BIOS.AMD64.Machine.Mod 121 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922
  1. MODULE Machine; (** AUTHOR "pjm"; PURPOSE "Bootstrapping, configuration and machine interface"; *)
  2. (* The code of this module body must be the first in the statically linked boot file. *)
  3. IMPORT SYSTEM, Trace;
  4. CONST
  5. Version = "A2 Revision 2958 (26.02.2010)";
  6. MaxCPU* = 8; (** maximum number of processors (up to 16) *)
  7. DefaultObjectFileExtension* = ".Abx";
  8. (** bits in features variable *)
  9. MTTR* = 12; MMX* = 23; HTT* = 28;
  10. MaxDisks = 2; (* maximum number of disks with BIOS parameters *)
  11. HeapAdr = 100000H;
  12. MaxMemTop = 4000000H * 4000000H; (* maximal 52bit wide physical address (architectural limit) *)
  13. DefaultDMASize = 20; (* default size of ISA DMA area in KB *)
  14. CONST
  15. StrongChecks = FALSE; (* perform strong checks *)
  16. Stats* = FALSE; (* acquire statistics *)
  17. TimeCount = 0 (* 100000 *); (* number of lock tries before checking timeout - 0 to disable *)
  18. (** standard lock levels (in order) *) (* also refer to Traps.Show *)
  19. TraceOutput* = 0; (* Trace output *)
  20. Memory* = 1; (* Virtual memory management, stack and page allocation *)
  21. Heaps* = 2; (* Storage allocation and Garbage collection *)
  22. Interrupts* = 3 ; (* Interrupt handling. *)
  23. Modules* = 4; (* Module list *)
  24. Objects* = 5; (* Ready queue *)
  25. Processors* = 6; (* Interprocessor interrupts *)
  26. KernelLog* = 7; (* Atomic output *)
  27. (** highest level is all object locks *)
  28. Preemption* = 31; (** flag for BreakAll *)
  29. MaxLocks = 8; (* { <= 32 } *)
  30. LowestLock = 0; HighestLock = MaxLocks-1;
  31. CONST
  32. TraceVerbose = FALSE; (* write out verbose trace info *)
  33. AddressSize = SIZEOF(ADDRESS);
  34. SetSize = MAX (SET) + 1;
  35. (** error codes *)
  36. Ok* = 0;
  37. (* standard multipliers *)
  38. K = 1024; M = 100000H; (* 1K, 1M *)
  39. (* paging sizes *)
  40. PS = 4096; (* page size in bytes *)
  41. PSlog2 = 12; (* ASH(1, PSlog2) = PS *)
  42. TPS = 4096; (* translation page size *)
  43. PTEs = TPS DIV AddressSize; (* number of entries per translation page table *)
  44. RS = PTEs * PS; (* region covered by a page table in bytes *)
  45. ReservedPages = 8; (* pages reserved on page heap (not for normal heap use) *)
  46. NilAdr* = -1; (** nil value for addresses (not same as pointer NIL value) *)
  47. (* free page stack page node layout *)
  48. NodeSP = 0;
  49. NodeNext = AddressSize;
  50. NodePrev = AddressSize*2;
  51. MinSP = AddressSize*3; MaxSP = PS;
  52. (*
  53. 0 sp
  54. AddressSize nextAdr
  55. AddressSize*2 prevAdr
  56. AddressSize*3 first entry
  57. 4092 last entry
  58. *)
  59. (* virtual memory layout. no area will cross the 2G boundary, to avoid LONGINT sign problems. *)
  60. MapAreaAdr = (80000000H); (* dynamic mappings: bottom part of 2G..4G *)
  61. MapAreaSize = 64*M;
  62. IntelAreaAdr = (0FEE00000H); (* reserved by Intel for APIC: 4G-18M..4G-18M+4K *)
  63. IntelAreaSize = 00001000H;
  64. StackAreaAdr = MapAreaAdr+MapAreaSize; (* stacks: middle part of 2G..4G *)
  65. StackAreaSize = IntelAreaAdr-StackAreaAdr;
  66. (* stack sizes *)
  67. KernelStackSize = 2*PS; (* multiple of PS *)
  68. MaxUserStackSize = 128*K; (* multiple of PS *)
  69. InitUserStackSize = PS; (* must be PS (or change NewStack) *)
  70. UserStackGuardSize = PS; (* multiple of PS left unallocated at bottom of stack virtual area *)
  71. MaxUserStacks = StackAreaSize DIV MaxUserStackSize;
  72. (* physical memory layout *)
  73. LowAdr = PS; (* lowest physical address used *)
  74. LinkAdr = M; (* address where kernel is linked, also address where heap begins *)
  75. StaticBlockSize = 32; (* static heap block size *)
  76. BlockHeaderSize = 2 * AddressSize;
  77. RecordDescSize = 3 * AddressSize; (* needs to be adapted in case Heaps.RecordDesc is changed *)
  78. (* gdt indices *)
  79. TSSOfs = 8; (* offset in GDT of TSSs *)
  80. StackOfs = TSSOfs + MaxCPU; (* offset in GDT of stacks *)
  81. GDTSize = TSSOfs + MaxCPU * 2; (* TSS descriptors need 16 bytes each *)
  82. (* gdt selectors *)
  83. Kernel32CodeSel = 1*8; (* selector 1 in gdt, RPL 0 *)
  84. Kernel64CodeSel = 2*8; (* selector 2 in gdt, RPL 0 *)
  85. User32CodeSel = 3*8 + 3; (* selector 3 in gdt, RPL 3 *)
  86. User64CodeSel = 4*8 + 3; (* selector 4 in gdt, RPL 3 *)
  87. KernelStackSel = 5*8; (* selector 5 in gdt, RPL 0 *)
  88. UserStackSel = 6*8 + 3; (* selector 6 in gdt, RPL 3 *)
  89. DataSel = 7*8; (* selector 7 in gdt, RPL 0 *)
  90. KernelTR = TSSOfs*8; (* selector in gdt, RPL 0 *)
  91. (* paging flags *)
  92. PageNotPresent = 0; (* not present page *)
  93. KernelPage = 3; (* supervisor, present, r/w *)
  94. UserPage = 7; (* user, present, r/w *)
  95. HeapMin = 50; (* "minimum" heap size as percentage of total memory size (used for heap expansion in scope of GC ) *)
  96. HeapMax = 95; (* "maximum" heap size as percentage of total memory size (used for heap expansion in scope of GC) *)
  97. ExpandRate = 1; (* always extend heap with at least this percentage of total memory size *)
  98. Threshold = 10; (* periodic GC initiated when this percentage of total memory size bytes has "passed through" NewBlock *)
  99. InitialHeapIncrement = 4096;
  100. HeaderSize = 40H; (* cf. Linker0 *)
  101. EndBlockOfs = 38H; (* cf. Linker0 *)
  102. MemoryBlockOfs = BlockHeaderSize + RecordDescSize + BlockHeaderSize; (* memory block (including header) starts at offset HeaderSize *)
  103. CONST
  104. (** pre-defined interrupts 0-31, used with InstallHandler *)
  105. DE* = 0; DB* = 1; NMI* = 2; BP* = 3; OVF* = 4; BR* = 5; UD* = 6; NM* = 7;
  106. DF* = 8; TS* = 10; NP* = 11; SSF* = 12; GP* = 13; PF* = 14; MF*= 16; AC*= 17; MC* = 18;
  107. IRQ0* = 32; (* {IRQ0 MOD 8 = 0} *)
  108. IRQ2 = IRQ0 + 2;
  109. IRQ7 = IRQ0 + 7;
  110. IRQ8 = IRQ0 + 8;
  111. IRQ15 = 47;
  112. MaxIRQ* = IRQ15; (** hardware interrupt numbers *)
  113. MPKC* = 49; (** SMP: kernel call *)
  114. SoftInt* = 58; (** temporary software interrupt *)
  115. MPIPCLocal* = 59; (** SMP: local interprocessor interrupt *)
  116. MPTMR* = 60; (** SMP: timer interrupt *)
  117. MPIPC* = 61; (** SMP: interprocessor interrupt *)
  118. MPERR* = 62; (** SMP: error interrupt *)
  119. MPSPU* = 63; (** SMP: spurious interrupt {MOD 16 = 15} *)
  120. IDTSize = 64;
  121. MaxNumHandlers = 16;
  122. TraceSpurious = FALSE; (* no message on spurious hardware interrupts *)
  123. HandleSpurious = TRUE OR TraceSpurious; (* do not trap on spurious interrupts *)
  124. IntA0 = 020H; IntA1 = 021H; (* Interrupt Controller 1 *)
  125. IntB0 = 0A0H; IntB1 = 0A1H; (* Interrupt Controller 2 *)
  126. (** RFLAGS bits *)
  127. IFBit* = 9; VMBit* = 17;
  128. KernelLevel* = 0; UserLevel* = 3; (** CS MOD 4 *)
  129. Second* = 1000; (* frequency of ticks increments in Hz *)
  130. CONST
  131. Self* = 0; FrontBarrier* = 1; BackBarrier* = 2; (** Broadcast flags. *)
  132. TraceApic = FALSE;
  133. TraceProcessor = FALSE; (* remove this hack! *)
  134. ClockRateDelay = 50; (* ms - delay when timing bus clock rate *)
  135. TimerClock = 1193180; (* timer clock is 1.19318 MHz *)
  136. CONST
  137. (* low level tracing *)
  138. TraceV24 = 2; TraceScreen = 0;
  139. TraceWidth = 80; TraceHeight = 25;
  140. TraceLen = TraceWidth * SIZEOF (INTEGER);
  141. TraceSize = TraceLen * TraceHeight;
  142. TYPE
  143. Vendor* = ARRAY 13 OF CHAR;
  144. IDMap* = ARRAY 16 OF SHORTINT;
  145. TYPE
  146. Stack* = RECORD (** values are read-only *)
  147. low: ADDRESS; (* lowest virtual address that may be allocated for stack *)
  148. adr*: ADDRESS; (* lowest address on allocated stack *) (* exported for Objects only *)
  149. high*: ADDRESS; (* next virtual address after stack *) (* exported for Objects only *)
  150. END;
  151. (* task state segment *)
  152. TSSDesc = RECORD (* 1, p. 485 and p. 612 for required fields *)
  153. Reserved1: LONGINT;
  154. RSP0 {ALIGNED(4)}, RSP1{ALIGNED(4)}, RSP2{ALIGNED(4)}: HUGEINT;
  155. Reserved2, Reserved3: LONGINT;
  156. IST1 {ALIGNED(4)}, IST2 {ALIGNED(4)}, IST3 {ALIGNED(4)}, IST4{ALIGNED(4)}, IST5{ALIGNED(4)}, IST6{ALIGNED(4)}, IST7{ALIGNED(4)}: HUGEINT;
  157. Reserved4, Reserved5: LONGINT;
  158. Reserved6, IOMapBaseAddress: INTEGER;
  159. (* Implicit: IOBitmap: ARRAY 8192 DIV 4 OF SET *)
  160. END;
  161. Startup* = PROCEDURE; (** can not be a method *)
  162. (* global descriptor table *)
  163. SegDesc = RECORD
  164. low, high: LONGINT
  165. END;
  166. GDT = ARRAY GDTSize OF SegDesc;
  167. Range* = RECORD
  168. adr*: ADDRESS; size*: SIZE;
  169. END;
  170. TYPE
  171. (** processor state, ordering of record fields is predefined! *)
  172. State* = RECORD (* offsets used in FieldInterrupt, FieldIRQ and Objects.RestoreState *)
  173. R15*, R14*, R13*, R12*, R11*, R10*, R9*, R8*: HUGEINT;
  174. RDI*, RSI*, ERR*, RSP0*, RBX*, RDX*, RCX*, RAX*: HUGEINT; (** RSP0 = ADR(s.INT) *)
  175. INT*, BP*, PC*, CS*: HUGEINT; (* RBP and ERR are exchanged by glue code, for procedure link *)
  176. FLAGS*: SET;
  177. SP*, SS*: HUGEINT;
  178. END;
  179. (** exception state, ordering of record fields is predefined! *)
  180. ExceptionState* = RECORD
  181. halt*: SIZE; (** halt code *)
  182. pf*: ADDRESS; (** page fault address *)
  183. locks*: SET; (** active locks *)
  184. SP*: ADDRESS; (** actual RSP value at time of interrupt *)
  185. CR*: ARRAY 16 OF HUGEINT; (** control registers *)
  186. DR*: ARRAY 16 OF HUGEINT; (** debug registers *)
  187. FPU*: ARRAY 7 OF SET (** floating-point state *)
  188. END;
  189. Handler* = PROCEDURE {DELEGATE} (VAR state: State);
  190. HandlerRec = RECORD
  191. valid: BOOLEAN; (* offset 0 *)
  192. handler {ALIGNED(4)}: Handler (* offset 4 *)
  193. END;
  194. GateDescriptor = RECORD
  195. offsetBits0to15: INTEGER;
  196. selector: INTEGER;
  197. gateType: INTEGER;
  198. offsetBits16to31: INTEGER;
  199. offsetBits32to63: LONGINT;
  200. reserved: LONGINT;
  201. END;
  202. IDT = ARRAY IDTSize OF GateDescriptor;
  203. SSEState* = ARRAY (512+16) OF CHAR;
  204. TYPE
  205. MemoryBlock* = POINTER TO MemoryBlockDesc;
  206. MemoryBlockDesc* = RECORD
  207. next- {UNTRACED}: MemoryBlock;
  208. startAdr-: ADDRESS; (* unused field for I386 *)
  209. size-: SIZE; (* unused field for I386 *)
  210. beginBlockAdr-, endBlockAdr-: ADDRESS
  211. END;
  212. TYPE
  213. EventHandler = PROCEDURE (id: LONGINT; CONST state: State);
  214. Message* = POINTER TO RECORD END; (** Broadcast message. *)
  215. BroadcastHandler = PROCEDURE (id: LONGINT; CONST state: State; msg: Message);
  216. TimeArray = ARRAY MaxCPU OF HUGEINT;
  217. Address32* = LONGINT;
  218. VAR
  219. lowTop*: ADDRESS; (** top of low memory *)
  220. memTop*: ADDRESS; (** top of memory *)
  221. dmaSize*: SIZE; (** size of ISA dma area, above lowTop (for use in Aos.Diskettes) *)
  222. configMP: ADDRESS; (** MP spec config table physical address (outside reported RAM) *)
  223. revMP: CHAR; (** MP spec revision *)
  224. featureMP: ARRAY 5 OF CHAR; (** MP spec feature bytes 1-5 *)
  225. version-: ARRAY 64 OF CHAR; (** Aos version *)
  226. SSESupport-: BOOLEAN;
  227. SSE2Support-: BOOLEAN;
  228. SSE3Support-: BOOLEAN; (* PH 04/11*)
  229. SSSE3Support-: BOOLEAN;
  230. SSE41Support-: BOOLEAN;
  231. SSE42Support-: BOOLEAN;
  232. SSE5Support-: BOOLEAN;
  233. AVXSupport-: BOOLEAN;
  234. features-, features2-: SET; (** processor features *)
  235. fcr*: SET; (** default floating-point control register value (default rounding mode is towards -infinity, for ENTIER) *)
  236. mhz*: HUGEINT; (** clock rate of GetTimer in MHz, or 0 if not known *)
  237. chs: ARRAY MaxDisks OF RECORD cyls, hds, spt: LONGINT END;
  238. initRegs0, initRegs1: HUGEINT;
  239. initRegs: ARRAY 2 OF HUGEINT; (* kernel parameters *)
  240. config: ARRAY 2048 OF CHAR; (* config strings *)
  241. bootFlag: ADDRESS;
  242. idAdr: ADDRESS; (* address of processor ID register *)
  243. map: IDMap;
  244. bootID: LONGINT; (* ID of boot processor (0) *)
  245. numberOfProcessors: LONGINT; (* number of processors installed during start up *)
  246. coresPerProcessor : LONGINT; (* number of cores per physical package *)
  247. threadsPerCore : LONGINT; (* number of threads per core *)
  248. CONST
  249. CacheLineSize = 128;
  250. TYPE
  251. (* Synchronization variables should reside in own cache line. This data structure should be aligned to CacheLineSize. *)
  252. Lock = RECORD
  253. locked : BOOLEAN;
  254. filler : ARRAY CacheLineSize - 1 OF CHAR;
  255. END;
  256. VAR
  257. lock: ARRAY MaxLocks OF Lock; (** all locks *)
  258. (*
  259. Every element in the proc array belongs to one processor. It is therefore sufficient to disable interrupts to protect the consistency of these elements. Race conditions with interrupts handled on the same processor are avoided by disabling interrupts for the entire time that a lock is held (using locksHeld & state). The data structures are padded to CacheLineSize to separate the locks out on cache lines of their own, to avoid false sharing.
  260. *)
  261. proc-, trapState-: ARRAY MaxCPU OF RECORD
  262. locksHeld-: SET; (** locks held by a processor *)
  263. state-: SET; (** processor flags (interrupt state) at entry to its first lock *)
  264. preemptCount-: LONGINT; (** if 0, preemption is allowed *)
  265. padding : ARRAY CacheLineSize - 20 OF CHAR;
  266. END;
  267. (* the data structures above should be aligned to CacheLineSize *)
  268. padding : ARRAY 92 OF CHAR;
  269. trapLocksBusy-: SET;
  270. maxTime: HUGEINT;
  271. VAR
  272. gdt: GDT; (* global descriptor table *)
  273. procm: ARRAY MaxCPU OF RECORD (* indexed by ID () *)
  274. tss: TSSDesc;
  275. sp: ADDRESS; (* snapshot for GC *)
  276. stack: Stack
  277. END;
  278. kernelPML4: ADDRESS; (* physical address of page directory *)
  279. freeLowPage: ADDRESS; (* free low page stack pointer (link at offset 0 in page). All addresses physical. NIL = -1 *)
  280. freeLowPages, freeHighPages, totalPages: HUGEINT; (* number of free pages and total number of pages *)
  281. mapTop: ADDRESS; (* virtual address of end of memory mapping area *)
  282. heapEndAdr: ADDRESS; (* virtual address of end of heap (page aligned) *)
  283. topPageNum: HUGEINT; (* page containing byte memTop-1 *)
  284. pageHeapAdr: ADDRESS; (* address (physical and virtual) of bottom of page heap area *)
  285. pageStackAdr: ADDRESS; (* virtual address of top page of free page stack *)
  286. freeStack: ARRAY (MaxUserStacks+SetSize-1) DIV SetSize OF SET; (* free stack bitmap *)
  287. freeStackIndex: HUGEINT; (* current position in bitmap (rotates) *)
  288. Nbigskips-: LONGINT; (* number of times a stack was extended leaving a hole *)
  289. Nfilled-: LONGINT; (* number of times a "hole" in a stack was filled *)
  290. NnewStacks-, NnewStackLoops-, NnewStackInnerLoops-, NdisposeStacks-,
  291. NlostPages-, NreservePagesUsed-, NmaxUserStacks-: HUGEINT;
  292. VAR
  293. idt: IDT; (* interrupt descriptor table *)
  294. glue: ARRAY IDTSize OF ARRAY 15 OF CHAR; (* code *)
  295. intHandler: ARRAY IDTSize, MaxNumHandlers OF HandlerRec; (* array of handlers for interrupts, the table is only filled up to MaxNumHandlers - 1, the last element in each row acts as a sentinel *)
  296. stateTag: ADDRESS;
  297. default: HandlerRec;
  298. i, j, ticks*: LONGINT; (** timer ticks. Use Kernel.GetTicks() to read, don't write *)
  299. VAR
  300. ipcBusy, ipcFlags, ipcFrontBarrier, ipcBackBarrier: SET;
  301. ipcHandler: BroadcastHandler;
  302. ipcMessage: Message;
  303. numProcessors-: LONGINT; (* number of processors we attempted to boot (some may have failed) *)
  304. maxProcessors: LONGINT; (* max number of processors we are allowed to boot (-1 for uni) *)
  305. allProcessors-: SET; (* IDs of all successfully booted processors *)
  306. localAPIC: ADDRESS; (* address of local APIC, 0 if not present *)
  307. apicVer: ARRAY MaxCPU OF LONGINT; (* APIC version *)
  308. started: ARRAY MaxCPU OF BOOLEAN; (* CPU started successfully / CPU halted *)
  309. busHz0, busHz1: ARRAY MaxCPU OF LONGINT; (* unrounded and rounded bus speed in Hz *)
  310. timer: EventHandler;
  311. timerRate: LONGINT; (* Hz - rate at which CPU timers run - for timeslicing and profiling *)
  312. stopped: BOOLEAN; (* StopAll was called *)
  313. idMap: IDMap;
  314. revIDmap: ARRAY MaxCPU OF SHORTINT;
  315. time: TimeArray;
  316. eventCount, eventMax: LONGINT;
  317. event: Handler;
  318. expandMin, heapMinKB, heapMaxKB : SIZE;
  319. gcThreshold-: SIZE;
  320. memBlockHead-{UNTRACED}, memBlockTail-{UNTRACED}: MemoryBlock; (* refer to the same memory block for I386, not traced by GC *)
  321. initialMemBlock: MemoryBlockDesc;
  322. traceProcessorProc*: EventHandler; (** temp tracing *)
  323. traceProcessor: BOOLEAN;
  324. Timeslice*: Handler;
  325. start*: PROCEDURE;
  326. VAR
  327. traceMode: SET; (* tracing mode: Screen or V24 *)
  328. traceBase: ADDRESS; (* screen buffer base address *)
  329. tracePos: SIZE; (* current screen cursor *)
  330. tracePort: LONGINT; (* serial base port *)
  331. traceColor: SHORTINT; (* current screen tracing color *)
  332. (** -- Processor identification -- *)
  333. (** Return current processor ID (0 to MaxNum-1). *)
  334. PROCEDURE ID* (): LONGINT;
  335. CODE {SYSTEM.AMD64}
  336. ; todo: use MOV instead of LEA as soon as assembler returns address for global variables
  337. LEA RAX, idAdr ; get address of idAdr
  338. MOV RAX, [RAX] ; get value of idAdr
  339. MOV EAX, [RAX] ; dereference idAdr
  340. LEA RBX, map ; address of map
  341. SHR EAX, 24
  342. AND EAX, 15
  343. MOV AL, [RBX + RAX]
  344. END ID;
  345. (** -- Miscellaneous -- *)
  346. (** This procedure should be called in all spin loops as a hint to the processor (e.g. Pentium 4). *)
  347. PROCEDURE -SpinHint*;
  348. CODE {SYSTEM.AMD64}
  349. PAUSE
  350. END SpinHint;
  351. (** Fill "size" bytes at "destAdr" with "filler". "size" must be multiple of 4. *)
  352. PROCEDURE Fill32* (destAdr: ADDRESS; size: SIZE; filler: LONGINT);
  353. CODE {SYSTEM.AMD64}
  354. MOV RDI, [RBP + destAdr]
  355. MOV RCX, [RBP + size]
  356. MOV EAX, [RBP + filler]
  357. TEST RCX, 3
  358. JZ ok
  359. PUSH 8 ; ASSERT failure
  360. INT 3
  361. ok:
  362. SHR RCX, 2
  363. CLD
  364. REP STOSD
  365. END Fill32;
  366. (** Return timer value of the current processor, or 0 if not available. *)
  367. (* e.g. ARM does not have a fine-grained timer *)
  368. PROCEDURE -GetTimer* (): HUGEINT;
  369. CODE {SYSTEM.AMD64}
  370. XOR RAX, RAX
  371. RDTSC ; set EDX:EAX
  372. SHL RDX, 32
  373. OR RAX, RDX
  374. END GetTimer;
  375. (** Disable interrupts and return old interrupt state. *)
  376. PROCEDURE -DisableInterrupts* (): SET;
  377. CODE {SYSTEM.AMD64}
  378. PUSHFQ
  379. CLI
  380. POP RAX
  381. END DisableInterrupts;
  382. (** Restore interrupt state. Parameter s must be return value of earlier DisableInterrupts call on same processor. *)
  383. PROCEDURE -RestoreInterrupts* (s: SET);
  384. CODE {SYSTEM.AMD64}
  385. POPFQ
  386. END RestoreInterrupts;
  387. (** Return TRUE iff interrupts are enabled on the current processor. *)
  388. PROCEDURE -InterruptsEnabled* (): BOOLEAN;
  389. CODE {SYSTEM.AMD64}
  390. PUSHFQ
  391. POP RAX
  392. SHR RAX, 9
  393. AND AL, 1
  394. END InterruptsEnabled;
  395. (** -- Processor initialization -- *)
  396. PROCEDURE -SetFCR (s: SET);
  397. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  398. FLDCW WORD [RSP] ; parameter s
  399. POP RAX
  400. END SetFCR;
  401. PROCEDURE -FCR (): SET;
  402. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  403. PUSH 0
  404. FNSTCW WORD [RSP]
  405. FWAIT
  406. POP RAX
  407. END FCR;
  408. PROCEDURE -InitFPU;
  409. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  410. FNINIT
  411. END InitFPU;
  412. (** Setup FPU control word of current processor. *)
  413. PROCEDURE SetupFPU*;
  414. BEGIN
  415. InitFPU; SetFCR(fcr)
  416. END SetupFPU;
  417. (* Set up flags (3, p. 20)
  418. Bit
  419. 1,3,5,15,19..31 - no change
  420. 0,2,4,6..7,11 - CF,PF,AF,ZF,SF,OF off
  421. 8 - TF off
  422. 9 - IF off (no interrupts)
  423. 10 - DF off
  424. 12..13 - IOPL = 3
  425. 14 - NT off (no Windows)
  426. 16 - RF off (no Interference)
  427. 17- VM off (no virtual 8086 mode)
  428. 18 - AC off (no 486 alignment checks) *)
  429. PROCEDURE -SetupFlags;
  430. CODE {SYSTEM.AMD64}
  431. PUSHFD
  432. AND DWORD [RSP], 0FFF8802AH
  433. OR DWORD [RSP], 3000H
  434. POPFD
  435. END SetupFlags;
  436. (* Set up various 486-specific flags (3, p. 23)
  437. 1. Enable exception 16 on math errors.
  438. 2. Disable supervisor mode faults on write to read-only pages
  439. (386-compatible for stack checking).
  440. 3. Enable the Alignment Check field in RFLAGS *)
  441. PROCEDURE -Setup486Flags;
  442. CODE {SYSTEM.486, SYSTEM.Privileged}
  443. MOV EAX, CR0
  444. OR EAX, 00040020H
  445. AND EAX, 0FFFEFFFFH
  446. MOV CR0, EAX
  447. END Setup486Flags;
  448. (* Set up 586-specific things *)
  449. PROCEDURE -Setup586Flags;
  450. CODE {SYSTEM.586, SYSTEM.Privileged}
  451. MOV EAX, CR4
  452. BTR EAX, 2 ; clear TSD
  453. MOV CR4, EAX
  454. END Setup586Flags;
  455. (* setup SSE and SSE2 extension *)
  456. PROCEDURE SetupSSE2Ext;
  457. CONST
  458. FXSRFlag = 24; (*IN features from EBX*)
  459. SSEFlag = 25;
  460. SSE2Flag = 26;
  461. SSE3Flag = 0; (*IN features2 from ECX*) (*PH 04/11*)
  462. SSSE3Flag =9;
  463. SSE41Flag =19;
  464. SSE42Flag =20;
  465. SSE5Flag = 11;
  466. AVXFlag = 28;
  467. BEGIN
  468. SSE2Support := FALSE;
  469. SSE3Support := FALSE;
  470. SSSE3Support := FALSE;
  471. SSE41Support := FALSE;
  472. SSE42Support := FALSE;
  473. SSE5Support := FALSE;
  474. AVXSupport := FALSE;
  475. (* checking for SSE support *)
  476. IF SSEFlag IN features THEN
  477. SSESupport := TRUE;
  478. (* checking for SSE2 support *)
  479. IF SSE2Flag IN features THEN SSE2Support := TRUE;
  480. (* checking for SSE3... support*)(*PH 04/11*)
  481. IF SSE3Flag IN features2 THEN SSE3Support := TRUE;
  482. IF SSSE3Flag IN features2 THEN SSSE3Support := TRUE END;
  483. IF SSE41Flag IN features2 THEN SSE41Support := TRUE;
  484. IF SSE42Flag IN features2 THEN SSE42Support := TRUE END;
  485. END;
  486. IF SSE5Flag IN features2 THEN SSE5Support := TRUE END;
  487. IF AVXFlag IN features2 THEN AVXSupport := TRUE END;
  488. END;
  489. END;
  490. (* checking for support for the FXSAVE and FXRSTOR instruction *)
  491. IF FXSRFlag IN features THEN InitSSE END;
  492. END;
  493. END SetupSSE2Ext;
  494. PROCEDURE -InitSSE;
  495. CODE {SYSTEM.Pentium, SYSTEM.Privileged}
  496. MOV EAX, CR4
  497. OR EAX, 00000200H ; set bit 9 (OSFXSR)
  498. AND EAX, 0FFFFFBFFH ; delete bit 10 (OSXMMEXCPT)
  499. MOV CR4, EAX
  500. END InitSSE;
  501. (* Disable exceptions caused by math in new task. (1, p. 479) *)
  502. PROCEDURE -DisableMathTaskEx;
  503. CODE {SYSTEM.386, SYSTEM.Privileged}
  504. MOV EAX,CR0
  505. AND AL, 0F5H
  506. MOV CR0, EAX
  507. END DisableMathTaskEx;
  508. (* Disable math emulation (1, p. 479) , bit 2 of CR0 *)
  509. PROCEDURE -DisableEmulation;
  510. CODE {SYSTEM.386, SYSTEM.Privileged}
  511. MOV EAX, CR0
  512. AND AL, 0FBH
  513. MOV CR0, EAX
  514. END DisableEmulation;
  515. (** CPU identification *)
  516. PROCEDURE CPUID*(function : LONGINT; VAR eax, ebx, ecx, edx : SET);
  517. CODE {SYSTEM.AMD64}
  518. MOV EAX, [RBP+function] ; CPUID function parameter
  519. MOV RSI, [RBP+ecx] ; copy ecx into ECX (sometimes used as input parameter)
  520. MOV ECX, [RSI]
  521. CPUID ; execute CPUID
  522. MOV RSI, [RBP+eax] ; copy EAX into eax;
  523. MOV [RSI], EAX
  524. MOV RSI, [RBP+ebx] ; copy EBX into ebx
  525. MOV [RSI], EBX
  526. MOV RSI, [RBP+ecx] ; copy ECX into ecx
  527. MOV [RSI], ECX
  528. MOV RSI, [RBP+edx] ; copy EDX into edx
  529. MOV [RSI], EDX
  530. END CPUID;
  531. (* If the CPUID instruction is supported, the ID flag (bit 21) of the EFLAGS register is r/w *)
  532. PROCEDURE CpuIdSupported*() : BOOLEAN;
  533. CODE {SYSTEM.AMD64}
  534. PUSHFQ ; save RFLAGS
  535. POP RAX ; store RFLAGS in RAX
  536. MOV EBX, EAX ; save EBX for later testing
  537. XOR EAX, 00200000H ; toggle bit 21
  538. PUSH RAX ; push to stack
  539. POPFQ ; save changed RAX to RFLAGS
  540. PUSHFQ ; push RFLAGS to TOS
  541. POP RAX ; store RFLAGS in RAX
  542. CMP EAX, EBX ; see if bit 21 has changed
  543. SETNE AL; ; return TRUE if bit 21 has changed, FALSE otherwise
  544. END CpuIdSupported;
  545. (** Initialise current processor. Must be called by every processor. *)
  546. PROCEDURE InitProcessor*;
  547. BEGIN
  548. SetupFlags;
  549. Setup486Flags;
  550. Setup586Flags;
  551. DisableMathTaskEx;
  552. DisableEmulation;
  553. SetupFPU;
  554. END InitProcessor;
  555. (** Initialize APIC ID address. *)
  556. PROCEDURE InitAPICIDAdr* (adr: ADDRESS; CONST m: IDMap);
  557. VAR s: SET;
  558. BEGIN
  559. s := DisableInterrupts ();
  560. idAdr := adr; map := m;
  561. RestoreInterrupts (s)
  562. END InitAPICIDAdr;
  563. PROCEDURE InitBoot;
  564. VAR
  565. largestFunction, i: LONGINT;
  566. eax, ebx, ecx, edx : SET;
  567. logicalProcessorCount : LONGINT;
  568. u: ARRAY 8 OF CHAR; vendor : Vendor;
  569. PROCEDURE GetString(VAR string : ARRAY OF CHAR; offset : LONGINT; register : SET);
  570. BEGIN
  571. string[offset] :=CHR(SYSTEM.VAL(LONGINT, register * {0..7}));
  572. string[offset+1] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {8..15}, -8)));
  573. string[offset+2] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {16..23}, -16)));
  574. string[offset+3] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {24..31}, -24)));
  575. END GetString;
  576. BEGIN
  577. vendor := "Unknown"; features := {}; features2 := {};
  578. coresPerProcessor := 1; threadsPerCore := 1;
  579. IF CpuIdSupported() THEN
  580. (* Assume that all processors are the same *)
  581. (* CPUID standard function 0 returns: eax: largest CPUID standard function supported, ebx, edx, ecx: vendor string *)
  582. CPUID(0, eax, ebx, ecx, edx);
  583. largestFunction := SYSTEM.VAL(LONGINT, eax);
  584. ASSERT(LEN(vendor) >= 13);
  585. GetString(vendor, 0, ebx); GetString(vendor, 4, edx); GetString(vendor, 8, ecx); vendor[12] := 0X;
  586. IF (largestFunction >= 1) THEN
  587. (* CPUID standard function 1 returns: CPU features in ecx & edx *)
  588. CPUID(1, eax, ebx, ecx, edx);
  589. features := SYSTEM.VAL(SET, edx);
  590. features2 := SYSTEM.VAL(SET, ecx);
  591. (* The code below is used to determine the number of threads per processor core (hyperthreading). This is required
  592. since processors supporting hyperthreading are listed only once in the MP tables, so we need to know the
  593. exact number of threads per processor to start the processor correctly *)
  594. IF (HTT IN features) THEN (* multithreading supported by CPU *)
  595. (* logical processor count = number of cores * number of threads per core = total number of threads supported *)
  596. logicalProcessorCount := SYSTEM.VAL(LONGINT, LSH(ebx * {16..23}, -16));
  597. IF (vendor = "GenuineIntel") THEN
  598. IF (largestFunction >= 4) THEN
  599. (* CPUID standard function 4 returns: number of processor cores -1 on this die eax[26.31] *)
  600. ecx := SYSTEM.VAL(SET, 0); (* input parameter - must be set to 0 *)
  601. CPUID(4, eax, ebx, ecx, edx);
  602. coresPerProcessor := SYSTEM.VAL(LONGINT, LSH(eax * {26..31}, -26)) + 1;
  603. threadsPerCore := logicalProcessorCount DIV coresPerProcessor;
  604. ELSE
  605. threadsPerCore := logicalProcessorCount;
  606. END;
  607. ELSIF (vendor = "AuthenticAMD") THEN
  608. (* CPUID extended function 1 returns: largest extended function *)
  609. CPUID(LONGINT (80000000H), eax, ebx, ecx, edx);
  610. largestFunction := SYSTEM.VAL(LONGINT, eax - {31}); (* remove sign *)
  611. IF (largestFunction >= 8) THEN
  612. (* CPUID extended function 8 returns: *)
  613. CPUID(LONGINT (80000008H), eax, ebx, ecx, edx);
  614. coresPerProcessor := SYSTEM.VAL(LONGINT, ecx * {0..7}) + 1;
  615. threadsPerCore := logicalProcessorCount DIV coresPerProcessor;
  616. ELSIF (largestFunction >= 1) THEN
  617. (* CPUID extended function 1 returns CmpLegacy bit in ecx *)
  618. CPUID(LONGINT (80000001H), eax, ebx, ecx, edx);
  619. IF 1 IN ecx THEN (* CmpLegacy bit set -> no hyperthreading *)
  620. coresPerProcessor := logicalProcessorCount;
  621. threadsPerCore := 1;
  622. END;
  623. ELSE
  624. (* single-core, single-thread *)
  625. END;
  626. ELSE
  627. Trace.String("Machine: "); Trace.Yellow; Trace.String("Warning: Cannot detect hyperthreading, unknown CPU vendor ");
  628. Trace.String(vendor); Trace.Ln; Trace.Default;
  629. END;
  630. END;
  631. END;
  632. END;
  633. Trace.String("Machine: "); Trace.Int(coresPerProcessor, 0); Trace.String(" cores per physical package, ");
  634. Trace.Int(threadsPerCore, 0); Trace.String(" threads per core.");
  635. Trace.Ln;
  636. InitFPU;
  637. fcr := (FCR () - {0, 2, 3, 10, 11}) + {0 .. 5, 8, 9}; (* default FCR RC=00B *)
  638. bootID := 0; map[0] := 0;
  639. idAdr := ADDRESSOF (bootID);
  640. (* allow user to specify GetTimer rate, for tracing purposes *)
  641. GetConfig ("MHz", u);
  642. i := 0; mhz := StrToInt (i, u);
  643. END InitBoot;
  644. (** -- Configuration and bootstrapping -- *)
  645. (** Return the value of the configuration string specified by parameter name in parameter val. Returns val = "" if the string was not found, or has an empty value. *)
  646. PROCEDURE GetConfig* (CONST name: ARRAY OF CHAR; VAR val: ARRAY OF CHAR);
  647. VAR i, src: LONGINT; ch: CHAR;
  648. BEGIN
  649. ASSERT (name[0] # "="); (* no longer supported, use GetInit instead *)
  650. src := 0;
  651. LOOP
  652. ch := config[src];
  653. IF ch = 0X THEN EXIT END;
  654. i := 0;
  655. LOOP
  656. ch := config[src];
  657. IF (ch # name[i]) OR (name[i] = 0X) THEN EXIT END;
  658. INC (i); INC (src)
  659. END;
  660. IF (ch = 0X) & (name[i] = 0X) THEN (* found: (src^ = 0X) & (name[i] = 0X) *)
  661. i := 0;
  662. REPEAT
  663. INC (src); ch := config[src]; val[i] := ch; INC (i);
  664. IF i = LEN(val) THEN val[i - 1] := 0X; RETURN END (* val too short *)
  665. UNTIL ch = 0X;
  666. val[i] := 0X; RETURN
  667. ELSE
  668. WHILE ch # 0X DO (* skip to end of name *)
  669. INC (src); ch := config[src]
  670. END;
  671. INC (src);
  672. REPEAT (* skip to end of value *)
  673. ch := config[src]; INC (src)
  674. UNTIL ch = 0X
  675. END
  676. END;
  677. val[0] := 0X
  678. END GetConfig;
  679. (** Get CHS parameters of first two BIOS-supported hard disks. *)
  680. PROCEDURE GetDiskCHS* (d: LONGINT; VAR cyls, hds, spt: LONGINT);
  681. BEGIN
  682. cyls := chs[d].cyls; hds := chs[d].hds; spt := chs[d].spt
  683. END GetDiskCHS;
  684. (** Get parameter values from Init string. If n = 0, return val = ASH(bx, 16) + ax, and if n = 1, return val = ASH(dx, 16) + cx, where ax, bx, cx, dx are the register values after the OBL boot loader or noboot.exe have executed the 16-bit x86 code in the Init string. *)
  685. PROCEDURE GetInit* (n: LONGINT; VAR val: LONGINT);
  686. BEGIN
  687. val := LONGINT(initRegs[n])
  688. END GetInit;
  689. (** Convert a string to an integer. Parameter i specifies where in the string scanning should begin (usually 0 in the first call). Scanning stops at the first non-valid character, and i returns the updated position. Parameter s is the string to be scanned. The value is returned as result, or 0 if not valid. Syntax: number = ["-"] digit {digit} ["H" | "h"] . digit = "0" | ... "9" | "A" .. "F" | "a" .. "f" . If the number contains any hexdecimal letter, or if it ends in "H" or "h", it is interpreted as hexadecimal. *)
  690. PROCEDURE StrToInt* (VAR i: LONGINT; CONST s: ARRAY OF CHAR): LONGINT;
  691. VAR vd, vh, sgn, d: LONGINT; hex: BOOLEAN;
  692. BEGIN
  693. vd := 0; vh := 0; hex := FALSE;
  694. IF s[i] = "-" THEN sgn := -1; INC (i) ELSE sgn := 1 END;
  695. LOOP
  696. IF (s[i] >= "0") & (s[i] <= "9") THEN d := ORD (s[i])-ORD ("0")
  697. ELSIF (CAP (s[i]) >= "A") & (CAP (s[i]) <= "F") THEN d := ORD (CAP (s[i]))-ORD ("A") + 10; hex := TRUE
  698. ELSE EXIT
  699. END;
  700. vd := 10*vd + d; vh := 16*vh + d;
  701. INC (i)
  702. END;
  703. IF CAP (s[i]) = "H" THEN hex := TRUE; INC (i) END; (* optional H *)
  704. IF hex THEN vd := vh END;
  705. RETURN sgn * vd
  706. END StrToInt;
  707. (* Delay for IO *)
  708. PROCEDURE -Wait*;
  709. CODE {SYSTEM.AMD64}
  710. JMP N1
  711. N1: JMP N2
  712. N2: JMP N3
  713. N3:
  714. END Wait;
  715. (* Reset processor by causing a double fault. *)
  716. PROCEDURE Reboot;
  717. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  718. PUSH DWORD 0
  719. PUSH DWORD 0
  720. LIDT [RSP]
  721. INT 3
  722. END Reboot;
  723. (** Shut down the system. If parameter reboot is set, attempt to reboot the system. *)
  724. PROCEDURE Shutdown* (reboot: BOOLEAN);
  725. VAR i: LONGINT;
  726. BEGIN
  727. Cli;
  728. IF reboot THEN (* attempt reboot *)
  729. Portout8 (70H, 8FX); (* Reset type: p. 5-37 AT Tech. Ref. *)
  730. Wait; Portout8 (71H, 0X); (* Note: soft boot flag was set in InitMemory *)
  731. Wait; Portout8 (70H, 0DX);
  732. Wait; Portout8 (64H, 0FEX); (* reset CPU *)
  733. FOR i := 1 TO 10000 DO END;
  734. Reboot
  735. END;
  736. LOOP END
  737. END Shutdown;
  738. (* Get hard disk parameters. *)
  739. PROCEDURE GetPar (p: ADDRESS; ofs: LONGINT): LONGINT;
  740. VAR ch: CHAR;
  741. BEGIN
  742. SYSTEM.GET (p + 12 + ofs, ch);
  743. RETURN ORD (ch)
  744. END GetPar;
  745. (* Read boot table. *)
  746. PROCEDURE ReadBootTable (bt: ADDRESS);
  747. VAR i, p: ADDRESS; j, d, type, addr, size, heapSize: LONGINT; ch: CHAR;
  748. BEGIN
  749. heapSize := 0; lowTop := 0;
  750. p := bt; d := 0;
  751. LOOP
  752. SYSTEM.GET (p, type);
  753. IF type = -1 THEN
  754. EXIT (* end *)
  755. ELSIF type = 3 THEN (* boot memory/top of low memory *)
  756. SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size);
  757. lowTop := addr + size
  758. ELSIF type = 4 THEN (* free memory/extended memory size *)
  759. SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size);
  760. IF addr = HeapAdr THEN heapSize := size END
  761. ELSIF type = 5 THEN (* HD config *)
  762. IF d < MaxDisks THEN
  763. chs[d].cyls := GetPar (p, 0) + 100H * GetPar (p, 1);
  764. chs[d].hds := GetPar (p, 2); chs[d].spt := GetPar (p, 14);
  765. INC (d)
  766. END
  767. ELSIF type = 8 THEN (* config strings *)
  768. i := p + 8; j := 0; (* copy the config strings over *)
  769. LOOP
  770. SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j);
  771. IF ch = 0X THEN EXIT END;
  772. REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X; (* end of name *)
  773. REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X (* end of value *)
  774. END
  775. END;
  776. SYSTEM.GET (p + 4, size); INC (p, size)
  777. END;
  778. ASSERT((heapSize # 0) & (lowTop # 0));
  779. memTop := HeapAdr + heapSize
  780. END ReadBootTable;
  781. (** Read a byte from the non-volatile setup memory. *)
  782. PROCEDURE GetNVByte* (ofs: LONGINT): CHAR;
  783. VAR c: CHAR;
  784. BEGIN
  785. Portout8 (70H, CHR(ofs)); Wait; Portin8(71H, c);
  786. RETURN c
  787. END GetNVByte;
  788. (** Write a byte to the non-volatile setup memory. *)
  789. PROCEDURE PutNVByte* (ofs: LONGINT; val: CHAR);
  790. BEGIN
  791. Portout8 (70H, CHR(ofs)); Wait; Portout8 (71H, val)
  792. END PutNVByte;
  793. (** Compute a checksum for the Intel SMP spec floating pointer structure. *)
  794. PROCEDURE ChecksumMP* (adr: ADDRESS; size: SIZE): LONGINT;
  795. VAR sum: LONGINT; x: ADDRESS; ch: CHAR;
  796. BEGIN
  797. sum := 0;
  798. FOR x := adr TO adr + size-1 DO
  799. SYSTEM.GET (x, ch);
  800. sum := (sum + ORD(ch)) MOD 256
  801. END;
  802. RETURN sum
  803. END ChecksumMP;
  804. (* Search for MP floating pointer structure. *)
  805. PROCEDURE SearchMem (adr: ADDRESS; size: SIZE): ADDRESS;
  806. VAR x, len: LONGINT; ch: CHAR;
  807. BEGIN
  808. WHILE size > 0 DO
  809. SYSTEM.GET (adr, x);
  810. IF x = 05F504D5FH THEN (* "_MP_" found *)
  811. SYSTEM.GET (adr + 8, ch); len := ORD(ch)*16;
  812. IF len > 0 THEN
  813. SYSTEM.GET (adr + 9, ch);
  814. IF (ch = 1X) OR (ch >= 4X) THEN (* version 1.1 or 1.4 or higher *)
  815. IF ChecksumMP(adr, len) = 0 THEN
  816. RETURN adr (* found *)
  817. END
  818. END
  819. END
  820. END;
  821. INC (adr, 16); DEC (size, 16)
  822. END;
  823. RETURN NilAdr (* not found *)
  824. END SearchMem;
  825. (* Search for MP spec info. *)
  826. PROCEDURE SearchMP;
  827. VAR adr: ADDRESS;
  828. BEGIN
  829. adr := 0;
  830. SYSTEM.GET (040EH, SYSTEM.VAL (INTEGER, adr)); (* EBDA address *)
  831. adr := adr*16;
  832. IF adr < 100000H THEN adr := SearchMem(adr, 1024) (* 1. look in EBDA *)
  833. ELSE adr := NilAdr
  834. END;
  835. IF adr = NilAdr THEN (* 2. look in last kb of base memory *)
  836. adr := SearchMem(lowTop + (-lowTop) MOD 10000H - 1024, 1024);
  837. IF adr = NilAdr THEN (* 3. look at top of physical memory *)
  838. adr := SearchMem(memTop - 1024, 1024);
  839. IF adr = NilAdr THEN (* 4. look in BIOS ROM space *)
  840. adr := SearchMem(0E0000H, 20000H)
  841. END
  842. END
  843. END;
  844. IF adr = NilAdr THEN
  845. revMP := 0X; configMP := NilAdr
  846. ELSE
  847. SYSTEM.GET (adr + 9, revMP);
  848. SYSTEM.MOVE(adr + 11, ADDRESSOF(featureMP[0]), 5); (* feature bytes *)
  849. configMP := SYSTEM.GET32 (adr + 4); (* physical address outside reported RAM (spec 1.4 p. 4-2) *)
  850. IF configMP = 0 THEN configMP := NilAdr END
  851. END
  852. END SearchMP;
  853. (* Allocate area for ISA DMA. *)
  854. PROCEDURE AllocateDMA;
  855. VAR old: ADDRESS;
  856. BEGIN
  857. old := lowTop;
  858. dmaSize := DefaultDMASize*1024;
  859. ASSERT((dmaSize >= 0) & (dmaSize <= 65536));
  860. IF (lowTop-dmaSize) DIV 65536 # (lowTop-1) DIV 65536 THEN (* crosses 64KB boundary *)
  861. DEC (lowTop, lowTop MOD 65536) (* round down to 64KB boundary *)
  862. END;
  863. DEC (lowTop, dmaSize); (* allocate memory *)
  864. dmaSize := old - lowTop (* how much was allocated (including rounding) *)
  865. END AllocateDMA;
  866. (* Check if the specified address is RAM. *)
  867. PROCEDURE IsRAM(adr: ADDRESS): BOOLEAN;
  868. CONST Pattern1 = LONGINT (0BEEFC0DEH); Pattern2 = LONGINT (0AA55FF00H);
  869. VAR save, x: LONGINT; ok: BOOLEAN;
  870. BEGIN
  871. ok := FALSE;
  872. SYSTEM.GET (adr, save);
  873. SYSTEM.PUT (adr, Pattern1); (* attempt 1st write *)
  874. x := Pattern2; (* write something else *)
  875. SYSTEM.GET (adr, x); (* attempt 1st read *)
  876. IF x = Pattern1 THEN (* first test passed *)
  877. SYSTEM.PUT (adr, Pattern2); (* attempt 2nd write *)
  878. x := Pattern1; (* write something else *)
  879. SYSTEM.GET (adr, x); (* attempt 2nd read *)
  880. ok := (x = Pattern2)
  881. END;
  882. SYSTEM.PUT (adr, save);
  883. RETURN ok
  884. END IsRAM;
  885. (* Map the physical address in the second virtual page *)
  886. PROCEDURE -InvalidateTLB (address: ADDRESS);
  887. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  888. POP RAX
  889. INVLPG [RAX]
  890. END InvalidateTLB;
  891. PROCEDURE -GetPML4Base (): ADDRESS;
  892. CODE {SYSTEM.AMD64}
  893. MOV RAX, CR3
  894. END GetPML4Base;
  895. PROCEDURE -INVLPG (adr: ADDRESS);
  896. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  897. POP RAX
  898. INVLPG [RAX]
  899. END INVLPG;
  900. (* Check amount of memory available and update memTop. *)
  901. PROCEDURE CheckMemory;
  902. CONST K = 1024; M = K * K; PS = 2 * M; ExtMemAdr = M;
  903. TPS = 4 * K; UserPage = 7; PageNotPresent = 0;
  904. VAR s: ARRAY 16 OF CHAR; i: LONGINT;
  905. physicalAddress, pml4Base, pdpBase, pdBase: ADDRESS;
  906. pml4e, pdpe, pde, lastTable: ADDRESS;
  907. PROCEDURE AllocateTranslationTable (VAR baseAddress, firstEntry: ADDRESS);
  908. BEGIN
  909. baseAddress := lastTable;
  910. firstEntry := baseAddress;
  911. INC (lastTable, TPS);
  912. Fill32 (baseAddress, TPS, PageNotPresent)
  913. END AllocateTranslationTable;
  914. BEGIN
  915. GetConfig("ExtMemSize", s); (* in MB *)
  916. IF s[0] # 0X THEN (* override detection *)
  917. i := 0;
  918. memTop := ExtMemAdr + (StrToInt(i, s)) * M
  919. END;
  920. pml4Base := GetPML4Base ();
  921. DEC (pml4Base, pml4Base MOD TPS);
  922. SYSTEM.GET (pml4Base, pdpBase);
  923. DEC (pdpBase, pdpBase MOD TPS);
  924. SYSTEM.GET (pdpBase, pdBase);
  925. DEC (pdBase, pdBase MOD TPS);
  926. physicalAddress := PS;
  927. lastTable := pdBase + TPS;
  928. pml4e := pml4Base;
  929. pdpe := pdpBase;
  930. pde := pdBase;
  931. WHILE (pml4e < pml4Base + TPS) DO
  932. WHILE (pdpe < pdpBase + TPS) DO
  933. WHILE (pde < pdBase + TPS) DO
  934. INC (pde, 8);
  935. SYSTEM.PUT (pde, physicalAddress + UserPage + 80H);
  936. INVLPG (physicalAddress);
  937. INC (physicalAddress, PS);
  938. IF physicalAddress >= memTop THEN RETURN END;
  939. END;
  940. INC (pdpe, 8);
  941. AllocateTranslationTable (pdBase, pde);
  942. SYSTEM.PUT (pdpe, pde + UserPage);
  943. END;
  944. INC (pml4e, 8);
  945. AllocateTranslationTable (pdpBase, pdpe);
  946. SYSTEM.PUT (pml4e, pdpe + UserPage);
  947. END;
  948. HALT (99);
  949. END CheckMemory;
  950. (* Initialize locks. *)
  951. PROCEDURE InitLocks;
  952. VAR i: LONGINT; s: ARRAY 12 OF CHAR;
  953. BEGIN
  954. IF TimeCount # 0 THEN
  955. GetConfig("LockTimeout", s);
  956. i := 0; maxTime := StrToInt(i, s);
  957. IF maxTime > MAX(LONGINT) DIV 1000000 THEN
  958. maxTime := MAX(LONGINT)
  959. ELSE
  960. maxTime := maxTime * 1000000
  961. END
  962. END;
  963. FOR i := 0 TO MaxCPU-1 DO
  964. proc[i].locksHeld := {}; proc[i].preemptCount := 0
  965. END;
  966. FOR i := 0 TO MaxLocks-1 DO
  967. lock[i].locked := FALSE
  968. END
  969. END InitLocks;
  970. (* Return flags state. *)
  971. PROCEDURE -GetFlags (): SET;
  972. CODE {SYSTEM.AMD64}
  973. PUSHFQ
  974. POP RAX
  975. END GetFlags;
  976. (* Set flags state. *)
  977. PROCEDURE -SetFlags (s: SET);
  978. CODE {SYSTEM.AMD64}
  979. POPFQ
  980. END SetFlags;
  981. PROCEDURE -PushFlags*;
  982. CODE {SYSTEM.AMD64}
  983. PUSHFQ
  984. END PushFlags;
  985. PROCEDURE -PopFlags*;
  986. CODE {SYSTEM.AMD64}
  987. POPFQ
  988. END PopFlags;
  989. (** Disable preemption on the current processor (increment the preemption counter). Returns the current processor ID as side effect. *)
  990. PROCEDURE AcquirePreemption* (): LONGINT;
  991. VAR id: LONGINT;
  992. BEGIN
  993. PushFlags; Cli;
  994. id := ID ();
  995. INC (proc[id].preemptCount);
  996. PopFlags;
  997. RETURN id
  998. END AcquirePreemption;
  999. (** Enable preemption on the current processor (decrement the preemption counter). *)
  1000. PROCEDURE ReleasePreemption*;
  1001. VAR id: LONGINT;
  1002. BEGIN
  1003. PushFlags; Cli;
  1004. id := ID ();
  1005. IF StrongChecks THEN
  1006. ASSERT(proc[id].preemptCount > 0)
  1007. END;
  1008. DEC (proc[id].preemptCount);
  1009. PopFlags
  1010. END ReleasePreemption;
  1011. (** Return the preemption counter of the current processor (specified in parameter). *)
  1012. PROCEDURE PreemptCount* (id: LONGINT): LONGINT;
  1013. BEGIN
  1014. IF StrongChecks THEN
  1015. (*ASSERT(~(9 IN GetFlags ()));*) (* interrupts off *) (* commented out because check is too strong *)
  1016. ASSERT(id = ID ()) (* caller must specify current processor *)
  1017. END;
  1018. RETURN proc[id].preemptCount
  1019. END PreemptCount;
  1020. (* Spin waiting for a lock. Return AL = 1X iff timed out. *)
  1021. PROCEDURE AcquireSpinTimeout(VAR locked: BOOLEAN; count: LONGINT; flags: SET): CHAR;
  1022. CODE {SYSTEM.AMD64}
  1023. MOV RSI, [RBP + flags] ; RSI := flags
  1024. MOV EDI, [RBP + count] ; RDI := count
  1025. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  1026. MOV AL, 1 ; AL := 1
  1027. CLI ; switch interrupts off before acquiring lock
  1028. test:
  1029. CMP [RBX], AL ; locked? { AL = 1 }
  1030. JE wait ; yes, go wait
  1031. XCHG [RBX], AL ; set and read the lock atomically. LOCK prefix implicit.
  1032. CMP AL, 1 ; was locked?
  1033. JNE exit ; no, we have it now, interrupts are off, and AL # 1
  1034. wait:
  1035. ; ASSERT(AL = 1)
  1036. XOR RCX, RCX ; just in case some processor interprets REP this way
  1037. REP NOP ; PAUSE instruction (* see SpinHint *)
  1038. TEST RSI, 200H ; bit 9 - IF
  1039. JZ intoff
  1040. STI ; restore interrupt state quickly to allow pending interrupts (e.g. AosProcessors.StopAll/Broadcast)
  1041. NOP ; NOP required, otherwise STI; CLI not interruptable
  1042. CLI ; disable interrupts
  1043. intoff:
  1044. DEC EDI ; counter
  1045. JNZ test ; not timed out yet
  1046. OR EDI, [RBP + count] ; re-fetch original value & set flags
  1047. JZ test ; if count = 0, retry forever
  1048. ; timed out (AL = 1)
  1049. exit:
  1050. END AcquireSpinTimeout;
  1051. (** Acquire a spin-lock and disable interrupts. *)
  1052. PROCEDURE Acquire* (level: LONGINT);
  1053. VAR id, i: LONGINT; flags: SET; start: HUGEINT;
  1054. BEGIN
  1055. id := AcquirePreemption ();
  1056. flags := GetFlags (); (* store state of interrupt flag *)
  1057. IF StrongChecks THEN
  1058. ASSERT(~(9 IN flags) OR (proc[id].locksHeld = {})); (* interrupts enabled => no locks held *)
  1059. ASSERT(~(level IN proc[id].locksHeld)) (* recursive locks not allowed *)
  1060. END;
  1061. IF (TimeCount = 0) OR (maxTime = 0) THEN
  1062. IF AcquireSpinTimeout(lock[level].locked, 0, flags) = 0X THEN END; (* {interrupts off} *)
  1063. ELSE
  1064. start := GetTimer ();
  1065. WHILE AcquireSpinTimeout(lock[level].locked, TimeCount, flags) = 1X DO
  1066. IF GetTimer () - start > maxTime THEN
  1067. trapState := proc;
  1068. trapLocksBusy := {};
  1069. FOR i := 0 TO MaxLocks-1 DO
  1070. IF lock[i].locked THEN INCL(trapLocksBusy, i) END
  1071. END;
  1072. HALT(1301) (* Lock timeout - see Traps *)
  1073. END
  1074. END
  1075. END;
  1076. IF proc[id].locksHeld = {} THEN
  1077. proc[id].state := flags
  1078. END;
  1079. INCL(proc[id].locksHeld, level); (* we now hold the lock *)
  1080. IF StrongChecks THEN (* no lower-level locks currently held by this processor *)
  1081. ASSERT((level = 0) OR (proc[id].locksHeld * {0..level-1} = {}))
  1082. END
  1083. END Acquire;
  1084. (** Release a spin-lock. Switch on interrupts when last lock released. *)
  1085. PROCEDURE Release* (level: LONGINT);
  1086. VAR id: LONGINT; flags: SET;
  1087. BEGIN (* {interrupts off} *)
  1088. id := ID ();
  1089. IF StrongChecks THEN
  1090. ASSERT(~(9 IN GetFlags ())); (* {interrupts off} *)
  1091. ASSERT(lock[level].locked);
  1092. ASSERT(level IN proc[id].locksHeld)
  1093. END;
  1094. EXCL(proc[id].locksHeld, level);
  1095. IF proc[id].locksHeld = {} THEN
  1096. flags := proc[id].state ELSE flags := GetFlags ()
  1097. END;
  1098. lock[level].locked := FALSE;
  1099. SetFlags(flags);
  1100. ReleasePreemption
  1101. END Release;
  1102. (** Acquire all locks. Only for exceptional cases. *)
  1103. PROCEDURE AcquireAll*;
  1104. VAR lock: LONGINT;
  1105. BEGIN
  1106. FOR lock := HighestLock TO LowestLock BY -1 DO Acquire(lock) END
  1107. END AcquireAll;
  1108. (** Release all locks. Reverse of AcquireAll. *)
  1109. PROCEDURE ReleaseAll*;
  1110. VAR lock: LONGINT;
  1111. BEGIN
  1112. FOR lock := LowestLock TO HighestLock DO Release(lock) END
  1113. END ReleaseAll;
  1114. (** Break all locks held by current processor (for exception handling). Returns levels released. *)
  1115. PROCEDURE BreakAll* (): SET;
  1116. VAR id, level: LONGINT; released: SET;
  1117. BEGIN
  1118. id := AcquirePreemption ();
  1119. PushFlags; Cli;
  1120. released := {};
  1121. FOR level := 0 TO MaxLocks-1 DO
  1122. IF level IN proc[id].locksHeld THEN
  1123. lock[level].locked := FALSE; (* break the lock *)
  1124. EXCL(proc[id].locksHeld, level);
  1125. INCL(released, level)
  1126. END
  1127. END;
  1128. IF proc[id].preemptCount > 1 THEN INCL(released, Preemption) END;
  1129. proc[id].preemptCount := 0; (* clear preemption flag *)
  1130. PopFlags;
  1131. RETURN released
  1132. END BreakAll;
  1133. (** Acquire a fine-grained lock on an active object. *)
  1134. PROCEDURE AcquireObject* (VAR locked: BOOLEAN);
  1135. CODE {SYSTEM.AMD64}
  1136. PUSHFQ
  1137. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  1138. MOV AL, 1
  1139. test:
  1140. CMP [RBX], AL ; locked? { AL = 1 }
  1141. JNE try
  1142. STI
  1143. PAUSE ; PAUSE instruction (* see SpinHint *)
  1144. CLI
  1145. JMP test
  1146. try:
  1147. XCHG [RBX], AL ; set and read the lock atomically. LOCK prefix implicit.
  1148. CMP AL, 1 ; was locked?
  1149. JE test ; yes, try again
  1150. POPFQ
  1151. END AcquireObject;
  1152. (** Release an active object lock. *)
  1153. PROCEDURE ReleaseObject* (VAR locked: BOOLEAN);
  1154. CODE {SYSTEM.AMD64}
  1155. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  1156. MOV BYTE [RBX], 0
  1157. END ReleaseObject;
  1158. (* Load global descriptor table *)
  1159. PROCEDURE LoadGDT(base: ADDRESS; size: SIZE);
  1160. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1161. ; LGDT needs 10 bytes: 2 for the 16-bit limit and 8 for the 64-bit base address in this order
  1162. ; Assumption: size argument in front of base -> promote size value to upper 48 bits of size
  1163. SHL QWORD [RBP + size], 64-16
  1164. LGDT [RBP + size + (64-16) / 8]
  1165. END LoadGDT;
  1166. (* Load segment registers *)
  1167. PROCEDURE LoadSegRegs(data: INTEGER);
  1168. CODE {SYSTEM.AMD64}
  1169. MOV AX, [RBP + data]
  1170. MOV DS, AX
  1171. XOR AX, AX
  1172. MOV ES, AX
  1173. MOV FS, AX
  1174. MOV GS, AX
  1175. END LoadSegRegs;
  1176. (* Return CS. *)
  1177. PROCEDURE -CS* (): INTEGER;
  1178. CODE {SYSTEM.AMD64}
  1179. MOV AX, CS
  1180. END CS;
  1181. (** -- Memory management -- *)
  1182. (* Allocate a physical page below 1M. Parameter adr returns physical and virtual address (or NilAdr).*)
  1183. PROCEDURE NewLowPage(VAR adr: ADDRESS);
  1184. BEGIN
  1185. adr := freeLowPage;
  1186. IF freeLowPage # NilAdr THEN
  1187. SYSTEM.GET (freeLowPage, freeLowPage); (* freeLowPage := freeLowPage.next *)
  1188. DEC(freeLowPages)
  1189. END
  1190. END NewLowPage;
  1191. (* Allocate a directly-mapped page. Parameter adr returns physical and virtual address (or NilAdr). *)
  1192. PROCEDURE NewDirectPage(VAR adr: ADDRESS);
  1193. BEGIN
  1194. IF pageHeapAdr # heapEndAdr THEN
  1195. DEC(pageHeapAdr, PS); adr := pageHeapAdr;
  1196. DEC(freeHighPages)
  1197. ELSE
  1198. adr := NilAdr
  1199. END
  1200. END NewDirectPage;
  1201. (* Allocate a physical page. *)
  1202. PROCEDURE NewPage(VAR physAdr: ADDRESS);
  1203. VAR sp, prev: ADDRESS;
  1204. BEGIN
  1205. SYSTEM.GET(pageStackAdr + NodeSP, sp);
  1206. ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *)
  1207. IF sp > MinSP THEN (* stack not empty, pop entry *)
  1208. DEC(sp, AddressSize);
  1209. SYSTEM.GET (pageStackAdr+sp, physAdr);
  1210. SYSTEM.PUT (pageStackAdr+NodeSP, sp);
  1211. SYSTEM.GET (pageStackAdr+NodePrev, prev);
  1212. IF (sp = MinSP) & (prev # NilAdr) THEN
  1213. pageStackAdr := prev
  1214. END;
  1215. DEC(freeHighPages)
  1216. ELSE
  1217. NewDirectPage(physAdr)
  1218. END
  1219. END NewPage;
  1220. (* Deallocate a physical page. *)
  1221. PROCEDURE DisposePage(physAdr: ADDRESS);
  1222. VAR sp, next, newAdr: ADDRESS;
  1223. BEGIN
  1224. SYSTEM.GET (pageStackAdr + NodeSP, sp);
  1225. ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *)
  1226. IF sp = MaxSP THEN (* current stack full *)
  1227. SYSTEM.GET (pageStackAdr + NodeNext, next);
  1228. IF next # NilAdr THEN (* next stack exists, make it current *)
  1229. pageStackAdr := next;
  1230. SYSTEM.GET (pageStackAdr+NodeSP, sp);
  1231. ASSERT(sp = MinSP) (* must be empty *)
  1232. ELSE (* allocate next stack *)
  1233. NewDirectPage(newAdr);
  1234. IF newAdr = NilAdr THEN
  1235. NewLowPage(newAdr); (* try again from reserve *)
  1236. IF newAdr = NilAdr THEN
  1237. IF Stats THEN INC(NlostPages) END;
  1238. RETURN (* give up (the disposed page is lost) *)
  1239. ELSE
  1240. IF Stats THEN INC(NreservePagesUsed) END
  1241. END
  1242. END;
  1243. sp := MinSP; (* will be written to NodeSP below *)
  1244. SYSTEM.PUT (newAdr + NodeNext, next);
  1245. SYSTEM.PUT (newAdr + NodePrev, pageStackAdr);
  1246. pageStackAdr := newAdr
  1247. END
  1248. END;
  1249. (* push entry on current stack *)
  1250. SYSTEM.PUT (pageStackAdr + sp, physAdr);
  1251. SYSTEM.PUT (pageStackAdr + NodeSP, sp + AddressSize);
  1252. INC(freeHighPages)
  1253. END DisposePage;
  1254. (* Allocate virtual address space for mapping. Parameter size must be multiple of page size. Parameter virtAdr returns virtual address or NilAdr on failure. *)
  1255. PROCEDURE NewVirtual(VAR virtAdr: ADDRESS; size: SIZE);
  1256. BEGIN
  1257. ASSERT(size MOD PS = 0);
  1258. (*
  1259. IF mapTop+size > MapAreaAdr+MapAreaSize THEN
  1260. virtAdr := NilAdr (* out of virtual space *)
  1261. ELSE
  1262. virtAdr := mapTop;
  1263. INC(mapTop, size)
  1264. END
  1265. *)
  1266. (* this code is commented because PACO produces weird behaviour when used with
  1267. 64-bit ADDRESS*)
  1268. virtAdr := mapTop;
  1269. INC(mapTop, size)
  1270. END NewVirtual;
  1271. PROCEDURE DisposeVirtual(virtAdr: ADDRESS; size: SIZE);
  1272. (* to do *)
  1273. END DisposeVirtual;
  1274. (* Map a physical page into the virtual address space. Parameter virtAdr is mapped address and phys is mapping value. Returns TRUE iff mapping successful. *)
  1275. PROCEDURE MapTable (base, index: ADDRESS): ADDRESS;
  1276. VAR pt: ADDRESS;
  1277. BEGIN
  1278. SYSTEM.GET (base + index * AddressSize, pt);
  1279. IF ODD (pt) THEN (* pt present *)
  1280. DEC (pt, pt MOD TPS)
  1281. ELSE
  1282. NewPage(pt);
  1283. IF pt = NilAdr THEN RETURN NilAdr END;
  1284. SYSTEM.PUT (base + index * AddressSize, pt + UserPage);
  1285. Fill32 (pt, TPS, PageNotPresent)
  1286. END;
  1287. RETURN pt;
  1288. END MapTable;
  1289. PROCEDURE MapPage(virtAdr, phys: ADDRESS): BOOLEAN;
  1290. VAR i, pt: ADDRESS;
  1291. pml4e, pdpe, pde, pte: ADDRESS;
  1292. BEGIN
  1293. virtAdr := virtAdr DIV PS;
  1294. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1295. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1296. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1297. pml4e := virtAdr MOD PTEs;
  1298. pt := MapTable (kernelPML4, pml4e);
  1299. IF pt = NilAdr THEN RETURN FALSE END;
  1300. pt := MapTable (pt, pdpe);
  1301. IF pt = NilAdr THEN RETURN FALSE END;
  1302. pt := MapTable (pt, pde);
  1303. IF pt = NilAdr THEN RETURN FALSE END;
  1304. SYSTEM.PUT(pt + pte * AddressSize, phys);
  1305. RETURN TRUE;
  1306. END MapPage;
  1307. (* Return mapped page address for a given virtual address (ODD if mapped) *)
  1308. PROCEDURE MappedPage(virtAdr: ADDRESS): ADDRESS;
  1309. VAR pt: ADDRESS;
  1310. pml4e, pdpe, pde, pte: ADDRESS;
  1311. BEGIN
  1312. virtAdr := virtAdr DIV PS;
  1313. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1314. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1315. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1316. pml4e := virtAdr MOD PTEs;
  1317. SYSTEM.GET(kernelPML4 + pml4e * AddressSize, pt);
  1318. IF ~ODD(pt) THEN RETURN 0 END;
  1319. DEC (pt, pt MOD 1000H);
  1320. SYSTEM.GET(pt + pdpe * AddressSize, pt);
  1321. IF ~ODD(pt) THEN RETURN 0 END;
  1322. DEC (pt, pt MOD 1000H);
  1323. SYSTEM.GET(pt + pde * AddressSize, pt);
  1324. IF ~ODD(pt) THEN RETURN 0 END;
  1325. DEC (pt, pt MOD 1000H);
  1326. SYSTEM.GET (pt + pte * AddressSize, pt);
  1327. RETURN pt;
  1328. END MappedPage;
  1329. (* Unmap a page and return the previous mapping, like MappedPage (). Caller must flush TLB. *)
  1330. PROCEDURE UnmapPage(virtAdr: ADDRESS): ADDRESS;
  1331. VAR t, pt: ADDRESS;
  1332. pml4e, pdpe, pde, pte: ADDRESS;
  1333. BEGIN
  1334. virtAdr := virtAdr DIV PS;
  1335. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1336. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1337. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1338. pml4e := virtAdr MOD PTEs;
  1339. SYSTEM.GET(kernelPML4 + pml4e * AddressSize, pt);
  1340. IF ~ODD(pt) THEN RETURN 0 END;
  1341. DEC (pt, pt MOD 1000H);
  1342. SYSTEM.GET(pt + pdpe * AddressSize, pt);
  1343. IF ~ODD(pt) THEN RETURN 0 END;
  1344. DEC (pt, pt MOD 1000H);
  1345. SYSTEM.GET(pt + pde * AddressSize, pt);
  1346. IF ~ODD(pt) THEN RETURN 0 END;
  1347. DEC (pt, pt MOD 1000H);
  1348. SYSTEM.GET(pt + pte * AddressSize, t);
  1349. SYSTEM.PUT(pt + pte * AddressSize, NIL);
  1350. INVLPG (t);
  1351. RETURN t;
  1352. END UnmapPage;
  1353. (* Map area [virtAdr..virtAdr+size) directly to area [Adr(phys)..Adr(phys)+size). Returns TRUE iff successful. *)
  1354. PROCEDURE MapDirect(virtAdr: ADDRESS; size: SIZE; phys: ADDRESS): BOOLEAN;
  1355. BEGIN
  1356. (*
  1357. Trace.String("MapDirect "); Trace.Address (virtAdr); Trace.Char(' '); Trace.Address (phys); Trace.Char (' '); Trace.Int (size, 0);
  1358. Trace.Int(size DIV PS, 8); Trace.Ln;
  1359. *)
  1360. ASSERT((virtAdr MOD PS = 0) & (size MOD PS = 0));
  1361. WHILE size # 0 DO
  1362. IF ~ODD(MappedPage(virtAdr)) THEN
  1363. IF ~MapPage(virtAdr, phys) THEN RETURN FALSE END
  1364. END;
  1365. INC(virtAdr, PS); INC(phys, PS); DEC(size, PS)
  1366. END;
  1367. RETURN TRUE
  1368. END MapDirect;
  1369. (* Policy decision for heap expansion. NewBlock for the same block has failed try times. *)
  1370. PROCEDURE ExpandNow(try: LONGINT): BOOLEAN;
  1371. VAR size: SIZE;
  1372. BEGIN
  1373. size := LSH(memBlockTail.endBlockAdr - memBlockHead.beginBlockAdr, -10); (* heap size in KB *)
  1374. RETURN (~ODD(try) OR (size < heapMinKB)) & (size < heapMaxKB)
  1375. END ExpandNow;
  1376. (* Try to expand the heap by at least "size" bytes *)
  1377. PROCEDURE ExpandHeap*(try: LONGINT; size: SIZE; VAR memBlock: MemoryBlock; VAR beginBlockAdr, endBlockAdr: ADDRESS);
  1378. BEGIN
  1379. IF ExpandNow(try) THEN
  1380. IF size < expandMin THEN size := expandMin END;
  1381. beginBlockAdr := memBlockHead.endBlockAdr;
  1382. endBlockAdr := beginBlockAdr;
  1383. INC(endBlockAdr, size);
  1384. SetHeapEndAdr(endBlockAdr); (* in/out parameter *)
  1385. memBlock := memBlockHead;
  1386. (* endBlockAdr of memory block is set by caller after free block has been set in memory block - this process is part of lock-free heap expansion *)
  1387. ELSE
  1388. beginBlockAdr := memBlockHead.endBlockAdr;
  1389. endBlockAdr := memBlockHead.endBlockAdr;
  1390. memBlock := NIL
  1391. END
  1392. END ExpandHeap;
  1393. (* Set memory block end address *)
  1394. PROCEDURE SetMemoryBlockEndAddress*(memBlock: MemoryBlock; endBlockAdr: ADDRESS);
  1395. BEGIN
  1396. ASSERT(endBlockAdr >= memBlock.beginBlockAdr);
  1397. memBlock.endBlockAdr := endBlockAdr
  1398. END SetMemoryBlockEndAddress;
  1399. (* Free unused memory block *)
  1400. PROCEDURE FreeMemBlock*(memBlock: MemoryBlock);
  1401. BEGIN
  1402. HALT(515) (* impossible to free heap in I386 native A2 version *)
  1403. END FreeMemBlock;
  1404. (** Attempt to set the heap end address to the specified address. The returned value is the actual new end address (never smaller than previous value). *)
  1405. PROCEDURE SetHeapEndAdr(VAR endAdr: ADDRESS);
  1406. VAR n, m: SIZE;
  1407. BEGIN
  1408. Acquire(Memory);
  1409. n := LSH(endAdr+(PS-1), -PSlog2) - LSH(heapEndAdr, -PSlog2); (* pages requested *)
  1410. m := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2) - ReservedPages; (* max pages *)
  1411. IF n > m THEN n := m END;
  1412. IF n > 0 THEN INC(heapEndAdr, n*PS); DEC(freeHighPages, n) END;
  1413. endAdr := heapEndAdr;
  1414. Release(Memory)
  1415. END SetHeapEndAdr;
  1416. (** Map a physical memory area (physAdr..physAdr+size-1) into the virtual address space. Parameter virtAdr returns the virtual address of mapped region, or NilAdr on failure. *)
  1417. PROCEDURE MapPhysical*(physAdr: ADDRESS; size: SIZE; VAR virtAdr: ADDRESS);
  1418. VAR ofs: ADDRESS;
  1419. BEGIN
  1420. IF (LSH(physAdr, -PSlog2) <= topPageNum) &
  1421. (LSH(physAdr+size-1, -PSlog2) <= topPageNum) &
  1422. (LSH(physAdr, -PSlog2) >= LSH(LowAdr, -PSlog2)) THEN
  1423. virtAdr := physAdr (* directly mapped *)
  1424. ELSE
  1425. ofs := physAdr MOD PS;
  1426. DEC(physAdr, ofs); INC(size, ofs); (* align start to page boundary *)
  1427. INC(size, (-size) MOD PS); (* align end to page boundary *)
  1428. Acquire(Memory);
  1429. NewVirtual(virtAdr, size);
  1430. IF virtAdr # NilAdr THEN
  1431. IF ~MapDirect(virtAdr, size, physAdr + UserPage) THEN
  1432. DisposeVirtual(virtAdr, size);
  1433. virtAdr := NilAdr
  1434. END
  1435. END;
  1436. Release(Memory);
  1437. IF TraceVerbose THEN
  1438. Acquire (TraceOutput);
  1439. Trace.String("Mapping ");
  1440. Trace.IntSuffix(size, 1, "B"); Trace.String(" at ");
  1441. Trace.Address (physAdr); Trace.String (" - "); Trace.Address (physAdr+size-1);
  1442. IF virtAdr = NilAdr THEN
  1443. Trace.String(" failed")
  1444. ELSE
  1445. Trace.String (" to "); Trace.Address (virtAdr);
  1446. IF ofs # 0 THEN Trace.String (", offset "); Trace.Int(ofs, 0) END
  1447. END;
  1448. Trace.Ln;
  1449. Release (TraceOutput);
  1450. END;
  1451. IF virtAdr # NilAdr THEN INC(virtAdr, ofs) END (* adapt virtual address to correct offset *)
  1452. END
  1453. END MapPhysical;
  1454. (** Unmap an area previously mapped with MapPhysical. *)
  1455. PROCEDURE UnmapPhysical*(virtAdr: ADDRESS; size: SIZE);
  1456. (* to do *)
  1457. END UnmapPhysical;
  1458. (** Return the physical address of the specified range of memory, or NilAdr if the range is not contiguous. It is the caller's responsibility to assure the range remains allocated during the time it is in use. *)
  1459. PROCEDURE PhysicalAdr*(adr: ADDRESS; size: SIZE): ADDRESS;
  1460. VAR physAdr, mapped, expected: ADDRESS;
  1461. BEGIN
  1462. IF (LSH(adr, -PSlog2) <= topPageNum) & (LSH(adr+size-1, -PSlog2) <= topPageNum) THEN
  1463. RETURN adr (* directly mapped *)
  1464. ELSE
  1465. Acquire(Memory);
  1466. mapped := MappedPage(adr);
  1467. Release(Memory);
  1468. IF ODD(mapped) & (size > 0) THEN (* mapped, and range not empty or too big *)
  1469. physAdr := mapped - mapped MOD PS + adr MOD PS; (* strip paging bits and add page offset *)
  1470. (* now check if whole range is physically contiguous *)
  1471. DEC(size, PS - adr MOD PS); (* subtract distance to current page end *)
  1472. IF size > 0 THEN (* range crosses current page end *)
  1473. expected := LSH(mapped, -PSlog2)+1; (* expected physical page *)
  1474. LOOP
  1475. INC(adr, PS); (* step to next page *)
  1476. Acquire(Memory);
  1477. mapped := MappedPage(adr);
  1478. Release(Memory);
  1479. IF ~ODD(mapped) OR (LSH(mapped, -PSlog2) # expected) THEN
  1480. physAdr := NilAdr; EXIT
  1481. END;
  1482. DEC(size, PS);
  1483. IF size <= 0 THEN EXIT END; (* ok *)
  1484. INC(expected)
  1485. END
  1486. ELSE
  1487. (* ok, skip *)
  1488. END
  1489. ELSE
  1490. physAdr := NilAdr
  1491. END;
  1492. RETURN physAdr
  1493. END
  1494. END PhysicalAdr;
  1495. (** Translate a virtual address range to num ranges of physical address. num returns 0 on error. *)
  1496. PROCEDURE TranslateVirtual*(virtAdr: ADDRESS; size: SIZE; VAR num: LONGINT; VAR physAdr: ARRAY OF Range);
  1497. VAR ofs, phys1: ADDRESS; size1: SIZE;
  1498. BEGIN
  1499. Acquire(Memory);
  1500. num := 0;
  1501. LOOP
  1502. IF size = 0 THEN EXIT END;
  1503. IF num = LEN(physAdr) THEN num := 0; EXIT END; (* index check *)
  1504. ofs := virtAdr MOD PS; (* offset in page *)
  1505. size1 := PS - ofs; (* distance to next page boundary *)
  1506. IF size1 > size THEN size1 := size END;
  1507. phys1 := MappedPage(virtAdr);
  1508. IF ~ODD(phys1) THEN num := 0; EXIT END; (* page not present *)
  1509. physAdr[num].adr := phys1 - phys1 MOD PS + ofs;
  1510. physAdr[num].size := size1; INC(num);
  1511. INC(virtAdr, size1); DEC(size, size1)
  1512. END;
  1513. IF num = 0 THEN physAdr[0].adr := NilAdr; physAdr[0].size := 0 END;
  1514. Release(Memory)
  1515. END TranslateVirtual;
  1516. (** Return information on free memory in Kbytes. *)
  1517. PROCEDURE GetFreeK*(VAR total, lowFree, highFree: SIZE);
  1518. CONST KperPage = PS DIV 1024;
  1519. BEGIN
  1520. Acquire(Memory);
  1521. total := totalPages * KperPage;
  1522. lowFree := freeLowPages * KperPage;
  1523. highFree := freeHighPages * KperPage;
  1524. Release(Memory)
  1525. END GetFreeK;
  1526. (** -- Stack -- *)
  1527. (** Extend the stack to include the specified address, if possible. Returns TRUE iff ok. *)
  1528. PROCEDURE ExtendStack*(VAR s: Stack; virtAdr: ADDRESS): BOOLEAN;
  1529. VAR phys: ADDRESS; ok: BOOLEAN;
  1530. BEGIN
  1531. Acquire(Memory);
  1532. ok := FALSE;
  1533. IF (virtAdr < s.high) & (virtAdr >= s.low) THEN
  1534. DEC(virtAdr, virtAdr MOD PS); (* round down to page boundary *)
  1535. IF Stats & (virtAdr < s.adr-PS) THEN INC(Nbigskips) END;
  1536. IF ODD(MappedPage(virtAdr)) THEN (* already mapped *)
  1537. ok := TRUE
  1538. ELSE
  1539. NewPage(phys);
  1540. IF phys # NilAdr THEN
  1541. IF MapPage(virtAdr, phys + UserPage) THEN
  1542. IF virtAdr < s.adr THEN
  1543. s.adr := virtAdr
  1544. ELSE
  1545. IF Stats THEN INC(Nfilled) END
  1546. END;
  1547. ok := TRUE
  1548. ELSE
  1549. DisposePage(phys)
  1550. END
  1551. END
  1552. END
  1553. END;
  1554. Release(Memory);
  1555. RETURN ok
  1556. END ExtendStack;
  1557. (** Allocate a stack. Parameter initSP returns initial stack pointer value. *)
  1558. PROCEDURE NewStack*(VAR s: Stack; process: ANY; VAR initSP: ADDRESS);
  1559. VAR adr, phys: ADDRESS; old: HUGEINT; free: SET;
  1560. BEGIN
  1561. ASSERT(InitUserStackSize = PS); (* for now *)
  1562. Acquire(Memory);
  1563. IF Stats THEN INC(NnewStacks) END;
  1564. old := freeStackIndex;
  1565. LOOP
  1566. IF Stats THEN INC(NnewStackLoops) END;
  1567. free := freeStack[freeStackIndex];
  1568. IF free # {} THEN
  1569. adr := 0; WHILE ~(adr IN free) DO INC(adr) END; (* BTW: BSF instruction is not faster *)
  1570. IF Stats THEN INC(NnewStackInnerLoops, adr+1) END;
  1571. EXCL(freeStack[freeStackIndex], adr);
  1572. adr := 10000000H + (freeStackIndex*SetSize + adr)*MaxUserStackSize; (*StackAreaAdr *)
  1573. EXIT
  1574. END;
  1575. INC(freeStackIndex);
  1576. IF freeStackIndex = LEN(freeStack) THEN freeStackIndex := 0 END;
  1577. IF freeStackIndex = old THEN HALT(1503) END (* out of stack space *)
  1578. END;
  1579. NewPage(phys); ASSERT(phys # NilAdr); (* allocate one physical page at first *)
  1580. s.high := adr + MaxUserStackSize; s.low := adr + UserStackGuardSize;
  1581. s.adr := s.high - InitUserStackSize; (* at the top of the virtual area *)
  1582. initSP := s.high-AddressSize;
  1583. IF ~MapPage(s.adr, phys + UserPage) THEN HALT(99) END;
  1584. SYSTEM.PUT (initSP, process);
  1585. Release(Memory)
  1586. END NewStack;
  1587. (** Return the process pointer set when the current user stack was created (must be running on user stack). *)
  1588. PROCEDURE -GetProcessPtr* (): ANY;
  1589. CODE {SYSTEM.AMD64}
  1590. MOV RAX, -MaxUserStackSize
  1591. AND RAX, RSP
  1592. MOV RAX, [RAX + MaxUserStackSize - 8]
  1593. POP RBX; pointer return passed via stack
  1594. MOV [RBX], RAX
  1595. END GetProcessPtr;
  1596. (** True iff current process works on a kernel stack *)
  1597. PROCEDURE WorkingOnKernelStack* (): BOOLEAN;
  1598. VAR id: LONGINT; sp: ADDRESS;
  1599. BEGIN
  1600. ASSERT(KernelStackSize # MaxUserStackSize - UserStackGuardSize); (* detection does only work with this assumption *)
  1601. sp := SYSTEM.GetStackPointer ();
  1602. id := ID ();
  1603. RETURN (sp >= procm[id].stack.low) & (sp <= procm[id].stack.high)
  1604. END WorkingOnKernelStack;
  1605. (** Deallocate a stack. Current thread should not dispose its own stack. Uses privileged instructions. *)
  1606. PROCEDURE DisposeStack*(CONST s: Stack);
  1607. VAR adr, phys: ADDRESS;
  1608. BEGIN
  1609. (* First make sure there are no references to virtual addresses of the old stack in the TLBs. This is required because we are freeing the pages, and they could be remapped later at different virtual addresses. DisposeStack will only be called from the thread finalizer, which ensures that the user will no longer be referencing this memory. Therefore we can make this upcall from outside the locked region, avoiding potential deadlock. *)
  1610. GlobalFlushTLB; (* finalizers are only called after Processors has initialized this upcall *)
  1611. Acquire(Memory);
  1612. IF Stats THEN INC(NdisposeStacks) END;
  1613. adr := s.adr; (* unmap and deallocate all pages of stack *)
  1614. REPEAT
  1615. phys := UnmapPage(adr); (* TLB was flushed and no intermediate references possible to unreachable stack *)
  1616. IF ODD(phys) THEN DisposePage(phys - phys MOD PS) END;
  1617. INC(adr, PS)
  1618. UNTIL adr = s.high;
  1619. adr := (adr - MaxUserStackSize - StackAreaAdr) DIV MaxUserStackSize;
  1620. INCL(freeStack[adr DIV 32], adr MOD 32);
  1621. Release(Memory)
  1622. END DisposeStack;
  1623. (** Check if the specified stack is valid. *)
  1624. PROCEDURE ValidStack*(CONST s: Stack; sp: ADDRESS): BOOLEAN;
  1625. VAR valid: BOOLEAN;
  1626. BEGIN
  1627. Acquire(Memory);
  1628. valid := (sp MOD 4 = 0) & (sp >= s.adr) & (sp <= s.high);
  1629. WHILE valid & (sp < s.high) DO
  1630. valid := ODD(MappedPage(sp));
  1631. INC(sp, PS)
  1632. END;
  1633. Release(Memory);
  1634. RETURN valid
  1635. END ValidStack;
  1636. (** Update the stack snapshot of the current processor. (for Processors) *)
  1637. PROCEDURE UpdateState*;
  1638. VAR id: LONGINT;
  1639. BEGIN
  1640. ASSERT(CS () MOD 4 = 0); (* to get kernel stack pointer *)
  1641. id := ID ();
  1642. ASSERT(procm[id].stack.high # 0); (* current processor stack has been assigned *)
  1643. procm[id].sp := SYSTEM.GetFramePointer () (* instead of ESP, just fetch EBP of current procedure (does not contain pointers) *)
  1644. END UpdateState;
  1645. (** Get kernel stack regions for garbage collection. (for Heaps) *)
  1646. PROCEDURE GetKernelStacks*(VAR stack: ARRAY OF Stack);
  1647. VAR i: LONGINT;
  1648. BEGIN (* {UpdateState has been called by each processor} *)
  1649. FOR i := 0 TO MaxCPU-1 DO
  1650. stack[i].adr := procm[i].sp;
  1651. stack[i].high := procm[i].stack.high
  1652. END
  1653. END GetKernelStacks;
  1654. (* Init page tables (paging still disabled until EnableMM is called). *)
  1655. PROCEDURE InitPages;
  1656. VAR i, j: HUGEINT; phys, lTop, mTop: ADDRESS;
  1657. BEGIN
  1658. (* get top of high and low memory *)
  1659. mTop := memTop;
  1660. DEC(mTop, mTop MOD PS); (* mTop MOD PS = 0 *)
  1661. topPageNum := LSH(mTop-1, -PSlog2);
  1662. lTop := lowTop;
  1663. DEC(lTop, lTop MOD PS); (* lTop MOD PS = 0 *)
  1664. (* initialize NewDirectPage and SetHeapEndAdr (get kernel range) *)
  1665. SYSTEM.GET (LinkAdr + EndBlockOfs, heapEndAdr);
  1666. (* ug *) (*
  1667. SYSTEM.PUT (heapEndAdr, NIL); (* set tag to NIL *)
  1668. INC(heapEndAdr, AddressSize); (* space for NIL *)
  1669. *)
  1670. (* ug: not needed, extension of heap done in GetStaticHeap anyway
  1671. INC(heapEndAdr, K); (* space for free heap block descriptor of type Heaps.HeapBlockDesc at heapEndAdr, initialization is done in Heaps *)
  1672. INC(heapEndAdr, (-heapEndAdr) MOD PS); (* round up to page size *)
  1673. *)
  1674. pageHeapAdr := mTop;
  1675. freeHighPages := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2);
  1676. IF TraceVerbose THEN
  1677. Trace.String("Kernel: "); Trace.Address (LinkAdr); Trace.String(" .. ");
  1678. Trace.Address (heapEndAdr-1); Trace.Ln;
  1679. Trace.String ("High: "); Trace.Address (heapEndAdr); Trace.String(" .. ");
  1680. Trace.Address (pageHeapAdr-1); Trace.String(" = "); Trace.Int (SHORT(freeHighPages),0);
  1681. Trace.StringLn (" free pages")
  1682. END;
  1683. (* initialize empty free page stack *)
  1684. NewDirectPage(pageStackAdr); ASSERT(pageStackAdr # NilAdr);
  1685. SYSTEM.PUT (pageStackAdr+NodeSP, SYSTEM.VAL (ADDRESS, MinSP));
  1686. SYSTEM.PUT (pageStackAdr+NodeNext, SYSTEM.VAL (ADDRESS, NilAdr));
  1687. SYSTEM.PUT (pageStackAdr+NodePrev, SYSTEM.VAL (ADDRESS, NilAdr));
  1688. (* free low pages *)
  1689. freeLowPage := NilAdr; freeLowPages := 0;
  1690. i := lTop DIV PS; j := LowAdr DIV PS;
  1691. IF TraceVerbose THEN
  1692. Trace.String("Low: "); Trace.Address (j*PS); Trace.String (".."); Trace.Address (i*PS-1)
  1693. END;
  1694. REPEAT
  1695. DEC(i); phys := i*PS;
  1696. SYSTEM.PUT (phys, freeLowPage); (* phys.next := freeLowPage *)
  1697. freeLowPage := phys; INC(freeLowPages)
  1698. UNTIL i = j;
  1699. IF TraceVerbose THEN
  1700. Trace.String(" = "); Trace.Int(SHORT(freeLowPages), 1); Trace.StringLn (" free pages")
  1701. END;
  1702. totalPages := LSH(memTop - M + lowTop + dmaSize + PS, -PSlog2); (* what BIOS gave us *)
  1703. (* stacks *)
  1704. ASSERT((StackAreaAdr MOD MaxUserStackSize = 0) & (StackAreaSize MOD MaxUserStackSize = 0));
  1705. FOR i := 0 TO LEN(freeStack)-1 DO freeStack[i] := {0..SetSize-1} END;
  1706. FOR i := MaxUserStacks TO LEN(freeStack)*SetSize-1 DO EXCL(freeStack[i DIV SetSize], i MOD SetSize) END;
  1707. freeStackIndex := 0;
  1708. (* mappings *)
  1709. mapTop := MapAreaAdr;
  1710. (* create the address space *)
  1711. NewPage(kernelPML4); ASSERT(kernelPML4 # NilAdr);
  1712. Fill32(kernelPML4, TPS, PageNotPresent);
  1713. IF ~MapDirect(LowAdr, memTop-LowAdr, LowAdr + UserPage) THEN HALT(99) END (* map heap direct *)
  1714. END InitPages;
  1715. (* Generate a memory segment descriptor. type IN {0..7} & dpl IN {0..3}.
  1716. type
  1717. 0 data, expand-up, read-only
  1718. 1 data, expand-up, read-write
  1719. 2 data, expand-down, read-only
  1720. 3 data, expand-down, read-write
  1721. 4 code, non-conforming, execute-only
  1722. 5 code, non-conforming, execute-read
  1723. 6 code, conforming, execute-only
  1724. 7 code, conforming, execute-read
  1725. *)
  1726. PROCEDURE GenCodeSegDesc (dpl, base, limit: LONGINT; conforming, longmode: BOOLEAN; VAR sd: SegDesc);
  1727. VAR s: SET;
  1728. BEGIN
  1729. sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H;
  1730. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1731. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1732. s := s + {9, 11, 12, 15, 23}; (* present=1, D = 0*)
  1733. IF conforming THEN INCL(s, 10) END;
  1734. IF longmode THEN INCL(s, 21) ELSE INCL (s, 22) END; (* long mode flag or default 32-bit operand *)
  1735. sd.high := SYSTEM.VAL(LONGINT, s)
  1736. END GenCodeSegDesc;
  1737. PROCEDURE GenDataSegDesc (dpl, base, limit: LONGINT; VAR sd: SegDesc);
  1738. VAR s: SET;
  1739. BEGIN
  1740. sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H;
  1741. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1742. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1743. s := s + {9, 12, 15, 22, 23}; (* present=1 *)
  1744. sd.high := SYSTEM.VAL(LONGINT, s)
  1745. END GenDataSegDesc;
  1746. (* Generate a 64-bit TSS descriptor (16bytes). *)
  1747. PROCEDURE GenTSSDesc(base: ADDRESS; limit, dpl: LONGINT; VAR sdl, sdh: SegDesc);
  1748. VAR s: SET;
  1749. BEGIN
  1750. sdl.low := SYSTEM.VAL(LONGINT, ASH(base MOD 10000H, 16) + limit MOD 10000H);
  1751. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1752. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1753. s := s + {8, 11, 15}; (* type=non-busy TSS, present=1, AVL=0, 32-bit=0 *)
  1754. sdl.high := SYSTEM.VAL(LONGINT, s);
  1755. sdh.low := SYSTEM.VAL(LONGINT, base DIV 10000000H);
  1756. sdh.high := 0;
  1757. END GenTSSDesc;
  1758. (* Initialize segmentation. *)
  1759. PROCEDURE InitSegments;
  1760. VAR i: LONGINT;
  1761. BEGIN
  1762. (* limits and bases are ignored in 64-bit mode *)
  1763. (* GDT 0: Null segment *)
  1764. gdt[0].low := 0; gdt[0].high := 0;
  1765. (* GDT 1: 32-bit Kernel code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1766. GenCodeSegDesc(0, 0, M-1, FALSE, FALSE, gdt[1]);
  1767. (* GDT 2: 64-bit Kernel code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1768. GenCodeSegDesc(0, 0, M-1, FALSE, TRUE, gdt[2]);
  1769. (* GDT 3: 32-bit User code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1770. GenCodeSegDesc(0, 0, M-1, TRUE, FALSE, gdt[3]);
  1771. (* GDT 4: 64-bit User code: conforming, execute-read, base 0, limit 4G, PL 0 *)
  1772. GenCodeSegDesc(0, 0, M-1, TRUE, TRUE, gdt[4]);
  1773. (* GDT 5: Kernel stack: read-write, base 0, limit 4G, PL 0 *)
  1774. GenDataSegDesc(0, 0, M-1, gdt[5]);
  1775. (* GDT 6: User stack: read-write, base 0, limit 4G, PL 3 *)
  1776. GenDataSegDesc(3, 0, M-1, gdt[6]);
  1777. (* GDT 7: User/Kernel data: expand-up, read-write, base 0, limit 4G, PL 3 *)
  1778. GenDataSegDesc(3, 0, M-1, gdt[7]);
  1779. FOR i := 0 TO MaxCPU-1 DO
  1780. GenTSSDesc(ADDRESSOF(procm[i].tss), SIZEOF(TSSDesc)-1, 0, gdt[TSSOfs+i*2], gdt[TSSOfs+i*2 + 1]);
  1781. procm[i].sp := 0; procm[i].stack.high := 0
  1782. END
  1783. END InitSegments;
  1784. (* Enable segmentation on the current processor. *)
  1785. PROCEDURE EnableSegments;
  1786. BEGIN
  1787. LoadGDT(ADDRESSOF(gdt[0]), SIZEOF(GDT)-1);
  1788. LoadSegRegs(DataSel)
  1789. END EnableSegments;
  1790. (* Allocate a kernel stack. *)
  1791. PROCEDURE NewKernelStack(VAR stack: Stack);
  1792. VAR phys, virt: ADDRESS; size: SIZE;
  1793. BEGIN
  1794. size := KernelStackSize;
  1795. NewVirtual(virt, size + PS); (* add one page for overflow protection *)
  1796. ASSERT(virt # NilAdr, 1502);
  1797. INC(virt, PS); (* leave page open at bottom *)
  1798. stack.low := virt;
  1799. stack.adr := virt; (* return stack *)
  1800. REPEAT
  1801. NewPage(phys); ASSERT(phys # NilAdr);
  1802. IF ~MapPage(virt, phys + KernelPage) THEN HALT(99) END;
  1803. DEC(size, PS); INC(virt, PS)
  1804. UNTIL size = 0;
  1805. stack.high := virt
  1806. END NewKernelStack;
  1807. (* Set task register *)
  1808. PROCEDURE -SetTR(tr: ADDRESS);
  1809. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1810. POP RAX
  1811. LTR AX
  1812. END SetTR;
  1813. (* Enable memory management and switch to new stack in virtual space.
  1814. Stack layout:
  1815. caller1 return
  1816. caller1 RBP <-- caller0 RBP
  1817. [caller0 locals]
  1818. 04 caller0 return
  1819. 00 caller0 RBP <-- RBP
  1820. locals <-- RSP
  1821. *)
  1822. PROCEDURE -EnableMM(pml4Base, rsp: ADDRESS);
  1823. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1824. POP RBX
  1825. POP RAX
  1826. MOV RCX, [RBP + 8] ; caller0 return
  1827. MOV RDX, [RBP] ; caller0 RBP
  1828. MOV RDX, [RDX + 8] ; caller 1 return
  1829. MOV CR3, RAX ; pml4 page translation base address
  1830. XOR RAX, RAX
  1831. MOV [RBX - 8], RAX ; not UserStackSel (cf. GetUserStack)
  1832. MOV [RBX - 16], RDX ; caller1 return on new stack
  1833. MOV [RBX - 24], RAX ; caller1 RBP on new stack
  1834. LEA RBP, [RBX - 24] ; new stack top
  1835. MOV RSP, RBP
  1836. JMP RCX
  1837. END EnableMM;
  1838. (** -- Initialization -- *)
  1839. (** Initialize memory management.
  1840. o every processor calls this once during initialization
  1841. o mutual exclusion with other processors must be guaranteed by the caller
  1842. o interrupts must be off
  1843. o segmentation and paging is enabled
  1844. o return is on the new stack => caller must have no local variables
  1845. *)
  1846. PROCEDURE InitMemory*;
  1847. VAR id: LONGINT;
  1848. BEGIN
  1849. EnableSegments;
  1850. (* allocate stack *)
  1851. id := ID ();
  1852. NewKernelStack(procm[id].stack);
  1853. procm[id].sp := 0;
  1854. (* initialize TSS *)
  1855. Fill32(ADDRESSOF(procm[id].tss), SIZEOF(TSSDesc), 0);
  1856. procm[id].tss.RSP0 := procm[id].stack.high; (* kernel stack org *)
  1857. procm[id].tss.IOMapBaseAddress := -1; (* no bitmap *)
  1858. (* enable paging and switch stack *)
  1859. SetTR(KernelTR + id*16);
  1860. EnableMM(kernelPML4, procm[id].tss.RSP0)
  1861. END InitMemory;
  1862. (** Initialize a boot page for MP booting. Parameter physAdr returns the physical address of a low page. *)
  1863. PROCEDURE InitBootPage*(start: Startup; VAR physAdr: ADDRESS);
  1864. CONST BootOfs = 800H;
  1865. VAR adr, a: ADDRESS;
  1866. BEGIN
  1867. Acquire(Memory);
  1868. NewLowPage(physAdr);
  1869. Release(Memory);
  1870. ASSERT((physAdr # NilAdr) & (physAdr >= 0) & (physAdr < M) & (physAdr MOD PS = 0));
  1871. adr := physAdr + BootOfs;
  1872. a := adr;
  1873. (* put binary code copy of SMP.Bin to address a (cf. BinToCode.Mod ) *)
  1874. SYSTEM.PUT32(a, 0002F10EBH); INC (a, 4);
  1875. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1876. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1877. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1878. SYSTEM.PUT32(a, 031660000H); INC (a, 4);
  1879. SYSTEM.PUT32(a, 066C88CC0H); INC (a, 4);
  1880. SYSTEM.PUT32(a, 02E04E0C1H); INC (a, 4);
  1881. SYSTEM.PUT32(a, 04A060966H); INC (a, 4);
  1882. SYSTEM.PUT32(a, 0010F2E08H); INC (a, 4);
  1883. SYSTEM.PUT32(a, 02E08081EH); INC (a, 4);
  1884. SYSTEM.PUT32(a, 00216010FH); INC (a, 4);
  1885. SYSTEM.PUT32(a, 0C4896608H); INC (a, 4);
  1886. SYSTEM.PUT32(a, 000C48166H); INC (a, 4);
  1887. SYSTEM.PUT32(a, 00F000008H); INC (a, 4);
  1888. SYSTEM.PUT32(a, 00F66C020H); INC (a, 4);
  1889. SYSTEM.PUT32(a, 00F00E8BAH); INC (a, 4);
  1890. SYSTEM.PUT32(a, 0662EC022H); INC (a, 4);
  1891. SYSTEM.PUT32(a, 0080E1E8BH); INC (a, 4);
  1892. SYSTEM.PUT32(a, 00850EA66H); INC (a, 4);
  1893. SYSTEM.PUT32(a, 000080000H); INC (a, 4);
  1894. SYSTEM.PUT32(a, 00FE0200FH); INC (a, 4);
  1895. SYSTEM.PUT32(a, 00F05E8BAH); INC (a, 4);
  1896. SYSTEM.PUT32(a, 0220FE022H); INC (a, 4);
  1897. SYSTEM.PUT32(a, 00080B9DBH); INC (a, 4);
  1898. SYSTEM.PUT32(a, 0320FC000H); INC (a, 4);
  1899. SYSTEM.PUT32(a, 008E8BA0FH); INC (a, 4);
  1900. SYSTEM.PUT32(a, 0200F300FH); INC (a, 4);
  1901. SYSTEM.PUT32(a, 0E8BA0FC0H); INC (a, 4);
  1902. SYSTEM.PUT32(a, 0C0220F1FH); INC (a, 4);
  1903. SYSTEM.PUT32(a, 0000000EAH); INC (a, 4);
  1904. SYSTEM.PUT16(a, 01000H); INC (a, 2);
  1905. SYSTEM.PUT8(a, 000H); INC (a);
  1906. (* the following offsets must be patched and can be reported
  1907. by the assembler when assembling SMP.S with: PCAAMD64.Assemble SMP.S l~ *)
  1908. SYSTEM.PUT32 (adr+14, SYSTEM.VAL (LONGINT, kernelPML4)); (* cf. label PML4BASE *)
  1909. SYSTEM.PUT32 (adr+117, SYSTEM.VAL (LONGINT, start)); (* not a method *) (* cf. label KENTRY *)
  1910. SYSTEM.PUT32 (adr+4, SYSTEM.VAL (LONGINT, ADDRESSOF(gdt[0]))); (* cf. label GDT *)
  1911. (* jump at start *)
  1912. SYSTEM.PUT8(physAdr, 0EAX); (* jmp far *)
  1913. SYSTEM.PUT32(physAdr + 1, ASH(physAdr, 16-4) + BootOfs) (* seg:ofs *)
  1914. END InitBootPage;
  1915. (** The BP in a MP system calls this to map the APIC physical address directly. *)
  1916. PROCEDURE InitAPICArea*(adr: ADDRESS; size: SIZE);
  1917. BEGIN
  1918. (* ASSERT((size = PS) & (adr >= IntelAreaAdr) & (adr+size-1 < IntelAreaAdr+IntelAreaSize)); *)
  1919. IF ~MapDirect(adr, size, adr + UserPage) THEN HALT(99) END
  1920. END InitAPICArea;
  1921. (* Set machine-dependent parameters gcThreshold, expandMin, heapMinKB and heapMaxKB *)
  1922. PROCEDURE SetGCParams*;
  1923. VAR size, t: SIZE;
  1924. BEGIN
  1925. GetFreeK(size, t, t); (* size is total memory size in KB *)
  1926. heapMinKB := size * HeapMin DIV 100;
  1927. heapMaxKB := size * HeapMax DIV 100;
  1928. expandMin := size * ExpandRate DIV 100 * 1024;
  1929. IF expandMin < 0 THEN expandMin := MAX(LONGINT) END;
  1930. gcThreshold := size * Threshold DIV 100 * 1024;
  1931. IF gcThreshold < 0 THEN gcThreshold := MAX(LONGINT) END
  1932. END SetGCParams;
  1933. (** Get first memory block and first free address, heap area in first memory block is automatically expanded to account for the first
  1934. few calls to NEW *)
  1935. PROCEDURE GetStaticHeap*(VAR beginBlockAdr, endBlockAdr, freeBlockAdr: ADDRESS);
  1936. BEGIN
  1937. beginBlockAdr := initialMemBlock.beginBlockAdr;
  1938. endBlockAdr := initialMemBlock.endBlockAdr;
  1939. freeBlockAdr := beginBlockAdr;
  1940. END GetStaticHeap;
  1941. (* returns if an address is a currently allocated heap address *)
  1942. PROCEDURE ValidHeapAddress*(p: ADDRESS): BOOLEAN;
  1943. BEGIN
  1944. RETURN (p >= memBlockHead.beginBlockAdr) & (p <= memBlockTail.endBlockAdr)
  1945. OR (p>=401000H) & (p<=500000H) (*! guess until kernel size known *)
  1946. END ValidHeapAddress;
  1947. (** Jump from kernel to user mode. Every processor calls this during initialization. *)
  1948. PROCEDURE JumpToUserLevel*(userRBP: ADDRESS);
  1949. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1950. PUSH UserStackSel ; SS3
  1951. PUSH QWORD [RBP + userRBP] ; RSP3
  1952. PUSHFQ ; RFLAGS3
  1953. PUSH User64CodeSel ; CS3
  1954. CALL DWORD L1 ; PUSH L1 (RIP3)
  1955. L1:
  1956. ADD QWORD [RSP], BYTE 7 ; adjust RIP3 to L2 (L2-L1 should be 7)
  1957. IRETQ ; switch to level 3 and continue at following instruction
  1958. L2:
  1959. POP RBP ; from level 3 stack (refer to AosActive.NewProcess)
  1960. RET ; jump to body of first active object; cf. Objects.NewProcess
  1961. END JumpToUserLevel;
  1962. (* should ensure that a given address can be represented in the legacy 4GB address space
  1963. replacement for unsafe: x := SYSTEM.VAL (LONGINT, y) with y of type ADDRESS
  1964. -> better rewrite client code! this procedure should be redundant and removable in the end! *)
  1965. PROCEDURE Ensure32BitAddress*(adr: ADDRESS): Address32;
  1966. BEGIN
  1967. (* TODO *)
  1968. ASSERT (Is32BitAddress (adr), 9876);
  1969. RETURN SYSTEM.VAL (Address32, adr)
  1970. END Ensure32BitAddress;
  1971. PROCEDURE Is32BitAddress*(adr: ADDRESS): BOOLEAN;
  1972. BEGIN RETURN SYSTEM.VAL (Address32, adr) = adr;
  1973. END Is32BitAddress;
  1974. (**
  1975. * Flush Data Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1976. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1977. * left empty on Intel architecture.
  1978. *)
  1979. PROCEDURE FlushDCacheRange * (adr: ADDRESS; len: LONGINT);
  1980. END FlushDCacheRange;
  1981. (**
  1982. * Invalidate Data Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1983. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1984. * left empty on Intel architecture.
  1985. *)
  1986. PROCEDURE InvalidateDCacheRange * (adr: ADDRESS; len: LONGINT);
  1987. END InvalidateDCacheRange;
  1988. (**
  1989. * Invalidate Instruction Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1990. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1991. * left empty on Intel architecture.
  1992. *)
  1993. PROCEDURE InvalidateICacheRange * (adr: ADDRESS; len: LONGINT);
  1994. END InvalidateICacheRange;
  1995. PROCEDURE -SetRA(n: SIZE);
  1996. CODE POP RAX
  1997. END SetRA;
  1998. (* Unexpected - Default interrupt handler *)
  1999. PROCEDURE Unexpected(VAR state: State);
  2000. VAR int: HUGEINT; isr, irr: CHAR;
  2001. BEGIN
  2002. int := state.INT;
  2003. IF HandleSpurious & ((int >= IRQ0) & (int <= MaxIRQ) OR (int = MPSPU)) THEN (* unexpected IRQ, get more info *)
  2004. IF (int >= IRQ8) & (int <= IRQ15) THEN
  2005. Portout8 (IntB0, 0BX); Portin8(IntB0, isr);
  2006. Portout8 (IntB0, 0AX); Portin8(IntB0, irr)
  2007. ELSIF (int >= IRQ0) & (int <= IRQ7) THEN
  2008. Portout8 (IntA0, 0BX); Portin8(IntA0, isr);
  2009. Portout8 (IntA0, 0AX); Portin8(IntA0, irr)
  2010. ELSE
  2011. isr := 0X; irr := 0X
  2012. END;
  2013. IF TraceSpurious THEN
  2014. Acquire (TraceOutput);
  2015. Trace.String("INT"); Trace.Int(SHORT(int), 1);
  2016. Trace.Hex(ORD(isr), -3); Trace.Hex(ORD(irr), -2); Trace.Ln;
  2017. Release (TraceOutput);
  2018. END
  2019. ELSE
  2020. Acquire (TraceOutput);
  2021. Trace.StringLn ("Unexpected interrupt");
  2022. Trace.Memory(ADDRESSOF(state), SIZEOF(State)-4*8); (* exclude last 4 fields *)
  2023. IF int = 3 THEN (* was a HALT or ASSERT *)
  2024. (* It seems that no trap handler is installed (Traps not linked), so wait endlessly, while holding trace lock. This should quiten down the system, although other processors may possibly still run processes. *)
  2025. LOOP END
  2026. ELSE
  2027. Release (TraceOutput);
  2028. SetRA(int);
  2029. HALT(1801) (* unexpected interrupt *)
  2030. END
  2031. END
  2032. END Unexpected;
  2033. (* InEnableIRQ - Enable a hardware interrupt (caller must hold module lock). *)
  2034. PROCEDURE -InEnableIRQ (int: HUGEINT);
  2035. CODE {SYSTEM.AMD64}
  2036. POP RBX
  2037. CMP RBX, IRQ7
  2038. JG cont2
  2039. IN AL, IntA1
  2040. SUB RBX, IRQ0
  2041. BTR RAX, RBX
  2042. OUT IntA1, AL
  2043. JMP end
  2044. cont2:
  2045. IN AL, IntB1
  2046. SUB RBX, IRQ8
  2047. BTR RAX, RBX
  2048. OUT IntB1, AL
  2049. end:
  2050. END InEnableIRQ;
  2051. (* InDisableIRQ - Disable a hardware interrupt (caller must hold module lock). *)
  2052. PROCEDURE -InDisableIRQ (int: HUGEINT);
  2053. CODE {SYSTEM.AMD64}
  2054. POP RBX
  2055. CMP RBX, IRQ7
  2056. JG cont2
  2057. IN AL, IntA1
  2058. SUB RBX, IRQ0
  2059. BTS RAX, RBX
  2060. OUT IntA1, AL
  2061. JMP end
  2062. cont2:
  2063. IN AL, IntB1
  2064. SUB RBX, IRQ8
  2065. BTS RAX, RBX
  2066. OUT IntB1, AL
  2067. end:
  2068. END InDisableIRQ;
  2069. (** EnableIRQ - Enable a hardware interrupt (also done automatically by InstallHandler). *)
  2070. PROCEDURE EnableIRQ* (int: HUGEINT);
  2071. BEGIN
  2072. (* ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2)); *)
  2073. Acquire(Interrupts); (* protect interrupt mask register *)
  2074. InEnableIRQ(int);
  2075. Release(Interrupts)
  2076. END EnableIRQ;
  2077. (** DisableIRQ - Disable a hardware interrupt. *)
  2078. PROCEDURE DisableIRQ* (int: HUGEINT);
  2079. BEGIN
  2080. ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2));
  2081. Acquire(Interrupts); (* protect interrupt mask register *)
  2082. InDisableIRQ(int);
  2083. Release(Interrupts)
  2084. END DisableIRQ;
  2085. (** InstallHandler - Install interrupt handler & enable IRQ if necessary.
  2086. On entry to h interrupts are disabled and may be enabled with Sti. After handling the interrupt
  2087. the state of interrupts are restored. The acknowledgement of a hardware interrupt is done automatically.
  2088. IRQs are mapped from IRQ0 to MaxIRQ. *)
  2089. PROCEDURE InstallHandler* (h: Handler; int: LONGINT);
  2090. VAR (* n: HandlerList; *) i: LONGINT; unexpected: Handler;
  2091. BEGIN
  2092. ASSERT(default.valid); (* initialized *)
  2093. ASSERT(int # IRQ2); (* IRQ2 is used for cascading and remapped to IRQ9 *)
  2094. Acquire(Interrupts);
  2095. (* FieldInterrupt may traverse list while it is being modified *)
  2096. i := 0;
  2097. unexpected := Unexpected;
  2098. IF intHandler[int, 0].handler # unexpected THEN
  2099. WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO
  2100. INC(i)
  2101. END;
  2102. IF i < MaxNumHandlers - 1 THEN
  2103. intHandler[int, i].valid := TRUE;
  2104. intHandler[int, i].handler := h;
  2105. ELSE
  2106. Acquire(TraceOutput);
  2107. Trace.String("Machine.InstallHandler: handler could not be installed for interrupt "); Trace.Int(int, 0);
  2108. Trace.String(" - too many handlers per interrupt number"); Trace.Ln;
  2109. Release(TraceOutput)
  2110. END
  2111. ELSE
  2112. intHandler[int, 0].handler := h;
  2113. IF (int >= IRQ0) & (int <= IRQ15) THEN InEnableIRQ(int) END
  2114. END;
  2115. Release(Interrupts)
  2116. END InstallHandler;
  2117. (** RemoveHandler - Uninstall interrupt handler & disable IRQ if necessary *)
  2118. PROCEDURE RemoveHandler* (h: Handler; int: LONGINT);
  2119. VAR (* p, c: HandlerList; *) i, j, foundIndex: LONGINT;
  2120. BEGIN
  2121. ASSERT(default.valid); (* initialized *)
  2122. Acquire(Interrupts);
  2123. (* find h *)
  2124. i := 0;
  2125. foundIndex := -1;
  2126. WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO
  2127. IF intHandler[int, i].handler = h THEN foundIndex := i END;
  2128. INC(i)
  2129. END;
  2130. IF foundIndex # -1 THEN
  2131. (* h found -> copy interrupt handlers higher than foundIndex *)
  2132. FOR j := foundIndex TO i - 2 DO
  2133. intHandler[int, j] := intHandler[int, j + 1]
  2134. END
  2135. END;
  2136. IF ~intHandler[int, 0].valid THEN
  2137. (* handler h was the only interrupt handler for interrupt int -> install the default handler *)
  2138. intHandler[int, 0] := default;
  2139. IF (int >= IRQ0) & (int <= IRQ15) THEN DisableIRQ(int) END
  2140. END;
  2141. Release(Interrupts)
  2142. END RemoveHandler;
  2143. (* Get control registers. *)
  2144. PROCEDURE GetCR0to4(VAR cr: ARRAY OF HUGEINT);
  2145. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2146. MOV RDI, [RBP + cr]
  2147. MOV RAX, CR0
  2148. XOR RBX, RBX ; CR1 is not documented
  2149. MOV RCX, CR2
  2150. MOV RDX, CR3
  2151. MOV [RDI + 0], RAX
  2152. MOV [RDI + 8], RBX
  2153. MOV [RDI + 16], RCX
  2154. MOV [RDI + 24], RDX
  2155. MOV RAX, CR4 ; Pentium only
  2156. MOV [RDI + 32], RAX
  2157. END GetCR0to4;
  2158. (* GetDR0to7 - Get debug registers. *)
  2159. PROCEDURE GetDR0to7(VAR dr: ARRAY OF HUGEINT);
  2160. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2161. MOV RDI, [RBP + dr]
  2162. MOV RAX, DR0
  2163. MOV RBX, DR1
  2164. MOV RCX, DR2
  2165. MOV RDX, DR3
  2166. MOV [RDI + 0], RAX
  2167. MOV [RDI + 8], RBX
  2168. MOV [RDI + 16], RCX
  2169. MOV [RDI + 24], RDX
  2170. XOR RAX, RAX ; DR4 is not documented
  2171. XOR RBX, RBX ; DR5 is not documented
  2172. MOV RCX, DR6
  2173. MOV RDX, DR7
  2174. MOV [RDI + 32], RAX
  2175. MOV [RDI + 40], RBX
  2176. MOV [RDI + 48], RCX
  2177. MOV [RDI + 56], RDX
  2178. END GetDR0to7;
  2179. (* CLTS - Clear task-switched flag. *)
  2180. PROCEDURE -CLTS;
  2181. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2182. CLTS
  2183. END CLTS;
  2184. (* GetFPU - Store floating-point environment (28 bytes) and mask all floating-point exceptions. *)
  2185. PROCEDURE -GetFPU(adr: ADDRESS);
  2186. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2187. POP RBX
  2188. FNSTENV [RBX] ; also masks all exceptions
  2189. FWAIT
  2190. END GetFPU;
  2191. (* CR2 - Get page fault address. *)
  2192. PROCEDURE -CR2* (): ADDRESS;
  2193. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2194. MOV RAX, CR2
  2195. END CR2;
  2196. (** GetExceptionState - Get exception state from interrupt state (and switch on interrupts). *)
  2197. PROCEDURE GetExceptionState* (VAR int: State; VAR exc: ExceptionState);
  2198. VAR id: LONGINT; level0: BOOLEAN;
  2199. BEGIN
  2200. (* save all state information while interrupts are still disabled *)
  2201. exc.halt := -int.INT; id := ID ();
  2202. IF int.INT = PF THEN exc.pf := CR2 () ELSE exc.pf := 0 END;
  2203. GetCR0to4(exc.CR);
  2204. GetDR0to7(exc.DR);
  2205. CLTS; (* ignore task switch flag *)
  2206. IF int.INT = MF THEN
  2207. GetFPU(ADDRESSOF(exc.FPU[0]));
  2208. int.PC := SYSTEM.VAL (ADDRESS, exc.FPU[3]); (* modify PC according to FPU info *)
  2209. (* set halt code according to FPU info *)
  2210. IF 2 IN exc.FPU[1] THEN exc.halt := -32 (* division by 0 *)
  2211. ELSIF 3 IN exc.FPU[1] THEN exc.halt := -33 (* overflow *)
  2212. ELSIF 0 IN exc.FPU[1] THEN exc.halt := -34 (* operation invalid *)
  2213. ELSIF 6 IN exc.FPU[1] THEN exc.halt := -35 (* stack fault *)
  2214. ELSIF 1 IN exc.FPU[1] THEN exc.halt := -36 (* denormalized *)
  2215. ELSIF 4 IN exc.FPU[1] THEN exc.halt := -37 (* underflow *)
  2216. ELSIF 5 IN exc.FPU[1] THEN exc.halt := -38 (* precision loss *)
  2217. ELSE (* {exc.halt = -16} *)
  2218. END
  2219. ELSE
  2220. Fill32(ADDRESSOF(exc.FPU[0]), LEN(exc.FPU)*SIZEOF(SET), 0)
  2221. END;
  2222. SetupFPU;
  2223. level0 := (int.CS MOD 4 = KernelLevel);
  2224. IF int.INT = BP THEN (* breakpoint (HALT) *)
  2225. IF level0 THEN
  2226. exc.halt := int.SP (* get halt code *)
  2227. (* if HALT(MAX(INTEGER)), leave halt code on stack when returning, but not serious problem.*)
  2228. ELSE
  2229. SYSTEM.GET (int.SP, exc.halt); (* get halt code from outer stack *)
  2230. IF exc.halt >= MAX(INTEGER) THEN INC (int.SP, AddressSize) END (* pop halt code from outer stack *)
  2231. END;
  2232. IF exc.halt < MAX(INTEGER) THEN DEC (int.PC) END; (* point to the INT 3 instruction (assume 0CCX, not 0CDX 3X) *)
  2233. ELSIF int.INT = OVF THEN (* overflow *)
  2234. DEC (int.PC) (* point to the INTO instruction (assume 0CEX, not 0CDX 4X) *)
  2235. ELSIF int.INT = PF THEN (* page fault *)
  2236. IF int.PC = 0 THEN (* reset PC to return address of indirect CALL to 0 *)
  2237. IF level0 THEN int.PC := int.SP (* ret adr *) ELSE SYSTEM.GET (int.SP, int.PC) END
  2238. END
  2239. END;
  2240. (* get segment registers *)
  2241. IF level0 THEN (* from same level, no ESP, SS etc. on stack *)
  2242. exc.SP := ADDRESSOF(int.SP) (* stack was here when interrupt happened *)
  2243. ELSE (* from outer level *)
  2244. exc.SP := int.SP
  2245. END
  2246. END GetExceptionState;
  2247. (* FieldInterrupt and FieldIRQ *)
  2248. (*
  2249. At entry to a Handler procedure the stack is as follows:
  2250. -- if (VMBit IN .RFLAGS) --
  2251. 176 -- .SS
  2252. 168 -- .RSP ; or haltcode
  2253. -- (VMBit IN .RFLAGS) OR (CS MOD 4 < .CS MOD 4) --
  2254. 160 -- .RFLAGS
  2255. 152 -- .CS
  2256. 144 -- .RIP ; rest popped by IRETD
  2257. 136 -- .ERR/RBP ; pushed by processor or glue code, popped by POP RBP
  2258. 128 -- .INT <-- .RSP0 ; pushed by glue code, popped by POP RBP
  2259. 120 -- .RAX
  2260. 112 -- .RCX
  2261. 104 -- .RDX
  2262. 96 -- .RBX
  2263. 88 -- .RSP0
  2264. 80 -- .RBP/ERR ; exchanged by glue code
  2265. 72 -- .RSI
  2266. 64 -- .RDI
  2267. 56 -- .R8
  2268. 48 -- .R9
  2269. 40 -- .R10
  2270. 32 -- .R11
  2271. 24 -- .R12
  2272. 16 -- .R13
  2273. 08 -- .R14
  2274. 00 48 .R15 <--- state: State
  2275. -- 40 ptr
  2276. -- 32 object pointer for DELEGATE
  2277. -- 24 TAG(state)
  2278. -- 16 ADR(state)
  2279. -- 08 RIP' (RET to FieldInterrupt)
  2280. -- 00 RBP' <-- RBP
  2281. -- -- locals <-- RSP
  2282. *)
  2283. PROCEDURE {NOPAF} FieldInterrupt;
  2284. CONST SizeOfHandlerRec = SIZEOF(HandlerRec);
  2285. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2286. entry:
  2287. ; fake PUSHAD (not available in 64-bit mode)
  2288. PUSH RAX
  2289. PUSH RCX
  2290. PUSH RDX
  2291. PUSH RBX ; (error code)
  2292. LEA RAX, [RSP - 4 * 8] ; (RSP minus the four pushed 64-bit registers)
  2293. PUSH RAX ; original value of RSP
  2294. PUSH RBP
  2295. PUSH RSI
  2296. PUSH RDI
  2297. PUSH R8
  2298. PUSH R9
  2299. PUSH R10
  2300. PUSH R11
  2301. PUSH R12
  2302. PUSH R13
  2303. PUSH R14
  2304. PUSH R15
  2305. LEA RBP, [RSP + 136]
  2306. MOV RBX, [RSP + 128] ; RBX = int number
  2307. IMUL RBX, RBX, MaxNumHandlers
  2308. IMUL RBX, RBX, SizeOfHandlerRec
  2309. ; todo: replace LEA by MOV when compiler supports this
  2310. LEA RAX, intHandler
  2311. ADD RAX, RBX ; address of intHandler[int, 0]
  2312. ; todo: replace LEA by MOV when compiler supports this
  2313. LEA RDX, stateTag
  2314. loop: ; call all handlers for the interrupt
  2315. MOV RCX, RSP
  2316. PUSH RAX ; save ptr for table
  2317. PUSH QWORD [RAX + 12] ; delegate
  2318. PUSH RDX ; TAG(state)
  2319. PUSH RCX ; ADR(state)
  2320. CALL QWORD [RAX+4] ; call handler
  2321. ADD RSP, 24
  2322. CLI ; handler may have re-enabled interrupts
  2323. POP RAX
  2324. ADD RAX, SizeOfHandlerRec
  2325. MOV RBX, [RAX]
  2326. CMP RBX, 0
  2327. JNE loop
  2328. ; fake POPAD (not available in 64-bit mode)
  2329. POP R15
  2330. POP R14
  2331. POP R13
  2332. POP R12
  2333. POP R11
  2334. POP R10
  2335. POP R9
  2336. POP R8
  2337. POP RDI
  2338. POP RSI
  2339. POP RBP
  2340. ADD RSP, 8 ;POP RSP
  2341. POP RBX
  2342. POP RDX
  2343. POP RCX
  2344. POP RAX ; now EBP = error code
  2345. POP RBP ; now EBP = INT
  2346. POP RBP ; now EBP = caller RBP
  2347. IRETQ
  2348. END FieldInterrupt;
  2349. PROCEDURE {NOPAF} FieldIRQ;
  2350. CONST SizeOfHandlerRec = SIZEOF(HandlerRec);
  2351. CODE {SYSTEM.AMD64}
  2352. entry:
  2353. ; fake PUSHAD (not available in 64-bit mode)
  2354. PUSH RAX
  2355. PUSH RCX
  2356. PUSH RDX
  2357. PUSH RBX ; (error code)
  2358. LEA RAX, [RSP - 4 * 8] ; (RSP minus the four pushed 64-bit registers)
  2359. PUSH RAX ; original value of RSP
  2360. PUSH RBP
  2361. PUSH RSI
  2362. PUSH RDI
  2363. PUSH R8
  2364. PUSH R9
  2365. PUSH R10
  2366. PUSH R11
  2367. PUSH R12
  2368. PUSH R13
  2369. PUSH R14
  2370. PUSH R15
  2371. LEA RBP, [RSP + 136]
  2372. ;; PUSH 32[ESP] ; int number
  2373. ;; CALL traceInterruptIn
  2374. MOV RBX, [RSP + 128] ; RBX = int number
  2375. IMUL RBX, RBX, MaxNumHandlers
  2376. IMUL RBX, RBX, SizeOfHandlerRec
  2377. ; todo: replace LEA by MOV when compiler supports this
  2378. LEA RAX, intHandler
  2379. ADD RAX, RBX ; address of intHandler[int, 0]
  2380. ; todo: replace LEA by MOV when compiler supports this
  2381. LEA RDX, stateTag
  2382. loop: ; call all handlers for the interrupt
  2383. MOV RCX, RSP
  2384. PUSH RAX ; save ptr for linked list
  2385. PUSH QWORD [RAX + 12] ; delegate
  2386. PUSH RDX ; TAG(state)
  2387. PUSH RCX ; ADR(state)
  2388. CALL QWORD [RAX + 4] ; call handler
  2389. ADD RSP, 24
  2390. CLI ; handler may have re-enabled interrupts
  2391. POP RAX
  2392. ADD RAX, SizeOfHandlerRec
  2393. MOV RBX, [RAX]
  2394. CMP RBX, 0
  2395. JNE loop
  2396. ;; PUSH 32[ESP] ; int number
  2397. ;; CALL traceInterruptOut
  2398. ; ack interrupt
  2399. MOV AL, 20H ; undoc PC ed. 2 p. 1018
  2400. CMP BYTE [RSP + 128], IRQ8
  2401. JB irq0
  2402. OUT IntB0, AL ; 2nd controller
  2403. irq0:
  2404. OUT IntA0, AL ; 1st controller
  2405. ; fake POPAD (not available in 64-bit mode)
  2406. POP R15
  2407. POP R14
  2408. POP R13
  2409. POP R12
  2410. POP R11
  2411. POP R10
  2412. POP R9
  2413. POP R8
  2414. POP RDI
  2415. POP RSI
  2416. POP RBP
  2417. ADD RSP, 8 ;POP RSP
  2418. POP RBX
  2419. POP RDX
  2420. POP RCX
  2421. POP RAX ; now RBP = error code
  2422. POP RBP ; now RBP = INT
  2423. POP RBP ; now RBP = caller RBP
  2424. IRETQ
  2425. END FieldIRQ;
  2426. (* LoadIDT - Load interrupt descriptor table *)
  2427. PROCEDURE LoadIDT(base: ADDRESS; size: SIZE);
  2428. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2429. ; LIDT needs 10 bytes: 2 for the 16-bit limit and 8 for the 64-bit base address
  2430. ; Assumption: size in front of base -> promote size value to upper 48 bits of size
  2431. SHL QWORD [RBP + size], 64-16
  2432. LIDT [RBP + size + (64-16) / 8]
  2433. END LoadIDT;
  2434. (** Init - Initialize interrupt handling. Called once during initialization. Uses NEW. *)
  2435. (*
  2436. The glue code is:
  2437. entry0: ; entry point for interrupts without error code
  2438. PUSH 0 ; fake error code
  2439. entry1: ; entry point for interrupts with error code
  2440. XCHG [ESP], EBP ; exchange error code and caller EBP
  2441. PUSH int ; interrupt number
  2442. JMP FieldInterrupt:entry
  2443. *)
  2444. PROCEDURE InitInterrupts*;
  2445. VAR a: ADDRESS; o, i: LONGINT; p: PROCEDURE; mask: SET;
  2446. BEGIN
  2447. stateTag := SYSTEM.TYPECODE(State);
  2448. (* initialise 8259 interrupt controller chips *)
  2449. Portout8 (IntA0, 11X); Portout8 (IntA1, CHR(IRQ0));
  2450. Portout8 (IntA1, 4X); Portout8 (IntA1, 1X); Portout8 (IntA1, 0FFX);
  2451. Portout8 (IntB0, 11X); Portout8 (IntB1, CHR(IRQ8));
  2452. Portout8 (IntB1, 2X); Portout8 (IntB1, 1X); Portout8 (IntB1, 0FFX);
  2453. (* enable interrupts from second interrupt controller, chained to line 2 of controller 1 *)
  2454. Portin8(IntA1, SYSTEM.VAL (CHAR, mask));
  2455. EXCL(mask, IRQ2-IRQ0);
  2456. Portout8 (IntA1, SYSTEM.VAL (CHAR, mask));
  2457. (*
  2458. NEW(default); default.next := NIL; default.handler := Unexpected;
  2459. *)
  2460. (*
  2461. newrec (SYSTEM.VAL (ANY, default), SYSTEM.TYPECODE (HandlerList));
  2462. *)
  2463. (* default.next := NIL; default.handler := Unexpected; *)
  2464. default.valid := TRUE; default.handler := Unexpected;
  2465. FOR i := 0 TO IDTSize-1 DO (* set up glue code *)
  2466. intHandler[i, 0] := default; o := 0;
  2467. (* PUSH error code, int num & regs *)
  2468. glue[i][o] := 6AX; INC (o); glue[i][o] := 0X; INC (o); (* PUSH 0 ; {o = 2} *)
  2469. glue[i][o] := 48X; INC(o); glue[i][o] := 87X; INC(o); glue[i][o] := 2CX; INC(o); glue[i][o] := 24X; INC(o); (* XCHG [RSP], RBP *)
  2470. glue[i][o] := 6AX; INC (o); glue[i][o] := CHR(i); INC (o); (* PUSH i *)
  2471. IF (i >= IRQ0) & (i <= IRQ15) THEN p := FieldIRQ ELSE p := FieldInterrupt END;
  2472. a := SYSTEM.VAL(ADDRESS, p) - (ADDRESSOF(glue[i][o])+5);
  2473. (* a must be a 32-bit offset to be used with the followingjump instruction, ensured since
  2474. both the glue code array and the interrupt functions are inside this module *)
  2475. glue[i][o] := 0E9X; INC (o); (* JMP FieldInterrupt.entry *)
  2476. SYSTEM.PUT32 (ADDRESSOF(glue[i][o]), a);
  2477. (* set up IDT entry *)
  2478. IF (i > 31) OR ~(i IN {8, 10..14, 17}) THEN a := ADDRESSOF(glue[i][0]) (* include PUSH 0 *)
  2479. ELSE a := ADDRESSOF(glue[i][2]) (* skip PUSH 0, processor supplies error code *)
  2480. END;
  2481. idt[i].offsetBits0to15 := INTEGER(a MOD 10000H);
  2482. (* IRQ0 must be at level 0 because time slicing in Objects needs to set interrupted process' ESP *)
  2483. (* all irq's are handled at level 0, because of priority experiment in Objects.FieldIRQ *)
  2484. IF TRUE (* (i < IRQ0) OR (i > IRQ15) OR (i = IRQ0) OR (i = IRQ0 + 1)*) THEN
  2485. idt[i].selector := Kernel64CodeSel; (* gdt[1] -> non-conformant segment => level 0 *)
  2486. idt[i].gateType := SYSTEM.VAL(INTEGER, 0EE00H) (* present, DPL 3, system, 64-bit interrupt gate *)
  2487. ELSE (* {IRQ0..IRQ15} - {IRQ0 + 1} *)
  2488. idt[i].selector := User64CodeSel; (* gdt[3] -> conformant segment => level 0 or 3 *)
  2489. idt[i].gateType := SYSTEM.VAL(INTEGER, 08E00H) (* present, DPL 0, system, 64-bit interrupt gate *)
  2490. END;
  2491. idt[i].offsetBits16to31 := INTEGER(a DIV 10000H);
  2492. idt[i].offsetBits32to63 := LONGINT(a DIV 100000000H);
  2493. idt[i].reserved := 0;
  2494. END
  2495. END InitInterrupts;
  2496. (** Start - Start handling interrupts. Every processor calls this once during initialization. *)
  2497. PROCEDURE Start*;
  2498. BEGIN
  2499. ASSERT(default.valid); (* initialized *)
  2500. LoadIDT(ADDRESSOF(idt[0]), SIZEOF(IDT)-1);
  2501. Sti
  2502. END Start;
  2503. (* Return current instruction pointer *)
  2504. PROCEDURE CurrentPC* (): ADDRESS;
  2505. CODE {SYSTEM.AMD64}
  2506. MOV RAX, [RBP + 8]
  2507. END CurrentPC;
  2508. PROCEDURE Portin8*(port: LONGINT; VAR val: CHAR);
  2509. CODE{SYSTEM.AMD64}
  2510. MOV EDX,[RBP+port]
  2511. IN AL, DX
  2512. MOV RCX, [RBP+val]
  2513. MOV [RCX], AL
  2514. END Portin8;
  2515. PROCEDURE Portin16*(port: LONGINT; VAR val: INTEGER);
  2516. CODE{SYSTEM.AMD64}
  2517. MOV EDX,[RBP+port]
  2518. IN AX, DX
  2519. MOV RCX, [RBP+val]
  2520. MOV [RCX], AX
  2521. END Portin16;
  2522. PROCEDURE Portin32*(port: LONGINT; VAR val: LONGINT);
  2523. CODE{SYSTEM.AMD64}
  2524. MOV EDX,[RBP+port]
  2525. IN EAX, DX
  2526. MOV RCX, [RBP+val]
  2527. MOV [RCX], EAX
  2528. END Portin32;
  2529. PROCEDURE Portout8*(port: LONGINT; val: CHAR);
  2530. CODE{SYSTEM.AMD64}
  2531. MOV AL,[RBP+val]
  2532. MOV EDX,[RBP+port]
  2533. OUT DX,AL
  2534. END Portout8;
  2535. PROCEDURE Portout16*(port: LONGINT; val: INTEGER);
  2536. CODE{SYSTEM.AMD64}
  2537. MOV AX,[RBP+val]
  2538. MOV EDX,[RBP+port]
  2539. OUT DX,AX
  2540. END Portout16;
  2541. PROCEDURE Portout32*(port: LONGINT; val: LONGINT);
  2542. CODE{SYSTEM.AMD64}
  2543. MOV EAX,[RBP+val]
  2544. MOV EDX,[RBP+port]
  2545. OUT DX,EAX
  2546. END Portout32;
  2547. PROCEDURE -Cli*;
  2548. CODE{SYSTEM.AMD64}
  2549. CLI
  2550. END Cli;
  2551. PROCEDURE -Sti*;
  2552. CODE{SYSTEM.AMD64}
  2553. STI
  2554. END Sti;
  2555. (* Save minimal FPU state (for synchronous process switches). *)
  2556. (* saving FPU state takes 108 bytes memory space, no alignment required *)
  2557. PROCEDURE -FPUSaveMin* (VAR state: SSEState);
  2558. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2559. POP RAX
  2560. FNSTCW [RAX] ; control word is at state[0]
  2561. FWAIT
  2562. END FPUSaveMin;
  2563. (* Restore minimal FPU state. *)
  2564. PROCEDURE -FPURestoreMin* (VAR state: SSEState);
  2565. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2566. POP RAX
  2567. FLDCW [RAX] ; control word is at state[0]
  2568. END FPURestoreMin;
  2569. (* Save full FPU state (for asynchronous process switches). *)
  2570. PROCEDURE -FPUSaveFull* (VAR state: SSEState);
  2571. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2572. POP RAX
  2573. FSAVE [RAX]
  2574. END FPUSaveFull;
  2575. (* Restore full FPU state. *)
  2576. PROCEDURE -FPURestoreFull* (VAR state: SSEState);
  2577. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2578. POP RAX
  2579. FRSTOR [RAX]
  2580. END FPURestoreFull;
  2581. (* stateAdr must be the address of a 16-byte aligned memory area of at least 512 bytes *)
  2582. PROCEDURE -SSESaveFull* (stateAdr: ADDRESS);
  2583. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2584. POP RAX
  2585. FXSAVE [RAX]
  2586. FWAIT
  2587. FNINIT
  2588. END SSESaveFull;
  2589. PROCEDURE -SSERestoreFull* (stateAdr: ADDRESS);
  2590. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2591. POP RAX
  2592. FXRSTOR [RAX]
  2593. END SSERestoreFull;
  2594. PROCEDURE -SSESaveMin* (stateAdr: ADDRESS);
  2595. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2596. POP RAX
  2597. FNSTCW [RAX]
  2598. FWAIT
  2599. STMXCSR [RAX + 24]
  2600. END SSESaveMin;
  2601. PROCEDURE -SSERestoreMin* (stateAdr: ADDRESS);
  2602. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2603. POP RAX
  2604. FLDCW [RAX]
  2605. LDMXCSR [RAX + 24]
  2606. END SSERestoreMin;
  2607. (* Helper functions for SwitchTo. *)
  2608. PROCEDURE -PushState* (CONST state: State);
  2609. CODE {SYSTEM.AMD64}
  2610. POP RAX ; ADR (state)
  2611. POP RBX ; TYPECODE (state), ignored
  2612. PUSH QWORD [RAX + 176] ; SS
  2613. PUSH QWORD [RAX + 168] ; SP
  2614. PUSH QWORD [RAX + 160] ; FLAGS
  2615. PUSH QWORD [RAX + 152] ; CS
  2616. PUSH QWORD [RAX + 144] ; PC
  2617. PUSH QWORD [RAX + 120] ; RAX
  2618. PUSH QWORD [RAX + 112] ; RCX
  2619. PUSH QWORD [RAX + 104] ; RDX
  2620. PUSH QWORD [RAX + 96] ; RBX
  2621. PUSH DWORD 0; ignored
  2622. PUSH QWORD [RAX + 136] ; RBP
  2623. PUSH QWORD [RAX + 72] ; RSI
  2624. PUSH QWORD [RAX + 64] ; RDI
  2625. PUSH QWORD [RAX + 56] ; R8
  2626. PUSH QWORD [RAX + 48] ; R9
  2627. PUSH QWORD [RAX + 40] ; R10
  2628. PUSH QWORD [RAX + 32] ; R11
  2629. PUSH QWORD [RAX + 24] ; R12
  2630. PUSH QWORD [RAX + 16] ; R13
  2631. PUSH QWORD [RAX + 8] ; R14
  2632. PUSH QWORD [RAX + 0] ; R15
  2633. END PushState;
  2634. PROCEDURE -JumpState*;
  2635. CODE {SYSTEM.AMD64}
  2636. POP R15
  2637. POP R14
  2638. POP R13
  2639. POP R12
  2640. POP R11
  2641. POP R10
  2642. POP R9
  2643. POP R8
  2644. POP RDI
  2645. POP RSI
  2646. POP RBP
  2647. POP RBX; ignored
  2648. POP RBX
  2649. POP RDX
  2650. POP RCX
  2651. POP RAX
  2652. IRETQ
  2653. END JumpState;
  2654. PROCEDURE -CallLocalIPC*;
  2655. CODE {SYSTEM.AMD64}
  2656. INT MPIPCLocal
  2657. END CallLocalIPC;
  2658. PROCEDURE -HLT*;
  2659. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2660. STI ; (* required according to ACPI 2.0 spec section 8.2.2 *)
  2661. HLT
  2662. END HLT;
  2663. (* Kernel mode upcall to perform global processor halt. *)
  2664. PROCEDURE KernelCallHLT*;
  2665. CODE {SYSTEM.AMD64}
  2666. MOV EAX, 2
  2667. INT MPKC
  2668. END KernelCallHLT;
  2669. (* Parse processor entry in MP config table. *)
  2670. PROCEDURE CPUID1*(): LONGINT;
  2671. CODE {SYSTEM.AMD64}
  2672. MOV EAX, 1
  2673. CPUID
  2674. MOV EAX, EBX
  2675. END CPUID1;
  2676. (** -- Atomic operations -- *)
  2677. (** Atomic INC(x). *)
  2678. PROCEDURE -AtomicInc*(VAR x: LONGINT);
  2679. CODE {SYSTEM.AMD64}
  2680. POP RAX
  2681. LOCK
  2682. INC DWORD [RAX]
  2683. END AtomicInc;
  2684. (** Atomic DEC(x). *)
  2685. PROCEDURE -AtomicDec*(VAR x: LONGINT);
  2686. CODE {SYSTEM.AMD64}
  2687. POP RAX
  2688. LOCK
  2689. DEC DWORD [RAX]
  2690. END AtomicDec;
  2691. (** Atomic EXCL. *)
  2692. PROCEDURE AtomicExcl* (VAR s: SET; bit: LONGINT);
  2693. CODE {SYSTEM.AMD64}
  2694. MOV EAX, [RBP + bit]
  2695. MOV RBX, [RBP + s]
  2696. LOCK
  2697. BTR [RBX], EAX
  2698. END AtomicExcl;
  2699. (** Atomic INC(x, y). *)
  2700. PROCEDURE -AtomicAdd*(VAR x: LONGINT; y: LONGINT);
  2701. CODE {SYSTEM.AMD64}
  2702. POP EBX
  2703. POP RAX
  2704. LOCK
  2705. ADD DWORD [RAX], EBX
  2706. END AtomicAdd;
  2707. (** Atomic test-and-set. Set x = TRUE and return old value of x. *)
  2708. PROCEDURE -AtomicTestSet*(VAR x: BOOLEAN): BOOLEAN;
  2709. CODE {SYSTEM.AMD64}
  2710. POP RBX
  2711. MOV AL, 1
  2712. XCHG [RBX], AL
  2713. END AtomicTestSet;
  2714. (* Atomic compare-and-swap. Set x = new if x = old and return old value of x *)
  2715. PROCEDURE -AtomicCAS* (VAR x: LONGINT; old, new: LONGINT): LONGINT;
  2716. CODE {SYSTEM.AMD64}
  2717. POP EBX ; new
  2718. POP EAX ; old
  2719. POP RCX ; address of x
  2720. LOCK CMPXCHG [RCX], EBX ; atomicly compare x with old and set it to new if equal
  2721. END AtomicCAS;
  2722. PROCEDURE CopyState* (CONST from: State; VAR to: State);
  2723. BEGIN
  2724. to.R15 := from.R15;
  2725. to.R14 := from.R14;
  2726. to.R13 := from.R13;
  2727. to.R12 := from.R12;
  2728. to.R11 := from.R11;
  2729. to.R10 := from.R10;
  2730. to.R9 := from.R9;
  2731. to.R8 := from.R8;
  2732. to.RDI := from.RDI;
  2733. to.RSI := from.RSI;
  2734. to.RBX := from.RBX;
  2735. to.RDX := from.RDX;
  2736. to.RCX := from.RCX;
  2737. to.RAX := from.RAX;
  2738. to.BP := from.BP;
  2739. to.PC := from.PC;
  2740. to.CS := from.CS;
  2741. to.SP := from.SP;
  2742. to.SS := from.SS;
  2743. to.FLAGS := from.FLAGS;
  2744. END CopyState;
  2745. (* function returning the number of processors that are available to Aos *)
  2746. PROCEDURE NumberOfProcessors*( ): LONGINT;
  2747. BEGIN
  2748. RETURN numberOfProcessors
  2749. END NumberOfProcessors;
  2750. (*! non portable code, for native Aos only *)
  2751. PROCEDURE SetNumberOfProcessors*(num: LONGINT);
  2752. BEGIN
  2753. numberOfProcessors := num;
  2754. END SetNumberOfProcessors;
  2755. (* function for changing byte order *)
  2756. PROCEDURE ChangeByteOrder* (n: LONGINT): LONGINT;
  2757. CODE {SYSTEM.AMD64}
  2758. MOV EAX, [RBP + n] ; load n in eax
  2759. BSWAP EAX ; swap byte order
  2760. END ChangeByteOrder;
  2761. (* Write a value to the APIC. *)
  2762. PROCEDURE ApicPut(ofs: SIZE; val: SET);
  2763. BEGIN
  2764. IF TraceApic THEN
  2765. Acquire(TraceOutput);
  2766. Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" := "); Trace.Hex(SYSTEM.VAL (LONGINT, val), 9); Trace.Ln;
  2767. Release(TraceOutput);
  2768. END;
  2769. SYSTEM.PUT(localAPIC+ofs, SYSTEM.VAL (LONGINT, val))
  2770. END ApicPut;
  2771. (* Read a value from the APIC. *)
  2772. PROCEDURE ApicGet(ofs: SIZE): SET;
  2773. VAR val: SET;
  2774. BEGIN
  2775. SYSTEM.GET(localAPIC+ofs, SYSTEM.VAL (LONGINT, val));
  2776. IF TraceApic THEN
  2777. Acquire(TraceOutput);
  2778. Trace.String(" ("); Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" = ");
  2779. Trace.Hex(SYSTEM.VAL(LONGINT, val), 9); Trace.StringLn (")");
  2780. Release(TraceOutput);
  2781. END;
  2782. RETURN val
  2783. END ApicGet;
  2784. (* Handle interprocessor interrupt. During upcall interrupts are off and processor is at kernel level. *)
  2785. PROCEDURE HandleIPC(VAR state: State);
  2786. VAR id: LONGINT;
  2787. BEGIN
  2788. id := ID();
  2789. IF ~TraceProcessor OR (id IN allProcessors) THEN
  2790. IF FrontBarrier IN ipcFlags THEN
  2791. AtomicExcl(ipcFrontBarrier, id);
  2792. WHILE ipcFrontBarrier # {} DO SpinHint END (* wait for all *)
  2793. END;
  2794. ipcHandler(id, state, ipcMessage); (* interrupts off and at kernel level *)
  2795. IF BackBarrier IN ipcFlags THEN
  2796. AtomicExcl(ipcBackBarrier, id);
  2797. WHILE ipcBackBarrier # {} DO SpinHint END (* wait for all *)
  2798. END;
  2799. AtomicExcl(ipcBusy, id) (* ack - after this point we do not access shared variables for this broadcast *)
  2800. END;
  2801. IF state.INT = MPIPC THEN
  2802. ApicPut(0B0H, {}) (* EOI (not needed for NMI or local call, see 7.4.10.6) *)
  2803. END
  2804. END HandleIPC;
  2805. (* Handle MP error interrupt. *)
  2806. PROCEDURE HandleError(VAR state: State);
  2807. VAR esr: SET; (* int: LONGINT; *)
  2808. BEGIN
  2809. (* int := state.INT; *) esr := ApicGet(280H);
  2810. ApicPut(0B0H, {}); (* EOI *)
  2811. HALT(2302) (* SMP error *)
  2812. END HandleError;
  2813. (* Interprocessor broadcasting. Lock level SMP. *)
  2814. PROCEDURE LocalBroadcast(h: BroadcastHandler; msg: Message; flags: SET);
  2815. BEGIN
  2816. IF Self IN flags THEN ipcBusy := allProcessors
  2817. ELSE ipcBusy := allProcessors - {ID()}
  2818. END;
  2819. ipcFrontBarrier := ipcBusy; ipcBackBarrier := ipcBusy;
  2820. ipcHandler := h; ipcMessage := msg; ipcFlags := flags;
  2821. IF numProcessors > 1 THEN (* ICR: Fixed, Physical, Edge, All Excl. Self, INT IPC *)
  2822. ApicPut(300H, {18..19} + SYSTEM.VAL (SET, MPIPC));
  2823. (*REPEAT UNTIL ~(12 IN ApicGet(300H))*) (* wait for send to finish *)
  2824. END;
  2825. IF Self IN flags THEN CallLocalIPC END; (* "send" to self also *)
  2826. WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack before we release locks *)
  2827. ipcHandler := NIL; ipcMessage := NIL (* no race, because we have IPC lock *)
  2828. END LocalBroadcast;
  2829. (** Broadcast an operation to all processors. *)
  2830. PROCEDURE Broadcast* (h: BroadcastHandler; msg: Message; flags: SET);
  2831. BEGIN
  2832. Acquire(Processors);
  2833. LocalBroadcast(h, msg, flags);
  2834. Release(Processors)
  2835. END Broadcast;
  2836. (* Start all halted processors. *) (* Lock level Processors. *)
  2837. PROCEDURE StartAll*;
  2838. BEGIN
  2839. Acquire(Processors); (* wait for any pending Stops to finish, and disallow further Stops *)
  2840. ASSERT(stopped & (ipcBusy = {}));
  2841. ipcBusy := allProcessors - {ID()};
  2842. stopped := FALSE;
  2843. WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack *)
  2844. Release(Processors)
  2845. END StartAll;
  2846. PROCEDURE HandleFlushTLB(id: LONGINT; CONST state: State; msg: Message);
  2847. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2848. MOV EAX, CR3
  2849. MOV CR3, EAX
  2850. END HandleFlushTLB;
  2851. (** Flush the TLBs on all processors (multiprocessor-safe). *)
  2852. PROCEDURE GlobalFlushTLB;
  2853. BEGIN
  2854. Acquire(Processors);
  2855. LocalBroadcast(HandleFlushTLB, NIL, {Self, FrontBarrier, BackBarrier});
  2856. Release(Processors)
  2857. END GlobalFlushTLB;
  2858. PROCEDURE HandleFlushCache(id: LONGINT; CONST state: State; msg: Message);
  2859. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2860. WBINVD ; write back and invalidate internal cache and initiate write back and invalidation of external caches
  2861. END HandleFlushCache;
  2862. (** Flush the caches on all processors (multiprocessor-safe). *)
  2863. PROCEDURE GlobalFlushCache;
  2864. BEGIN
  2865. Acquire(Processors);
  2866. LocalBroadcast(HandleFlushCache, NIL, {Self, FrontBarrier, BackBarrier});
  2867. Release(Processors)
  2868. END GlobalFlushCache;
  2869. (* Activate the garbage collector in single-processor mode. Lock level ALL. *)
  2870. PROCEDURE HandleKernelCall(VAR state: State);
  2871. BEGIN (* level 0 *)
  2872. IF IFBit IN state.FLAGS THEN
  2873. Sti (* re-enable interrupts *)
  2874. END;
  2875. CASE state.RAX OF (* see KernelCall* *)
  2876. |2: (* HLT *)
  2877. IF IFBit IN state.FLAGS THEN
  2878. HLT
  2879. END
  2880. END
  2881. END HandleKernelCall;
  2882. (*
  2883. (** Activate the garbage collector immediately (multiprocessor-safe). *)
  2884. PROCEDURE GlobalGC*;
  2885. BEGIN
  2886. Acquire(Processors);
  2887. gcBarrier := allProcessors;
  2888. LocalBroadcast(HandleGC, NIL, {Self, BackBarrier});
  2889. Release(Processors);
  2890. END GlobalGC;
  2891. *)
  2892. PROCEDURE HandleGetTimestamp(id: LONGINT; CONST state: State; msg: Message);
  2893. BEGIN
  2894. time[id] := GetTimer()
  2895. END HandleGetTimestamp;
  2896. (** Get timestamp on all processors (for testing). *)
  2897. PROCEDURE GlobalGetTimestamp;
  2898. VAR t: TimeArray; i: LONGINT; mean, var, n: HUGEINT;
  2899. BEGIN
  2900. Acquire(Processors);
  2901. LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier});
  2902. LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier});
  2903. t := time;
  2904. Release(Processors);
  2905. Acquire (TraceOutput);
  2906. FOR i := 0 TO numProcessors-1 DO Trace.HIntHex(t[i], 17) END;
  2907. IF numProcessors > 1 THEN
  2908. mean := 0;
  2909. n := numProcessors;
  2910. FOR i := 0 TO numProcessors-1 DO
  2911. INC (mean, t[i])
  2912. END;
  2913. mean := mean DIV n;
  2914. var := 0;
  2915. FOR i := 0 TO numProcessors-1 DO
  2916. n := t[i] - mean;
  2917. INC (var, n * n)
  2918. END;
  2919. var := var DIV (numProcessors - 1);
  2920. Trace.String(" mean="); Trace.HIntHex(mean, 16);
  2921. Trace.String(" var="); Trace.HIntHex(var, 16);
  2922. Trace.String(" var="); Trace.Int(SHORT (var), 1);
  2923. Trace.String(" diff:");
  2924. FOR i := 0 TO numProcessors-1 DO
  2925. Trace.Int(SHORT (t[i] - mean), 1); Trace.Char(" ")
  2926. END
  2927. END;
  2928. Release (TraceOutput);
  2929. END GlobalGetTimestamp;
  2930. PROCEDURE ParseProcessor(adr: ADDRESS);
  2931. VAR id, idx, signature, family, feat, ver, log: LONGINT; flags: SET; string : ARRAY 8 OF CHAR;
  2932. BEGIN
  2933. SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, flags));
  2934. id := ASH(SYSTEM.VAL (LONGINT, flags * {8..15}), -8);
  2935. ver := ASH(SYSTEM.VAL (LONGINT, flags * {16..23}), -16);
  2936. SYSTEM.GET (adr+4, signature);
  2937. family := ASH(signature, -8) MOD 10H;
  2938. SYSTEM.GET (adr+8, feat);
  2939. idx := -1;
  2940. IF (family # 0) & (signature MOD 1000H # 0FFFH) & (24 IN flags) & (id < LEN(idMap)) & (idMap[id] = -1) THEN
  2941. IF 25 IN flags THEN idx := 0 (* boot processor *)
  2942. ELSIF numProcessors < maxProcessors THEN idx := numProcessors; INC(numProcessors)
  2943. ELSE (* skip *)
  2944. END
  2945. END;
  2946. IF idx # -1 THEN apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx)) END;
  2947. Trace.String(" Processor "); Trace.Int(id, 1);
  2948. Trace.String(", APIC"); Trace.Hex(ver, -3);
  2949. Trace.String(", ver "); Trace.Int(family, 1);
  2950. Trace.Char("."); Trace.Int(ASH(signature, -4) MOD 10H, 1);
  2951. Trace.Char("."); Trace.Int(signature MOD 10H, 1);
  2952. Trace.String(", features "); Trace.Hex(feat, 9);
  2953. Trace.String(", ID "); Trace.Int(idx, 1);
  2954. IF (threadsPerCore > 1) THEN Trace.String(" ("); Trace.Int(threadsPerCore, 0); Trace.String(" threads)"); END;
  2955. Trace.Ln;
  2956. IF (threadsPerCore > 1) THEN
  2957. GetConfig("DisableHyperthreading", string);
  2958. IF (string = "1") THEN
  2959. Trace.String("Machine: Hyperthreading disabled."); Trace.Ln;
  2960. RETURN;
  2961. END;
  2962. log := (LSH(CPUID1(), -16) MOD 256);
  2963. WHILE log > 1 DO
  2964. INC(id); DEC(log);
  2965. IF numProcessors < maxProcessors THEN
  2966. idx := numProcessors; INC(numProcessors);
  2967. apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx))
  2968. END
  2969. END
  2970. END
  2971. END ParseProcessor;
  2972. (* Parse MP configuration table. *)
  2973. PROCEDURE ParseMPConfig;
  2974. VAR adr, x: ADDRESS; i: LONGINT; entries: INTEGER; ch: CHAR; s: SET; str: ARRAY 8 OF CHAR;
  2975. BEGIN
  2976. localAPIC := 0; numProcessors := 1; allProcessors := {0};
  2977. FOR i := 0 TO LEN(idMap)-1 DO idMap[i] := -1 END; (* all unassigned *)
  2978. FOR i := 0 TO MaxCPU-1 DO started[i] := FALSE END;
  2979. adr := configMP;
  2980. GetConfig("MaxProcs", str);
  2981. i := 0; maxProcessors := StrToInt(i, str);
  2982. IF maxProcessors = 0 THEN maxProcessors := MaxCPU END;
  2983. IF (maxProcessors > 0) & (adr # NilAdr) THEN (* MP config table present, possible multi-processor *)
  2984. Trace.String("Machine: Intel MP Spec "); Trace.Int(ORD(revMP) DIV 10H + 1, 1);
  2985. Trace.Char("."); Trace.Int(ORD(revMP) MOD 10H, 1); Trace.Ln;
  2986. IF TraceVerbose THEN
  2987. IF ODD(ASH(ORD(featureMP[1]), -7)) THEN
  2988. Trace.StringLn (" PIC mode");
  2989. (* to do: enable SymIO *)
  2990. ELSE
  2991. Trace.StringLn (" Virtual wire mode");
  2992. END
  2993. END;
  2994. IF featureMP[0] # 0X THEN (* pre-defined configuration *)
  2995. Trace.String(" Default config "); Trace.Int(ORD(featureMP[0]), 1); Trace.Ln;
  2996. localAPIC := (0FEE00000H);
  2997. apicVer[0] := 0; apicVer[1] := 0
  2998. ELSE (* configuration defined in table *)
  2999. MapPhysical(adr, 68*1024, adr); (* 64K + 4K header *)
  3000. SYSTEM.GET (adr, i); ASSERT(i = 504D4350H); (* check signature *)
  3001. SYSTEM.GET (adr+4, i); (* length *)
  3002. ASSERT(ChecksumMP(adr, i MOD 10000H) = 0);
  3003. IF TraceVerbose THEN
  3004. Trace.String(" ID: ");
  3005. FOR x := adr+8 TO adr+27 DO
  3006. SYSTEM.GET (x, ch); Trace.Char(ch);
  3007. IF x = adr+15 THEN Trace.Char(" ") END
  3008. END;
  3009. Trace.Ln
  3010. END;
  3011. localAPIC := 0; SYSTEM.GET(adr+36, SYSTEM.VAL (LONGINT, localAPIC));
  3012. IF TraceVerbose THEN Trace.String(" Local APIC:"); Trace.Address (localAPIC); Trace.Ln END;
  3013. SYSTEM.GET (adr+34, entries);
  3014. INC(adr, 44); (* skip header *)
  3015. WHILE entries > 0 DO
  3016. SYSTEM.GET (adr, ch); (* type *)
  3017. CASE ORD(ch) OF
  3018. 0: (* processor *)
  3019. ParseProcessor(adr);
  3020. INC(adr, 20)
  3021. |1: (* bus *)
  3022. IF TraceVerbose THEN
  3023. SYSTEM.GET (adr+1, ch);
  3024. Trace.String(" Bus "); Trace.Int(ORD(ch), 1); Trace.String(": ");
  3025. FOR x := adr+2 TO adr+7 DO SYSTEM.GET (x, ch); Trace.Char(ch) END;
  3026. Trace.Ln
  3027. END;
  3028. INC(adr, 8)
  3029. |2: (* IO APIC *)
  3030. IF TraceVerbose THEN
  3031. SYSTEM.GET (adr+1, ch); Trace.String(" IO APIC ID:"); Trace.Hex(ORD(ch), -3);
  3032. SYSTEM.GET (adr+2, ch); Trace.String(", version "); Trace.Int(ORD(ch), 1);
  3033. SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, s)); IF ~(24 IN s) THEN Trace.String(" (disabled)") END;
  3034. Trace.Ln
  3035. END;
  3036. INC(adr, 8)
  3037. |3: (* IO interrupt assignment *)
  3038. INC(adr, 8)
  3039. |4: (* Local interrupt assignment *)
  3040. INC(adr, 8)
  3041. END; (* CASE *)
  3042. DEC(entries)
  3043. END
  3044. END
  3045. END;
  3046. IF localAPIC = 0 THEN (* single processor *)
  3047. Trace.StringLn ("Machine: Single-processor");
  3048. apicVer[0] := 0
  3049. END;
  3050. started[0] := TRUE;
  3051. FOR i := 0 TO MaxCPU-1 DO revIDmap[i] := -1 END;
  3052. FOR i := 0 TO LEN(idMap)-1 DO
  3053. x := idMap[i];
  3054. IF x # -1 THEN
  3055. ASSERT(revIDmap[x] = -1); (* no duplicate APIC ids *)
  3056. revIDmap[x] := SHORT(SHORT(i))
  3057. END
  3058. END;
  3059. (* timer configuration *)
  3060. GetConfig("TimerRate", str);
  3061. i := 0; timerRate := StrToInt(i, str);
  3062. IF timerRate = 0 THEN timerRate := 1000 END;
  3063. IF TraceProcessor THEN
  3064. GetConfig("TraceProc", str);
  3065. i := 0; traceProcessor := StrToInt(i, str) # 0
  3066. END
  3067. END ParseMPConfig;
  3068. (* Return the current average measured bus clock speed in Hz. *)
  3069. PROCEDURE GetBusClockRate(): LONGINT;
  3070. VAR timer: LONGINT; t: LONGINT;
  3071. BEGIN
  3072. t := ticks;
  3073. REPEAT UNTIL ticks # t; (* wait for edge *)
  3074. timer := ticks + ClockRateDelay;
  3075. ApicPut(380H, SYSTEM.VAL (SET, MAX(LONGINT))); (* initial count *)
  3076. REPEAT UNTIL timer - ticks <= 0;
  3077. t := MAX(LONGINT) - SYSTEM.VAL (LONGINT, ApicGet(390H)); (* current count *)
  3078. IF t <= MAX(LONGINT) DIV 1000 THEN
  3079. RETURN 1000 * t DIV ClockRateDelay
  3080. ELSE
  3081. RETURN t DIV ClockRateDelay * 1000
  3082. END
  3083. END GetBusClockRate;
  3084. (* Initialize APIC timer for timeslicing. *)
  3085. PROCEDURE InitMPTimer;
  3086. VAR rate: LONGINT;
  3087. BEGIN
  3088. IF timerRate > 0 THEN
  3089. ApicPut(3E0H, {0,1,3}); (* divide by 1 *)
  3090. ApicPut(320H, {16} + SYSTEM.VAL (SET, MPTMR)); (* masked, one-shot *)
  3091. rate := GetBusClockRate();
  3092. busHz0[ID()] := rate;
  3093. rate := (rate+500000) DIV 1000000 * 1000000; (* round to nearest MHz *)
  3094. busHz1[ID()] := rate;
  3095. ApicPut(320H, {17} + SYSTEM.VAL (SET, MPTMR)); (* unmasked, periodic *)
  3096. ApicPut(380H, SYSTEM.VAL (SET, rate DIV timerRate)) (* initial count *)
  3097. END
  3098. END InitMPTimer;
  3099. (* Handle multiprocessor timer interrupt. *)
  3100. PROCEDURE HandleMPTimer(VAR state: State);
  3101. BEGIN (* {interrupts off} *)
  3102. timer(ID(), state);
  3103. ApicPut(0B0H, {}); (* EOI *)
  3104. Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *)
  3105. Timeslice(state) (* fixme: check recursive interrupt *)
  3106. END HandleMPTimer;
  3107. (* Handle uniprocessor timer interrupt. *)
  3108. PROCEDURE HandleUPTimer(VAR state: State);
  3109. BEGIN (* {interrupts off} *)
  3110. timer(0, state);
  3111. Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *)
  3112. Timeslice(state)
  3113. END HandleUPTimer;
  3114. PROCEDURE DummyEvent(id: LONGINT; CONST state: State);
  3115. END DummyEvent;
  3116. (** Install a processor timer event handler. *)
  3117. PROCEDURE InstallEventHandler* (h: EventHandler);
  3118. BEGIN
  3119. IF h # NIL THEN timer := h ELSE timer := DummyEvent END
  3120. END InstallEventHandler;
  3121. (* Initialize APIC for current processor. *)
  3122. PROCEDURE InitAPIC;
  3123. BEGIN
  3124. (* enable APIC, set focus checking & set spurious interrupt handler *)
  3125. ASSERT(MPSPU MOD 16 = 15); (* low 4 bits set, p. 7-29 *)
  3126. ApicPut(0F0H, {8} + SYSTEM.VAL (SET, MPSPU));
  3127. (* set error interrupt handler *)
  3128. ApicPut(370H, SYSTEM.VAL (SET, MPERR));
  3129. InitMPTimer
  3130. END InitAPIC;
  3131. (* Start processor activity. *)
  3132. PROCEDURE StartMP;
  3133. VAR id: LONGINT; state: State;
  3134. BEGIN (* running at kernel level with interrupts on *)
  3135. InitAPIC;
  3136. id := ID(); (* timeslicing is disabled, as we are running at kernel level *)
  3137. Acquire (TraceOutput);
  3138. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" running");
  3139. Release (TraceOutput);
  3140. IF TraceProcessor & traceProcessor & (id = numProcessors-1) THEN
  3141. DEC(numProcessors) (* exclude from rest of activity *)
  3142. ELSE
  3143. INCL(allProcessors, id)
  3144. END;
  3145. (* synchronize with boot processor - end of mutual exclusion *)
  3146. started[id] := TRUE;
  3147. IF TraceProcessor & ~(id IN allProcessors) THEN
  3148. Acquire (TraceOutput);
  3149. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" tracing");
  3150. Release (TraceOutput);
  3151. LOOP
  3152. IF traceProcessorProc # NIL THEN traceProcessorProc(id, state) END;
  3153. SpinHint
  3154. END
  3155. END;
  3156. (* wait until woken up *)
  3157. WHILE stopped DO SpinHint END;
  3158. (* now fully functional, including storage allocation *)
  3159. AtomicExcl(ipcBusy, id); (* ack *)
  3160. Acquire (TraceOutput);
  3161. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn(" scheduling");
  3162. Release (TraceOutput);
  3163. ASSERT(id = ID()); (* still running on same processor *)
  3164. start;
  3165. END StartMP;
  3166. (* Subsequent processors start executing here. *)
  3167. PROCEDURE EnterMP;
  3168. (* no local variables allowed, because stack is switched. *)
  3169. BEGIN (* running at kernel level with interrupts off *)
  3170. InitProcessor;
  3171. InitMemory; (* switch stack *)
  3172. Start;
  3173. StartMP
  3174. END EnterMP;
  3175. (* Start another processor. *)
  3176. PROCEDURE StartProcessor(phys: ADDRESS; apicid: LONGINT; startup: BOOLEAN);
  3177. VAR j, k: LONGINT; s: SET; timer: LONGINT;
  3178. BEGIN
  3179. (* clear APIC errors *)
  3180. ApicPut(280H, {}); s := ApicGet(280H);
  3181. (* assert INIT *)
  3182. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3183. ApicPut(300H, {8, 10, 14, 15}); (* set Dest, INIT, Phys, Assert, Level *)
  3184. timer := ticks + 5; (* > 200us *)
  3185. REPEAT UNTIL timer - ticks <= 0;
  3186. (* deassert INIT *)
  3187. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3188. ApicPut(300H, {8, 10, 15}); (* set Dest, INIT, Deassert, Phys, Level *)
  3189. IF startup THEN (* send STARTUP if required *)
  3190. j := 0; k := 2;
  3191. WHILE j # k DO
  3192. ApicPut(280H, {});
  3193. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3194. (* set Dest, Startup, Deassert, Phys, Edge *)
  3195. ApicPut(300H, {9, 10} + SYSTEM.VAL (SET, phys DIV 4096 MOD 256));
  3196. timer := ticks + 10; (* ~10ms *)
  3197. REPEAT UNTIL timer - ticks <= 0;
  3198. IF ~(12 IN ApicGet(300H)) THEN (* idle *)
  3199. IF ApicGet(280H) * {0..3, 5..7} = {} THEN k := j (* ESR success, exit *)
  3200. ELSE INC(j) (* retry *)
  3201. END
  3202. ELSE INC(j) (* retry *)
  3203. END
  3204. END
  3205. END
  3206. END StartProcessor;
  3207. (* Boot other processors, one at a time. *)
  3208. PROCEDURE BootMP;
  3209. VAR phys, page0Adr: ADDRESS; i: LONGINT; timer: LONGINT;
  3210. BEGIN
  3211. stopped := TRUE; ipcBusy := {}; (* other processors can be woken with StartAll *)
  3212. InitBootPage(EnterMP, phys);
  3213. MapPhysical(0, 4096, page0Adr); (* map in BIOS data area *)
  3214. Acquire(TraceOutput); Trace.String("Machine: Booting processors... "); Trace.Ln; Release(TraceOutput);
  3215. FOR i := 1 TO numProcessors-1 DO
  3216. (* set up booting for old processor types that reset on INIT & don't understand STARTUP *)
  3217. SYSTEM.PUT (page0Adr + 467H, ASH(phys, 16-4));
  3218. PutNVByte(15, 0AX); (* shutdown status byte *)
  3219. (* attempt to start another processor *)
  3220. Acquire(TraceOutput); Trace.String(" P0 starting P"); Trace.Int(i, 1); Trace.Ln; Release(TraceOutput);
  3221. StartProcessor(phys, revIDmap[i], apicVer[i] >= 10H); (* try booting processor i *)
  3222. (* wait for CPU to become active *)
  3223. timer := ticks + 5000; (* ~5s timeout *)
  3224. REPEAT SpinHint UNTIL started[i] OR (timer - ticks <= 0);
  3225. (* end of mutual exclusion *)
  3226. Acquire(TraceOutput);
  3227. IF started[i] THEN
  3228. Trace.String(" P0 recognized P"); Trace.Int(i, 1);
  3229. ELSE
  3230. Trace.String(" P0 timeout on P"); Trace.Int(i, 1);
  3231. END;
  3232. Trace.Ln;
  3233. Release(TraceOutput);
  3234. END;
  3235. SYSTEM.PUT (page0Adr + 467H, SYSTEM.VAL (LONGINT, 0));
  3236. UnmapPhysical(page0Adr, 4096);
  3237. PutNVByte(15, 0X) (* restore shutdown status *)
  3238. END BootMP;
  3239. (* Timer interrupt handler. *)
  3240. PROCEDURE TimerInterruptHandler(VAR state: State);
  3241. BEGIN
  3242. INC(ticks);
  3243. DEC(eventCount);
  3244. IF eventCount = 0 THEN
  3245. eventCount := eventMax; event(state)
  3246. END
  3247. END TimerInterruptHandler;
  3248. PROCEDURE Dummy(VAR state: State);
  3249. END Dummy;
  3250. PROCEDURE InitTicks;
  3251. CONST Div = (2*TimerClock + Second) DIV (2*Second); (* timer clock divisor *)
  3252. BEGIN
  3253. eventCount := 0; eventMax := 0; event := Dummy;
  3254. (* initialize timer hardware *)
  3255. ASSERT(Div <= 65535);
  3256. Portout8(43H, 34X); Wait; (* mode 2, rate generator *)
  3257. Portout8(40H, CHR(Div MOD 100H)); Wait;
  3258. Portout8(40H, CHR(ASH(Div, -8)));
  3259. InstallHandler(TimerInterruptHandler, IRQ0)
  3260. END InitTicks;
  3261. (* Set timer upcall. The handler procedure will be called at a rate of Second/divisor Hz. *)
  3262. PROCEDURE InstallTickHandler(handler: Handler; divisor: LONGINT);
  3263. BEGIN
  3264. eventMax := divisor; event := handler;
  3265. eventCount := eventMax
  3266. END InstallTickHandler;
  3267. (* Initialize processors *)
  3268. PROCEDURE InitProcessors*;
  3269. BEGIN
  3270. traceProcessor := FALSE; traceProcessorProc := NIL;
  3271. ASSERT(Second = 1000); (* use of Machine.ticks *)
  3272. InitTicks;
  3273. timer := DummyEvent;
  3274. ParseMPConfig;
  3275. InstallHandler(HandleIPC, MPIPCLocal);
  3276. IF localAPIC # 0 THEN (* APIC present *)
  3277. InitAPICArea(localAPIC, 4096);
  3278. InitAPICIDAdr(localAPIC+20H, idMap);
  3279. ASSERT(MPSPU MOD 16 = 15); (* use default handler (see 7.4.11.1) *)
  3280. InstallHandler(HandleError, MPERR);
  3281. InstallHandler(HandleMPTimer, MPTMR);
  3282. InstallHandler(HandleIPC, MPIPC);
  3283. InitAPIC;
  3284. IF numProcessors > 1 THEN BootMP END
  3285. ELSE
  3286. IF timerRate > 0 THEN
  3287. InstallTickHandler(HandleUPTimer, Second DIV timerRate)
  3288. END
  3289. END;
  3290. InstallHandler(HandleKernelCall, MPKC);
  3291. END InitProcessors;
  3292. (* Send and print character *)
  3293. PROCEDURE TraceChar (c: CHAR);
  3294. VAR status: SHORTINT;
  3295. (* Scroll the screen by one line. *)
  3296. PROCEDURE Scroll;
  3297. VAR adr: ADDRESS; off: SIZE;
  3298. BEGIN
  3299. adr := traceBase + TraceLen;
  3300. SYSTEM.MOVE (adr, adr - TraceLen, TraceSize - TraceLen);
  3301. adr := traceBase + TraceSize - TraceLen;
  3302. FOR off := 0 TO TraceLen - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (adr + off, 100H * 7H + 32) END
  3303. END Scroll;
  3304. BEGIN
  3305. IF TraceV24 IN traceMode THEN
  3306. REPEAT (* wait until port is ready to accept a character *)
  3307. Portin8 (tracePort + 5, SYSTEM.VAL(CHAR,status))
  3308. UNTIL ODD (status DIV 20H); (* THR empty *)
  3309. Portout8 (tracePort, c);
  3310. END;
  3311. IF TraceScreen IN traceMode THEN
  3312. IF c = 9X THEN c := 20X END;
  3313. IF c = 0DX THEN (* CR *)
  3314. DEC (tracePos, tracePos MOD TraceLen)
  3315. ELSIF c = 0AX THEN (* LF *)
  3316. IF tracePos < TraceSize THEN
  3317. INC (tracePos, TraceLen) (* down to next line *)
  3318. ELSE
  3319. Scroll
  3320. END
  3321. ELSE
  3322. IF tracePos >= TraceSize THEN
  3323. Scroll;
  3324. DEC (tracePos, TraceLen)
  3325. END;
  3326. SYSTEM.PUT16 (traceBase + tracePos, 100H * traceColor + ORD (c));
  3327. INC (tracePos, SIZEOF(INTEGER))
  3328. END
  3329. END
  3330. END TraceChar;
  3331. (* Change color *)
  3332. PROCEDURE TraceColor (c: SHORTINT);
  3333. BEGIN traceColor := c;
  3334. END TraceColor;
  3335. (* Initialise tracing. *)
  3336. PROCEDURE InitTrace;
  3337. CONST MaxPorts = 8;
  3338. VAR i, p, bps: LONGINT; off: SIZE; s, name: ARRAY 32 OF CHAR;
  3339. baselist: ARRAY MaxPorts OF LONGINT;
  3340. BEGIN
  3341. GetConfig ("TraceMode", s);
  3342. p := 0; traceMode := SYSTEM.VAL (SET, StrToInt (p, s));
  3343. IF TraceScreen IN traceMode THEN
  3344. GetConfig ("TraceMem", s);
  3345. p := 0; traceBase := SYSTEM.VAL (ADDRESS, StrToInt (p, s));
  3346. IF traceBase = 0 THEN traceBase := 0B8000H END; (* default screen buffer *)
  3347. FOR off := 0 TO TraceSize - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (traceBase + off, 100H * 7H + 32) END;
  3348. tracePos := 0;
  3349. Portout8(3D4H, 0EX);
  3350. Portout8(3D5H, CHR((TraceWidth*TraceHeight) DIV 100H));
  3351. Portout8(3D4H, 0FX);
  3352. Portout8(3D5H, CHR((TraceWidth*TraceHeight) MOD 100H))
  3353. END;
  3354. IF TraceV24 IN traceMode THEN
  3355. FOR i := 0 TO MaxPorts - 1 DO
  3356. COPY ("COMx", name); name[3] := CHR (ORD ("1") + i);
  3357. GetConfig (name, s); p := 0; baselist[i] := StrToInt (p, s);
  3358. END;
  3359. IF baselist[0] = 0 THEN baselist[0] := 3F8H END; (* COM1 port default values *)
  3360. IF baselist[1] = 0 THEN baselist[1] := 2F8H END; (* COM2 port default values *)
  3361. GetConfig("TracePort", s); p := 0; p := StrToInt(p, s); DEC(p);
  3362. IF (p >= 0) & (p < MaxPorts) THEN tracePort := baselist[p] ELSE tracePort := baselist[0] END;
  3363. ASSERT(tracePort > 0);
  3364. GetConfig("TraceBPS", s); p := 0; bps := StrToInt(p, s);
  3365. IF bps <= 0 THEN bps := 38400 END;
  3366. Portout8 (tracePort + 3, 80X); (* Set the Divisor Latch Bit - DLAB = 1 *)
  3367. bps := 115200 DIV bps; (* compiler DIV/PORTOUT bug workaround *)
  3368. Portout8 (tracePort + 1, CHR (bps DIV 100H)); (* Set the Divisor Latch MSB *)
  3369. Portout8 (tracePort, CHR (bps MOD 100H)); (* Set the Divisor Latch LSB *)
  3370. Portout8 (tracePort + 3, 3X); (* 8N1 *)
  3371. Portout8 (tracePort + 4, 3X); (* Set DTR, RTS on in the MCR *)
  3372. Portout8 (tracePort + 1, 0X); (* Disable receive interrupts *)
  3373. END;
  3374. traceColor := 7; Trace.Char := TraceChar; Trace.Color := TraceColor;
  3375. END InitTrace;
  3376. (* The following procedure is linked as the first block in the bootfile *)
  3377. PROCEDURE {NOPAF, FIXED(0100000H)} FirstAddress;
  3378. CODE{SYSTEM.AMD64}
  3379. ; relocate the bootfile from 0x1000 to target address 0x100000
  3380. PUSH RAX
  3381. PUSH RSI
  3382. PUSH RDI
  3383. MOV RSI,1000H
  3384. MOV RDI,100000H
  3385. MOV RCX, LastAddress
  3386. SUB RCX, RDI
  3387. CLD
  3388. REP MOVSB
  3389. POP RDI
  3390. POP RSI
  3391. POP RAX
  3392. ; continue in relocated bootfile
  3393. JMP DWORD 100000H - 1000H + Skip
  3394. Skip:
  3395. ; save arguments passed by bootloader
  3396. MOV bootFlag, RAX
  3397. MOV initRegs0,RSI
  3398. MOV initRegs1, RDI
  3399. END FirstAddress;
  3400. (* empty section allocated at end of bootfile *)
  3401. PROCEDURE {NOPAF} LastAddress;
  3402. CODE {SYSTEM.AMD64}
  3403. END LastAddress;
  3404. (* Init code called from OBL. EAX = boot table offset. ESI, EDI=initRegs. 2k stack is available. No trap handling. *)
  3405. BEGIN
  3406. initRegs[0] := initRegs0;
  3407. initRegs[1] := initRegs1;
  3408. (* registers 6 and 7 get converted to 32 bit, cf. PCB.Assigne
  3409. SYSTEM.GETREG(6, initRegs[0]); SYSTEM.GETREG(7, initRegs[1]); (* initRegs0 & initRegs1 *)
  3410. *)
  3411. SYSTEM.PUT16(0472H, 01234H); (* soft boot flag, for when we reboot *)
  3412. ReadBootTable(bootFlag);
  3413. InitTrace;
  3414. Trace.String("Machine: "); Trace.Blue;Trace.StringLn (Version); Trace.Default;
  3415. CheckMemory;
  3416. SearchMP;
  3417. AllocateDMA; (* must be called after SearchMP, as lowTop is modified *)
  3418. version := Version;
  3419. InitBoot;
  3420. InitProcessor;
  3421. InitLocks;
  3422. NmaxUserStacks := MaxUserStacks;
  3423. ASSERT(ASH(1, PSlog2) = PS);
  3424. Trace.String("Machine: Enabling MMU... ");
  3425. InitSegments; (* enable flat segments *)
  3426. InitPages; (* create page tables *)
  3427. InitMemory; (* switch on segmentation, paging and switch stack *)
  3428. Trace.Green; Trace.StringLn("Ok"); Trace.Default;
  3429. (* allocate empty memory block with enough space for at least one free block *)
  3430. memBlockHead := SYSTEM.VAL (MemoryBlock, ADDRESSOF (initialMemBlock));
  3431. memBlockTail := memBlockHead;
  3432. initialMemBlock.beginBlockAdr := SYSTEM.VAL (ADDRESS, LastAddress);
  3433. initialMemBlock.endBlockAdr := initialMemBlock.beginBlockAdr + StaticBlockSize;
  3434. initialMemBlock.size := initialMemBlock.endBlockAdr - initialMemBlock.beginBlockAdr;
  3435. FOR i := 0 TO IDTSize - 1 DO
  3436. FOR j := 0 TO MaxNumHandlers - 1 DO
  3437. intHandler[i, j].valid := FALSE;
  3438. intHandler[i, j].handler := NIL
  3439. END
  3440. END;
  3441. default.valid := FALSE; (* initialized later *)
  3442. END Machine.
  3443. (*
  3444. 03.03.1998 pjm First version
  3445. 30.06.1999 pjm ProcessorID moved to AosProcessor
  3446. *)
  3447. (**
  3448. Notes
  3449. This module defines an interface to the boot environment of the system. The facilities provided here are only intended for the lowest levels of the system, and should never be directly imported by user modules (exceptions are noted below). They are highly specific to the system hardware and firmware architecture.
  3450. Typically a machine has some type of firmware that performs initial testing and setup of the system. The firmware initiates the operating system bootstrap loader, which loads the boot file. This module is the first module in the statically linked boot file that gets control.
  3451. There are two more-or-less general procedures in this module: GetConfig and StrToInt. GetConfig is used to query low-level system settings, e.g., the location of the boot file system. StrToInt is a utility procedure that parses numeric strings.
  3452. Config strings:
  3453. ExtMemSize Specifies size of extended memory (above 1MB) in MB. This value is not checked for validity. Setting it false may cause the system to fail, possible after running for some time. The memory size is usually detected automatically, but if the detection does not work for some reason, or if you want to limit the amount of memory detected, this string can be set. For example, if the machine has 64MB of memory, this value can be set as ExtMemSize="63".
  3454. *)