initRegs[0] := initRegs0;
  3425. initRegs[1] := initRegs1;
  3426. (* registers 6 and 7 get converted to 32 bit, cf. PCB.Assigne
  3427. SYSTEM.GETREG(6, initRegs[0]); SYSTEM.GETREG(7, initRegs[1]); (* initRegs0 & initRegs1 *)
  3428. *)
  3429. SYSTEM.PUT16(0472H, 01234H); (* soft boot flag, for when we reboot *)
  3430. ReadBootTable(bootFlag);
  3431. InitTrace;
  3432. Trace.String("Machine: "); Trace.Blue;Trace.StringLn (Version); Trace.Default;
  3433. CheckMemory;
  3434. SearchMP;
  3435. AllocateDMA; (* must be called after SearchMP, as lowTop is modified *)
  3436. version := Version;
  3437. InitBoot;
  3438. InitProcessor;
  3439. InitLocks;
  3440. NmaxUserStacks := MaxUserStacks;
  3441. ASSERT(ASH(1, PSlog2) = PS);
  3442. Trace.String("Machine: Enabling MMU... ");
  3443. InitSegments; (* enable flat segments *)
  3444. InitPages; (* create page tables *)
  3445. InitMemory; (* switch on segmentation, paging and switch stack *)
  3446. Trace.Green; Trace.StringLn("Ok"); Trace.Default;
  3447. (* allocate empty memory block with enough space for at least one free block *)
  3448. memBlockHead := SYSTEM.VAL (MemoryBlock, ADDRESSOF (initialMemBlock));
  3449. memBlockTail := memBlockHead;
  3450. initialMemBlock.beginBlockAdr := SYSTEM.VAL (ADDRESS, LastAddress);
  3451. initialMemBlock.endBlockAdr := initialMemBlock.beginBlockAdr + StaticBlockSize;
  3452. initialMemBlock.size := initialMemBlock.endBlockAdr - initialMemBlock.beginBlockAdr;
  3453. FOR i := 0 TO IDTSize - 1 DO
  3454. FOR j := 0 TO MaxNumHandlers - 1 DO
  3455. intHandler[i, j].valid := FALSE;
  3456. intHandler[i, j].handler := NIL
  3457. END
  3458. END;
  3459. default.valid := FALSE; (* initialized later *)
  3460. END Machine.
  3461. (*
  3462. 03.03.1998 pjm First version
  3463. 30.06.1999 pjm ProcessorID moved to AosProcessor
  3464. *)
  3465. (**
  3466. Notes
  3467. This module defines an interface to the boot environment of the system. The facilities provided here are only intended for the lowest levels of the system, and should never be directly imported by user modules (exceptions are noted below). They are highly specific to the system hardware and firmware architecture.
  3468. Typically a machine has some type of firmware that performs initial testing and setup of the system. The firmware initiates the operating system bootstrap loader, which loads the boot file. This module is the first module in the statically linked boot file that gets control.
  3469. There are two more-or-less general procedures in this module: GetConfig and StrToInt. GetConfig is used to query low-level system settings, e.g., the location of the boot file system. StrToInt is a utility procedure that parses numeric strings.
  3470. Config strings:
  3471. ExtMemSize Specifies size of extended memory (above 1MB) in MB. This value is not checked for validity. Setting it false may cause the system to fail, possible after running for some time. The memory size is usually detected automatically, but if the detection does not work for some reason, or if you want to limit the amount of memory detected, this string can be set. For example, if the machine has 64MB of memory, this value can be set as ExtMemSize="63".
  3472. *)