BIOS.I386.Machine.Mod 118 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745
  1. MODULE Machine; (** AUTHOR "pjm"; PURPOSE "Bootstrapping, configuration and machine interface"; *)
  2. (* The code of this module body must be the first in the statically linked boot file. *)
  3. IMPORT SYSTEM, Trace;
  4. CONST
  5. Version = "A2 Revision 5296 (10.04.2013)";
  6. MaxCPU* = 8; (** maximum number of processors (up to 16) *)
  7. DefaultObjectFileExtension* = ".Gof";
  8. (** bits in features variable *)
  9. MTTR* = 12; MMX* = 23; HTT* = 28;
  10. MaxDisks = 2; (* maximum number of disks with BIOS parameters *)
  11. HeapAdr = 100000H;
  12. MaxMemTop = (80000000H);
  13. DefaultDMASize = 20; (* default size of ISA DMA area in KB *)
  14. IsCooperative*= FALSE;
  15. CONST
  16. StrongChecks = FALSE; (* perform strong checks *)
  17. Stats* = FALSE; (* acquire statistics *)
  18. TimeCount = 0 (* 100000 *); (* number of lock tries before checking timeout - 0 to disable *)
  19. (** standard lock levels (in order) *) (* also refer to Traps.Show *)
  20. TraceOutput* = 0; (* Trace output *)
  21. Memory* = 1; (* Virtual memory management, stack and page allocation *)
  22. Heaps* = 2; (* Storage allocation and Garbage collection *)
  23. Interrupts* = 3 ; (* Interrupt handling. *)
  24. Modules* = 4; (* Module list *)
  25. Objects* = 5; (* Ready queue *)
  26. Processors* = 6; (* Interprocessor interrupts *)
  27. KernelLog* = 7; (* Atomic output *)
  28. (** highest level is all object locks *)
  29. Preemption* = 31; (** flag for BreakAll *)
  30. MaxLocks = 8; (* { <= 32 } *)
  31. LowestLock = 0; HighestLock = MaxLocks-1;
  32. CONST
  33. TraceVerbose = TRUE; (* write out verbose trace info *)
  34. AddressSize = SIZEOF(ADDRESS);
  35. SetSize = MAX (SET) + 1;
  36. (** error codes *)
  37. Ok* = 0;
  38. (* standard multipliers *)
  39. K = 1024; M = 100000H; (* 1K, 1M *)
  40. (* paging sizes *)
  41. PS = 4096; (* page size in bytes *)
  42. PSlog2 = 12; (* ASH(1, PSlog2) = PS *)
  43. RS = 4*M; (* region covered by a page table in bytes *)
  44. PTEs = RS DIV PS; (* number of page table/directory entries *)
  45. ReservedPages = 8; (* pages reserved on page heap (not for normal heap use) *)
  46. NilAdr* = -1; (** nil value for addresses (not same as pointer NIL value) *)
  47. (* free page stack page node layout *)
  48. NodeSP = 0;
  49. NodeNext = AddressSize;
  50. NodePrev = AddressSize*2;
  51. MinSP = AddressSize*3; MaxSP = PS;
  52. (*
  53. 0 sp
  54. AddressSize nextAdr
  55. AddressSize*2 prevAdr
  56. AddressSize*3 first entry
  57. 4092 last entry
  58. *)
  59. (* virtual memory layout. no area will cross the 2G boundary, to avoid LONGINT sign problems. *)
  60. MapAreaAdr = (80000000H); (* dynamic mappings: bottom part of 2G..4G *)
  61. MapAreaSize = 64*M;
  62. IntelAreaAdr = (0FEE00000H); (* reserved by Intel for APIC: 4G-18M..4G-18M+4K *)
  63. IntelAreaSize = 00001000H;
  64. StackAreaAdr = MapAreaAdr+MapAreaSize; (* stacks: middle part of 2G..4G *)
  65. StackAreaSize = IntelAreaAdr-StackAreaAdr;
  66. (* stack sizes *)
  67. KernelStackSize = 2*PS; (* multiple of PS *)
  68. MaxUserStackSize = 128*K; (* multiple of PS *)
  69. InitUserStackSize = PS; (* must be PS (or change NewStack) *)
  70. UserStackGuardSize = PS; (* multiple of PS left unallocated at bottom of stack virtual area *)
  71. MaxUserStacks = StackAreaSize DIV MaxUserStackSize;
  72. (* physical memory layout *)
  73. LowAdr = PS; (* lowest physical address used *)
  74. LinkAdr = M; (* address where kernel is linked, also address where heap begins *)
  75. StaticBlockSize = 32; (* static heap block size *)
  76. BlockHeaderSize = 2 * AddressSize;
  77. RecordDescSize = 4 * AddressSize; (* needs to be adapted in case Heaps.RecordDesc is changed *)
  78. (* gdt indices *)
  79. TSSOfs = 6; (* offset in GDT of TSSs *)
  80. StackOfs = TSSOfs + MaxCPU; (* offset in GDT of stacks *)
  81. GDTSize = StackOfs + MaxCPU;
  82. (* gdt selectors *)
  83. KernelCodeSel = 1*8; (* selector 1 in gdt, RPL 0 *)
  84. KernelStackSel = 2*8; (* selector 2 in gdt, RPL 0 *)
  85. UserCodeSel = 3*8 + 3; (* selector 3 in gdt, RPL 3 *)
  86. DataSel = 4*8; (* selector 4 in gdt, RPL 0 *)
  87. UserStackSel = 5*8 + 3; (* selector 5 in gdt, RPL 3 *)
  88. KernelTR = TSSOfs*8; (* selector in gdt, RPL 0 *)
  89. (* paging flags *)
  90. PageNotPresent = 0; (* not present page *)
  91. KernelPage = 3; (* supervisor, present, r/w *)
  92. UserPage = 7; (* user, present, r/w *)
  93. HeapMin = 50; (* "minimum" heap size as percentage of total memory size (used for heap expansion in scope of GC ) *)
  94. HeapMax = 95; (* "maximum" heap size as percentage of total memory size (used for heap expansion in scope of GC) *)
  95. ExpandRate = 1; (* always extend heap with at least this percentage of total memory size *)
  96. Threshold = 10; (* periodic GC initiated when this percentage of total memory size bytes has "passed through" NewBlock *)
  97. InitialHeapIncrement = 4096;
  98. HeaderSize = 40H; (* cf. Linker0 *)
  99. EndBlockOfs = 38H; (* cf. Linker0 *)
  100. MemoryBlockOfs = BlockHeaderSize + RecordDescSize + BlockHeaderSize; (* memory block (including header) starts at offset HeaderSize *)
  101. CONST
  102. (** pre-defined interrupts 0-31, used with InstallHandler *)
  103. DE* = 0; DB* = 1; NMI* = 2; BP* = 3; OVF* = 4; BR* = 5; UD* = 6; NM* = 7;
  104. DF* = 8; TS* = 10; NP* = 11; SSF* = 12; GP* = 13; PF* = 14; MF*= 16; AC*= 17; MC* = 18;
  105. IRQ0* = 32; (* {IRQ0 MOD 8 = 0} *)
  106. IRQ2 = IRQ0 + 2;
  107. IRQ7 = IRQ0 + 7;
  108. IRQ8 = IRQ0 + 8;
  109. IRQ15 = 47;
  110. MaxIRQ* = IRQ15; (** hardware interrupt numbers *)
  111. MPKC* = 49; (** SMP: kernel call *)
  112. SoftInt* = 58; (** temporary software interrupt *)
  113. MPIPCLocal* = 59; (** SMP: local interprocessor interrupt *)
  114. MPTMR* = 60; (** SMP: timer interrupt *)
  115. MPIPC* = 61; (** SMP: interprocessor interrupt *)
  116. MPERR* = 62; (** SMP: error interrupt *)
  117. MPSPU* = 63; (** SMP: spurious interrupt {MOD 16 = 15} *)
  118. IDTSize = 64;
  119. MaxNumHandlers = 16;
  120. TraceSpurious = FALSE; (* no message on spurious hardware interrupts *)
  121. HandleSpurious = TRUE OR TraceSpurious; (* do not trap on spurious interrupts *)
  122. IntA0 = 020H; IntA1 = 021H; (* Interrupt Controller 1 *)
  123. IntB0 = 0A0H; IntB1 = 0A1H; (* Interrupt Controller 2 *)
  124. (** EFLAGS bits *)
  125. IFBit* = 9; VMBit* = 17;
  126. KernelLevel* = 0; UserLevel* = 3; (** CS MOD 4 *)
  127. Second* = 1000; (* frequency of ticks increments in Hz *)
  128. CONST
  129. Self* = 0; FrontBarrier* = 1; BackBarrier* = 2; (** Broadcast flags. *)
  130. TraceApic = FALSE;
  131. TraceProcessor = FALSE; (* remove this hack! *)
  132. ClockRateDelay = 50; (* ms - delay when timing bus clock rate *)
  133. TimerClock = 1193180; (* timer clock is 1.19318 MHz *)
  134. CONST
  135. (* low level tracing *)
  136. TraceV24 = 2; TraceScreen = 0;
  137. TraceWidth = 80; TraceHeight = 25;
  138. TraceLen = TraceWidth * SIZEOF (INTEGER);
  139. TraceSize = TraceLen * TraceHeight;
  140. TYPE
  141. Vendor* = ARRAY 13 OF CHAR;
  142. IDMap* = ARRAY 16 OF SHORTINT;
  143. TYPE
  144. Stack* = RECORD (** values are read-only *)
  145. low: ADDRESS; (* lowest virtual address that may be allocated for stack *)
  146. adr*: ADDRESS; (* lowest address on allocated stack *) (* exported for Objects only *)
  147. high*: ADDRESS; (* next virtual address after stack *) (* exported for Objects only *)
  148. END;
  149. (* task state segment *)
  150. TSSDesc = RECORD (* 1, p. 485 and p. 612 for required fields *)
  151. Link: LONGINT; (* lower 16 bits significant *)
  152. ESP0: LONGINT;
  153. ESS0: LONGINT; (* lower 16 bits significant *)
  154. ESP1: LONGINT;
  155. ESS1: LONGINT; (* lower 16 bits significant *)
  156. ESP2: LONGINT;
  157. ESS2: LONGINT; (* lower 16 bits significant *)
  158. CR3: LONGINT;
  159. EIP: LONGINT;
  160. EFLAGS: SET;
  161. EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI: LONGINT;
  162. ES, CS, SS, DS, FS, GS: LONGINT; (* lower 16 bits significant *)
  163. LDT: LONGINT; (* lower 16 bits significant *)
  164. TaskAttributes: INTEGER;
  165. IOBitmapOffset: INTEGER
  166. (* Implicit: IOBitmap: ARRAY 8192 DIV 4 OF SET *)
  167. END;
  168. Startup* = PROCEDURE; (** can not be a method *)
  169. (* global descriptor table *)
  170. SegDesc = RECORD
  171. low, high: LONGINT
  172. END;
  173. GDT = ARRAY GDTSize OF SegDesc;
  174. Range* = RECORD
  175. adr*: ADDRESS; size*: SIZE;
  176. END;
  177. TYPE
  178. (** processor state, ordering of record fields is predefined! *)
  179. State* = RECORD (* offsets used in FieldInterrupt, FieldIRQ and Objects.RestoreState *)
  180. EDI*, ESI*, ERR*, ESP0*, EBX*, EDX*, ECX*, EAX*: LONGINT; (** ESP0 = ADR(s.INT) *)
  181. INT*, BP*, PC*, CS*: LONGINT; (* BP and ERR are exchanged by glue code, for procedure link *)
  182. FLAGS*: SET;
  183. SP*, SS*: LONGINT; (** only valid if (VMBit IN s.EFLAGS) OR (CS MOD 4 < s.CS MOD 4) *)
  184. ES*, DS*, FS*, GS*: LONGINT; (** only valid if (VMBit IN s.FLAGS) *)
  185. END;
  186. (** exception state, ordering of record fields is predefined! *)
  187. ExceptionState* = RECORD
  188. halt*: SIZE; (** halt code *)
  189. pf*: ADDRESS; (** page fault address *)
  190. locks*: SET; (** active locks *)
  191. SP*: ADDRESS; (** actual ESP value at time of interrupt *)
  192. SS*, ES*, DS*, FS*, GS*: LONGINT; (** segment registers *)
  193. CR*: ARRAY 5 OF LONGINT; (** control registers *)
  194. DR*: ARRAY 8 OF LONGINT; (** debug registers *)
  195. FPU*: ARRAY 7 OF SET (** floating-point state *)
  196. END;
  197. Handler* = PROCEDURE {DELEGATE} (VAR state: State);
  198. HandlerRec = RECORD
  199. valid: BOOLEAN; (* offset 0 *)
  200. handler: Handler (* offset 4 *)
  201. END;
  202. GateDescriptor = RECORD
  203. offsetBits0to15: INTEGER;
  204. selector: INTEGER;
  205. gateType: INTEGER;
  206. offsetBits16to31: INTEGER
  207. END;
  208. IDT = ARRAY IDTSize OF GateDescriptor;
  209. SSEState* = ARRAY (512+16) OF CHAR;
  210. TYPE
  211. MemoryBlock* = POINTER TO MemoryBlockDesc;
  212. MemoryBlockDesc* = RECORD
  213. next- {UNTRACED}: MemoryBlock;
  214. startAdr-: ADDRESS; (* unused field for I386 *)
  215. size-: SIZE; (* unused field for I386 *)
  216. beginBlockAdr-, endBlockAdr-: ADDRESS
  217. END;
  218. TYPE
  219. EventHandler = PROCEDURE (id: LONGINT; CONST state: State);
  220. Message* = POINTER TO RECORD END; (** Broadcast message. *)
  221. BroadcastHandler = PROCEDURE (id: LONGINT; CONST state: State; msg: Message);
  222. TimeArray = ARRAY MaxCPU OF HUGEINT;
  223. Address32* = LONGINT;
  224. VAR
  225. lowTop*: ADDRESS; (** top of low memory *)
  226. memTop*: ADDRESS; (** top of memory *)
  227. dmaSize*: SIZE; (** size of ISA dma area, above lowTop (for use in Aos.Diskettes) *)
  228. configMP: ADDRESS; (** MP spec config table physical address (outside reported RAM) *)
  229. revMP: CHAR; (** MP spec revision *)
  230. featureMP: ARRAY 5 OF CHAR; (** MP spec feature bytes 1-5 *)
  231. version-: ARRAY 64 OF CHAR; (** Aos version *)
  232. SSESupport-: BOOLEAN;
  233. SSE2Support-: BOOLEAN;
  234. SSE3Support-: BOOLEAN; (* PH 04/11*)
  235. SSSE3Support-: BOOLEAN;
  236. SSE41Support-: BOOLEAN;
  237. SSE42Support-: BOOLEAN;
  238. SSE5Support-: BOOLEAN;
  239. AVXSupport-: BOOLEAN;
  240. features-, features2-: SET; (** processor features *)
  241. fcr*: SET; (** default floating-point control register value (default rounding mode is towards -infinity, for ENTIER) *)
  242. mhz*: HUGEINT; (** clock rate of GetTimer in MHz, or 0 if not known *)
  243. chs: ARRAY MaxDisks OF RECORD cyls, hds, spt: LONGINT END;
  244. initRegs0, initRegs1: LONGINT;
  245. initRegs: ARRAY 2 OF LONGINT; (* kernel parameters *)
  246. config: ARRAY 2048 OF CHAR; (* config strings *)
  247. bootFlag: ADDRESS;
  248. idAdr: ADDRESS; (* address of processor ID register *)
  249. map: IDMap;
  250. bootID: LONGINT; (* ID of boot processor (0) *)
  251. numberOfProcessors: LONGINT; (* number of processors installed during start up *)
  252. coresPerProcessor : LONGINT; (* number of cores per physical package *)
  253. threadsPerCore : LONGINT; (* number of threads per core *)
  254. CONST
  255. CacheLineSize = 128;
  256. TYPE
  257. (* Synchronization variables should reside in own cache line. This data structure should be aligned to CacheLineSize. *)
  258. Lock = RECORD
  259. locked : BOOLEAN;
  260. filler : ARRAY CacheLineSize - 1 OF CHAR;
  261. END;
  262. VAR
  263. lock: ARRAY MaxLocks OF Lock; (** all locks *)
  264. (*
  265. Every element in the proc array belongs to one processor. It is therefore sufficient to disable interrupts to protect the consistency of these elements. Race conditions with interrupts handled on the same processor are avoided by disabling interrupts for the entire time that a lock is held (using locksHeld & state). The data structures are padded to CacheLineSize to separate the locks out on cache lines of their own, to avoid false sharing.
  266. *)
  267. proc-, trapState-: ARRAY MaxCPU OF RECORD
  268. locksHeld-: SET; (** locks held by a processor *)
  269. state-: SET; (** processor flags (interrupt state) at entry to its first lock *)
  270. preemptCount-: LONGINT; (** if 0, preemption is allowed *)
  271. padding : ARRAY CacheLineSize - 12 OF CHAR;
  272. END;
  273. (* the data structures above should be aligned to CacheLineSize *)
  274. padding : ARRAY 92 OF CHAR;
  275. trapLocksBusy-: SET;
  276. maxTime: LONGINT;
  277. VAR
  278. gdt: GDT; (* global descriptor table *)
  279. procm: ARRAY MaxCPU OF RECORD (* indexed by ID () *)
  280. tss: TSSDesc;
  281. sp: ADDRESS; (* snapshot for GC *)
  282. stack: Stack
  283. END;
  284. kernelPD: ADDRESS; (* physical address of page directory *)
  285. freeLowPage: ADDRESS; (* free low page stack pointer (link at offset 0 in page). All addresses physical. NIL = -1 *)
  286. freeLowPages, freeHighPages, totalPages: LONGINT; (* number of free pages and total number of pages *)
  287. mapTop: ADDRESS; (* virtual address of end of memory mapping area *)
  288. heapEndAdr: ADDRESS; (* virtual address of end of heap (page aligned) *)
  289. topPageNum: LONGINT; (* page containing byte memTop-1 *)
  290. pageHeapAdr: ADDRESS; (* address (physical and virtual) of bottom of page heap area *)
  291. pageStackAdr: ADDRESS; (* virtual address of top page of free page stack *)
  292. freeStack: ARRAY (MaxUserStacks+SetSize-1) DIV SetSize OF SET; (* free stack bitmap *)
  293. freeStackIndex: LONGINT; (* current position in bitmap (rotates) *)
  294. Nbigskips-: LONGINT; (* number of times a stack was extended leaving a hole *)
  295. Nfilled-: LONGINT; (* number of times a "hole" in a stack was filled *)
  296. NnewStacks-, NnewStackLoops-, NnewStackInnerLoops-, NdisposeStacks-,
  297. NlostPages-, NreservePagesUsed-, NmaxUserStacks-: LONGINT;
  298. VAR
  299. idt: IDT; (* interrupt descriptor table *)
  300. glue: ARRAY IDTSize OF ARRAY 15 OF CHAR; (* code *)
  301. intHandler: ARRAY IDTSize, MaxNumHandlers OF HandlerRec; (* array of handlers for interrupts, the table is only filled up to MaxNumHandlers - 1, the last element in each row acts as a sentinel *)
  302. stateTag: ADDRESS;
  303. default: HandlerRec;
  304. i, j, ticks*: LONGINT; (** timer ticks. Use Kernel.GetTicks() to read, don't write *)
  305. VAR
  306. ipcBusy, ipcFlags, ipcFrontBarrier, ipcBackBarrier: SET;
  307. ipcHandler: BroadcastHandler;
  308. ipcMessage: Message;
  309. numProcessors-: LONGINT; (* number of processors we attempted to boot (some may have failed) *)
  310. maxProcessors: LONGINT; (* max number of processors we are allowed to boot (-1 for uni) *)
  311. allProcessors-: SET; (* IDs of all successfully booted processors *)
  312. localAPIC: ADDRESS; (* address of local APIC, 0 if not present *)
  313. apicVer: ARRAY MaxCPU OF LONGINT; (* APIC version *)
  314. started: ARRAY MaxCPU OF BOOLEAN; (* CPU started successfully / CPU halted *)
  315. busHz0, busHz1: ARRAY MaxCPU OF LONGINT; (* unrounded and rounded bus speed in Hz *)
  316. timer: EventHandler;
  317. timerRate: LONGINT; (* Hz - rate at which CPU timers run - for timeslicing and profiling *)
  318. stopped: BOOLEAN; (* StopAll was called *)
  319. idMap: IDMap;
  320. revIDmap: ARRAY MaxCPU OF SHORTINT;
  321. time: TimeArray;
  322. eventCount, eventMax: LONGINT;
  323. event: Handler;
  324. expandMin, heapMinKB, heapMaxKB : SIZE;
  325. gcThreshold-: SIZE;
  326. memBlockHead-{UNTRACED}, memBlockTail-{UNTRACED}: MemoryBlock; (* refer to the same memory block for I386, not traced by GC *)
  327. initialMemBlock: MemoryBlockDesc;
  328. traceProcessorProc*: EventHandler; (** temp tracing *)
  329. traceProcessor: BOOLEAN;
  330. Timeslice*: Handler;
  331. start*: PROCEDURE;
  332. VAR
  333. traceMode: SET; (* tracing mode: Screen or V24 *)
  334. traceBase: ADDRESS; (* screen buffer base address *)
  335. tracePos: SIZE; (* current screen cursor *)
  336. tracePort: LONGINT; (* serial base port *)
  337. traceColor: SHORTINT; (* current screen tracing color *)
  338. (** -- Processor identification -- *)
  339. (** Return current processor ID (0 to MaxNum-1). *)
  340. PROCEDURE ID* (): LONGINT;
  341. CODE {SYSTEM.i386}
  342. MOV EAX, idAdr
  343. LEA EBX, map
  344. MOV EAX, [EAX]
  345. SHR EAX, 24
  346. AND EAX, 15
  347. MOV AL, [EBX+EAX]
  348. END ID;
  349. (**
  350. Disable data cache for the memory range [adr, adr + len). Repeated cache disabling is recorded. A maximum of 127 successive disabling is supported.
  351. Cache disabling is allowed for heap and stack memory ranges only.
  352. *)
  353. PROCEDURE DisableDCacheRange * (adr: ADDRESS; len: LONGINT);
  354. END DisableDCacheRange;
  355. (**
  356. Enable data cache for the memory range [adr, adr + len).
  357. The memory range must have been previously disabled.
  358. It is the responsibility of client software to re-enable cache for the regions that it disabled.
  359. *)
  360. PROCEDURE EnableDCacheRange * (adr: ADDRESS; len: LONGINT);
  361. END EnableDCacheRange;
  362. (* InvalidateICache - invalidates the ICache. Works only in a priviledged mode. *)
  363. PROCEDURE InvalidateICache*;
  364. END InvalidateICache;
  365. (** -- Miscellaneous -- *)
  366. (** This procedure should be called in all spin loops as a hint to the processor (e.g. Pentium 4). *)
  367. PROCEDURE -SpinHint*;
  368. CODE {SYSTEM.i386}
  369. XOR ECX, ECX ; just in case some processor interprets REP this way
  370. REP NOP ; PAUSE instruction; NOP on pre-P4 processors, Spin Loop Hint on P4 and after
  371. END SpinHint;
  372. (** Fill "size" bytes at "destAdr" with "filler". "size" must be multiple of 4. *)
  373. PROCEDURE Fill32* (destAdr: ADDRESS; size: SIZE; filler: ADDRESS);
  374. CODE {SYSTEM.i386}
  375. MOV EDI, [EBP+destAdr]
  376. MOV ECX, [EBP+size]
  377. MOV EAX, [EBP+filler]
  378. TEST ECX, 3
  379. JZ ok
  380. PUSH 8 ; ASSERT failure
  381. INT 3
  382. ok:
  383. SHR ECX, 2
  384. CLD
  385. REP STOSD
  386. END Fill32;
  387. (** Return timer value of the current processor, or 0 if not available. *)
  388. (* e.g. ARM does not have a fine-grained timer *)
  389. PROCEDURE -GetTimer* (): HUGEINT;
  390. CODE {SYSTEM.Pentium}
  391. RDTSC ; set EDX:EAX
  392. END GetTimer;
  393. (** Disable interrupts and return old interrupt state. *)
  394. PROCEDURE -DisableInterrupts* (): SET;
  395. CODE {SYSTEM.i386}
  396. PUSHFD
  397. CLI
  398. POP EAX
  399. END DisableInterrupts;
  400. (** Restore interrupt state. Parameter s must be return value of earlier DisableInterrupts call on same processor. *)
  401. PROCEDURE -RestoreInterrupts* (s: SET);
  402. CODE {SYSTEM.i386}
  403. POPFD
  404. END RestoreInterrupts;
  405. (** Return TRUE iff interrupts are enabled on the current processor. *)
  406. PROCEDURE -InterruptsEnabled* (): BOOLEAN;
  407. CODE {SYSTEM.i386}
  408. PUSHFD
  409. POP EAX
  410. SHR EAX, 9
  411. AND AL, 1
  412. END InterruptsEnabled;
  413. (** -- Processor initialization -- *)
  414. PROCEDURE -SetFCR (s: SET);
  415. CODE {SYSTEM.i386, SYSTEM.FPU}
  416. FLDCW [ESP] ; parameter s
  417. POP EAX
  418. END SetFCR;
  419. PROCEDURE -FCR (): SET;
  420. CODE {SYSTEM.i386, SYSTEM.FPU}
  421. PUSH 0
  422. FNSTCW [ESP]
  423. FWAIT
  424. POP EAX
  425. END FCR;
  426. PROCEDURE -InitFPU;
  427. CODE {SYSTEM.i386, SYSTEM.FPU}
  428. FNINIT
  429. END InitFPU;
  430. (** Setup FPU control word of current processor. *)
  431. PROCEDURE SetupFPU*;
  432. BEGIN
  433. InitFPU; SetFCR(fcr)
  434. END SetupFPU;
  435. (* Set up flags (3, p. 20)
  436. Bit
  437. 1,3,5,15,19..31 - no change
  438. 0,2,4,6..7,11 - CF,PF,AF,ZF,SF,OF off
  439. 8 - TF off
  440. 9 - IF off (no interrupts)
  441. 10 - DF off
  442. 12..13 - IOPL = 3
  443. 14 - NT off (no Windows)
  444. 16 - RF off (no Interference)
  445. 17- VM off (no virtual 8086 mode)
  446. 18 - AC off (no 486 alignment checks) *)
  447. PROCEDURE -SetupFlags;
  448. CODE {SYSTEM.i386}
  449. PUSHFD
  450. AND DWORD [ESP], 0FFF8802AH
  451. OR DWORD [ESP], 3000H
  452. POPFD
  453. END SetupFlags;
  454. (* Set up various 486-specific flags (3, p. 23)
  455. 1. Enable exception 16 on math errors.
  456. 2. Disable supervisor mode faults on write to read-only pages
  457. (386-compatible for stack checking).
  458. 3. Enable the Alignment Check field in EFLAGS *)
  459. PROCEDURE -Setup486Flags;
  460. CODE {SYSTEM.i386, SYSTEM.Privileged}
  461. MOV EAX, CR0
  462. OR EAX, 00040020H
  463. AND EAX, 0FFFEFFFFH
  464. MOV CR0, EAX
  465. END Setup486Flags;
  466. (* Set up 586-specific things *)
  467. PROCEDURE -Setup586Flags;
  468. CODE {SYSTEM.Pentium, SYSTEM.Privileged}
  469. MOV EAX, CR4
  470. BTR EAX, 2 ; clear TSD
  471. MOV CR4, EAX
  472. END Setup586Flags;
  473. (* setup SSE and SSE2 extension *)
  474. PROCEDURE SetupSSE2Ext;
  475. CONST
  476. FXSRFlag = 24; (*IN features from EBX*)
  477. SSEFlag = 25;
  478. SSE2Flag = 26;
  479. SSE3Flag = 0; (*IN features2 from ECX*) (*PH 04/11*)
  480. SSSE3Flag =9;
  481. SSE41Flag =19;
  482. SSE42Flag =20;
  483. SSE5Flag = 11;
  484. AVXFlag = 28;
  485. BEGIN
  486. SSE2Support := FALSE;
  487. SSE3Support := FALSE;
  488. SSSE3Support := FALSE;
  489. SSE41Support := FALSE;
  490. SSE42Support := FALSE;
  491. SSE5Support := FALSE;
  492. AVXSupport := FALSE;
  493. (* checking for SSE support *)
  494. IF SSEFlag IN features THEN
  495. SSESupport := TRUE;
  496. (* checking for SSE2 support *)
  497. IF SSE2Flag IN features THEN SSE2Support := TRUE;
  498. (* checking for SSE3... support*)(*PH 04/11*)
  499. IF SSE3Flag IN features2 THEN SSE3Support := TRUE;
  500. IF SSSE3Flag IN features2 THEN SSSE3Support := TRUE END;
  501. IF SSE41Flag IN features2 THEN SSE41Support := TRUE;
  502. IF SSE42Flag IN features2 THEN SSE42Support := TRUE END;
  503. END;
  504. IF SSE5Flag IN features2 THEN SSE5Support := TRUE END;
  505. IF AVXFlag IN features2 THEN AVXSupport := TRUE END;
  506. END;
  507. END;
  508. (* checking for support for the FXSAVE and FXRSTOR instruction *)
  509. IF FXSRFlag IN features THEN InitSSE END;
  510. END;
  511. END SetupSSE2Ext;
  512. PROCEDURE -InitSSE;
  513. CODE {SYSTEM.Pentium, SYSTEM.Privileged}
  514. MOV EAX, CR4
  515. OR EAX, 00000200H ; set bit 9 (OSFXSR)
  516. AND EAX, 0FFFFFBFFH ; delete bit 10 (OSXMMEXCPT)
  517. MOV CR4, EAX
  518. END InitSSE;
  519. (* Disable exceptions caused by math in new task. (1, p. 479) *)
  520. PROCEDURE -DisableMathTaskEx;
  521. CODE {SYSTEM.i386, SYSTEM.Privileged}
  522. MOV EAX,CR0
  523. AND AL, 0F5H
  524. MOV CR0, EAX
  525. END DisableMathTaskEx;
  526. (* Disable math emulation (1, p. 479) , bit 2 of CR0 *)
  527. PROCEDURE -DisableEmulation;
  528. CODE {SYSTEM.i386, SYSTEM.Privileged}
  529. MOV EAX, CR0
  530. AND AL, 0FBH
  531. MOV CR0, EAX
  532. END DisableEmulation;
  533. (** CPU identification *)
  534. PROCEDURE CPUID*(function :ADDRESS; VAR eax, ebx, ecx, edx : SET);
  535. CODE {SYSTEM.i386, SYSTEM.Pentium}
  536. MOV EAX, [EBP+function] ; CPUID function parameter
  537. MOV ESI, [EBP+ecx] ; copy ecx into ECX (sometimes used as input parameter)
  538. MOV ECX, [ESI]
  539. CPUID ; execute CPUID
  540. MOV ESI, [EBP+eax] ; copy EAX into eax;
  541. MOV [ESI], EAX
  542. MOV ESI, [EBP+ebx] ; copy EBX into ebx
  543. MOV [ESI], EBX
  544. MOV ESI, [EBP+ecx] ; copy ECX into ecx
  545. MOV [ESI], ECX
  546. MOV ESI, [EBP+edx] ; copy EDX into edx
  547. MOV [ESI], EDX
  548. END CPUID;
  549. (* If the CPUID instruction is supported, the ID flag (bit 21) of the EFLAGS register is r/w *)
  550. PROCEDURE CpuIdSupported*() : BOOLEAN;
  551. CODE {SYSTEM.i386}
  552. PUSHFD ; save EFLAGS
  553. POP EAX ; store EFLAGS in EAX
  554. MOV EBX, EAX ; save EBX for later testing
  555. XOR EAX, 00200000H ; toggle bit 21
  556. PUSH EAX ; push to stack
  557. POPFD ; save changed EAX to EFLAGS
  558. PUSHFD ; push EFLAGS to TOS
  559. POP EAX ; store EFLAGS in EAX
  560. CMP EAX, EBX ; see if bit 21 has changed
  561. SETNE AL; ; return TRUE if bit 21 has changed, FALSE otherwise
  562. END CpuIdSupported;
  563. (** Initialise current processor. Must be called by every processor. *)
  564. PROCEDURE InitProcessor*;
  565. BEGIN
  566. SetupFlags;
  567. Setup486Flags;
  568. Setup586Flags;
  569. DisableMathTaskEx;
  570. DisableEmulation;
  571. SetupFPU;
  572. SetupSSE2Ext
  573. END InitProcessor;
  574. (** Initialize APIC ID address. *)
  575. PROCEDURE InitAPICIDAdr* (adr: ADDRESS; CONST m: IDMap);
  576. VAR s: SET;
  577. BEGIN
  578. s := DisableInterrupts ();
  579. idAdr := adr; map := m;
  580. RestoreInterrupts (s)
  581. END InitAPICIDAdr;
  582. PROCEDURE InitBoot;
  583. VAR
  584. largestFunction, i: LONGINT;
  585. eax, ebx, ecx, edx : SET;
  586. logicalProcessorCount : LONGINT;
  587. u: ARRAY 8 OF CHAR; vendor : Vendor;
  588. PROCEDURE GetString(VAR string : ARRAY OF CHAR; offset : LONGINT; register : SET);
  589. BEGIN
  590. string[offset] :=CHR(SYSTEM.VAL(LONGINT, register * {0..7}));
  591. string[offset+1] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {8..15}, -8)));
  592. string[offset+2] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {16..23}, -16)));
  593. string[offset+3] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {24..31}, -24)));
  594. END GetString;
  595. BEGIN
  596. vendor := "Unknown"; features := {}; features2 := {};
  597. coresPerProcessor := 1; threadsPerCore := 1;
  598. IF CpuIdSupported() THEN
  599. (* Assume that all processors are the same *)
  600. (* CPUID standard function 0 returns: eax: largest CPUID standard function supported, ebx, edx, ecx: vendor string *)
  601. CPUID(0, eax, ebx, ecx, edx);
  602. largestFunction := SYSTEM.VAL(LONGINT, eax);
  603. ASSERT(LEN(vendor) >= 13);
  604. GetString(vendor, 0, ebx); GetString(vendor, 4, edx); GetString(vendor, 8, ecx); vendor[12] := 0X;
  605. IF (largestFunction >= 1) THEN
  606. (* CPUID standard function 1 returns: CPU features in ecx & edx *)
  607. CPUID(1, eax, ebx, ecx, edx);
  608. features := SYSTEM.VAL(SET, edx);
  609. features2 := SYSTEM.VAL(SET, ecx);
  610. (* The code below is used to determine the number of threads per processor core (hyperthreading). This is required
  611. since processors supporting hyperthreading are listed only once in the MP tables, so we need to know the
  612. exact number of threads per processor to start the processor correctly *)
  613. IF (HTT IN features) THEN (* multithreading supported by CPU *)
  614. (* logical processor count = number of cores * number of threads per core = total number of threads supported *)
  615. logicalProcessorCount := SYSTEM.VAL(LONGINT, LSH(ebx * {16..23}, -16));
  616. IF (vendor = "GenuineIntel") THEN
  617. IF (largestFunction >= 4) THEN
  618. (* CPUID standard function 4 returns: number of processor cores -1 on this die eax[26.31] *)
  619. ecx := SYSTEM.VAL(SET, 0); (* input parameter - must be set to 0 *)
  620. CPUID(4, eax, ebx, ecx, edx);
  621. coresPerProcessor := SYSTEM.VAL(LONGINT, LSH(eax * {26..31}, -26)) + 1;
  622. threadsPerCore := logicalProcessorCount DIV coresPerProcessor;
  623. ELSE
  624. threadsPerCore := logicalProcessorCount;
  625. END;
  626. ELSIF (vendor = "AuthenticAMD") THEN
  627. (* CPUID extended function 1 returns: largest extended function *)
  628. CPUID(80000000H, eax, ebx, ecx, edx);
  629. largestFunction := SYSTEM.VAL(LONGINT, eax - {31}); (* remove sign *)
  630. IF (largestFunction >= 8) THEN
  631. (* CPUID extended function 8 returns: *)
  632. CPUID(80000008H, eax, ebx, ecx, edx);
  633. coresPerProcessor := SYSTEM.VAL(LONGINT, ecx * {0..7}) + 1;
  634. threadsPerCore := logicalProcessorCount DIV coresPerProcessor;
  635. ELSIF (largestFunction >= 1) THEN
  636. (* CPUID extended function 1 returns CmpLegacy bit in ecx *)
  637. CPUID(80000001H, eax, ebx, ecx, edx);
  638. IF 1 IN ecx THEN (* CmpLegacy bit set -> no hyperthreading *)
  639. coresPerProcessor := logicalProcessorCount;
  640. threadsPerCore := 1;
  641. END;
  642. ELSE
  643. (* single-core, single-thread *)
  644. END;
  645. ELSE
  646. Trace.String("Machine: "); Trace.Yellow; Trace.String("Warning: Cannot detect hyperthreading, unknown CPU vendor ");
  647. Trace.String(vendor); Trace.Ln; Trace.Default;
  648. END;
  649. END;
  650. END;
  651. END;
  652. Trace.String("Machine: "); Trace.Int(coresPerProcessor, 0); Trace.String(" cores per physical package, ");
  653. Trace.Int(threadsPerCore, 0); Trace.String(" threads per core.");
  654. Trace.Ln;
  655. InitFPU;
  656. fcr := (FCR () - {0, 2, 3, 10, 11}) + {0 .. 5, 8, 9}; (* default FCR RC=00B *)
  657. bootID := 0; map[0] := 0;
  658. idAdr := ADDRESSOF (bootID);
  659. (* allow user to specify GetTimer rate, for tracing purposes *)
  660. GetConfig ("MHz", u);
  661. i := 0; mhz := StrToInt (i, u);
  662. END InitBoot;
  663. (** -- Configuration and bootstrapping -- *)
  664. (** Return the value of the configuration string specified by parameter name in parameter val. Returns val = "" if the string was not found, or has an empty value. *)
  665. PROCEDURE GetConfig* (CONST name: ARRAY OF CHAR; VAR val: ARRAY OF CHAR);
  666. VAR i, src: LONGINT; ch: CHAR;
  667. BEGIN
  668. ASSERT (name[0] # "="); (* no longer supported, use GetInit instead *)
  669. src := 0;
  670. LOOP
  671. ch := config[src];
  672. IF ch = 0X THEN EXIT END;
  673. i := 0;
  674. LOOP
  675. ch := config[src];
  676. IF (ch # name[i]) OR (name[i] = 0X) THEN EXIT END;
  677. INC (i); INC (src)
  678. END;
  679. IF (ch = 0X) & (name[i] = 0X) THEN (* found: (src^ = 0X) & (name[i] = 0X) *)
  680. i := 0;
  681. REPEAT
  682. INC (src); ch := config[src]; val[i] := ch; INC (i);
  683. IF i = LEN(val) THEN val[i - 1] := 0X; RETURN END (* val too short *)
  684. UNTIL ch = 0X;
  685. val[i] := 0X; RETURN
  686. ELSE
  687. WHILE ch # 0X DO (* skip to end of name *)
  688. INC (src); ch := config[src]
  689. END;
  690. INC (src);
  691. REPEAT (* skip to end of value *)
  692. ch := config[src]; INC (src)
  693. UNTIL ch = 0X
  694. END
  695. END;
  696. val[0] := 0X
  697. END GetConfig;
  698. (** Get CHS parameters of first two BIOS-supported hard disks. *)
  699. PROCEDURE GetDiskCHS* (d: LONGINT; VAR cyls, hds, spt: LONGINT);
  700. BEGIN
  701. cyls := chs[d].cyls; hds := chs[d].hds; spt := chs[d].spt
  702. END GetDiskCHS;
  703. (** Get parameter values from Init string. If n = 0, return val = ASH(bx, 16) + ax, and if n = 1, return val = ASH(dx, 16) + cx, where ax, bx, cx, dx are the register values after the OBL boot loader or noboot.exe have executed the 16-bit x86 code in the Init string. *)
  704. PROCEDURE GetInit* (n: LONGINT; VAR val: LONGINT);
  705. BEGIN
  706. val := initRegs[n]
  707. END GetInit;
  708. (** Convert a string to an integer. Parameter i specifies where in the string scanning should begin (usually 0 in the first call). Scanning stops at the first non-valid character, and i returns the updated position. Parameter s is the string to be scanned. The value is returned as result, or 0 if not valid. Syntax: number = ["-"] digit {digit} ["H" | "h"] . digit = "0" | ... "9" | "A" .. "F" | "a" .. "f" . If the number contains any hexdecimal letter, or if it ends in "H" or "h", it is interpreted as hexadecimal. *)
  709. PROCEDURE StrToInt* (VAR i: LONGINT; CONST s: ARRAY OF CHAR): LONGINT;
  710. VAR vd, vh, sgn, d: LONGINT; hex: BOOLEAN;
  711. BEGIN
  712. vd := 0; vh := 0; hex := FALSE;
  713. IF s[i] = "-" THEN sgn := -1; INC (i) ELSE sgn := 1 END;
  714. LOOP
  715. IF (s[i] >= "0") & (s[i] <= "9") THEN d := ORD (s[i])-ORD ("0")
  716. ELSIF (CAP (s[i]) >= "A") & (CAP (s[i]) <= "F") THEN d := ORD (CAP (s[i]))-ORD ("A") + 10; hex := TRUE
  717. ELSE EXIT
  718. END;
  719. vd := 10*vd + d; vh := 16*vh + d;
  720. INC (i)
  721. END;
  722. IF CAP (s[i]) = "H" THEN hex := TRUE; INC (i) END; (* optional H *)
  723. IF hex THEN vd := vh END;
  724. RETURN sgn * vd
  725. END StrToInt;
  726. (* Delay for IO *)
  727. PROCEDURE -Wait*;
  728. CODE {SYSTEM.i386}
  729. JMP 0
  730. JMP 0
  731. JMP 0
  732. END Wait;
  733. (* Reset processor by causing a double fault. *)
  734. PROCEDURE Reboot;
  735. CODE {SYSTEM.i386, SYSTEM.Privileged}
  736. PUSH 0
  737. PUSH 0
  738. LIDT [ESP]
  739. INT 3
  740. END Reboot;
  741. PROCEDURE -Cli*;
  742. CODE{SYSTEM.i386}
  743. CLI
  744. END Cli;
  745. PROCEDURE -Sti*;
  746. CODE{SYSTEM.i386}
  747. STI
  748. END Sti;
  749. (** Shut down the system. If parameter reboot is set, attempt to reboot the system. *)
  750. PROCEDURE Shutdown* (reboot: BOOLEAN);
  751. VAR i: LONGINT;
  752. BEGIN
  753. Cli;
  754. IF reboot THEN (* attempt reboot *)
  755. Portout8 (70H, 8FX); (* Reset type: p. 5-37 AT Tech. Ref. *)
  756. Wait; Portout8 (71H, 0X); (* Note: soft boot flag was set in InitMemory *)
  757. Wait; Portout8 (70H, 0DX);
  758. Wait; Portout8 (64H, 0FEX); (* reset CPU *)
  759. FOR i := 1 TO 10000 DO END;
  760. Reboot
  761. END;
  762. LOOP END
  763. END Shutdown;
  764. (* Get hard disk parameters. *)
  765. PROCEDURE GetPar (p: ADDRESS; ofs: LONGINT): LONGINT;
  766. VAR ch: CHAR;
  767. BEGIN
  768. SYSTEM.GET (p + 12 + ofs, ch);
  769. RETURN ORD (ch)
  770. END GetPar;
  771. (* Read boot table. *)
  772. PROCEDURE ReadBootTable (bt: ADDRESS);
  773. VAR i, p: ADDRESS; j, d, type, addr, size, heapSize: LONGINT; ch: CHAR;
  774. BEGIN
  775. heapSize := 0; lowTop := 0;
  776. p := bt; d := 0;
  777. LOOP
  778. SYSTEM.GET (p, type);
  779. IF type = -1 THEN
  780. EXIT (* end *)
  781. ELSIF type = 3 THEN (* boot memory/top of low memory *)
  782. SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size);
  783. lowTop := addr + size
  784. ELSIF type = 4 THEN (* free memory/extended memory size *)
  785. SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size);
  786. IF addr = HeapAdr THEN heapSize := size END
  787. ELSIF type = 5 THEN (* HD config *)
  788. IF d < MaxDisks THEN
  789. chs[d].cyls := GetPar (p, 0) + 100H * GetPar (p, 1);
  790. chs[d].hds := GetPar (p, 2); chs[d].spt := GetPar (p, 14);
  791. INC (d)
  792. END
  793. ELSIF type = 8 THEN (* config strings *)
  794. i := p + 8; j := 0; (* copy the config strings over *)
  795. LOOP
  796. SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j);
  797. IF ch = 0X THEN EXIT END;
  798. REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X; (* end of name *)
  799. REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X (* end of value *)
  800. END
  801. END;
  802. SYSTEM.GET (p + 4, size); INC (p, size)
  803. END;
  804. ASSERT((heapSize # 0) & (lowTop # 0));
  805. memTop := HeapAdr + heapSize
  806. END ReadBootTable;
  807. (** Read a byte from the non-volatile setup memory. *)
  808. PROCEDURE GetNVByte* (ofs: LONGINT): CHAR;
  809. VAR c: CHAR;
  810. BEGIN
  811. Portout8 (70H, CHR(ofs)); Wait; Portin8(71H, c);
  812. RETURN c
  813. END GetNVByte;
  814. (** Write a byte to the non-volatile setup memory. *)
  815. PROCEDURE PutNVByte* (ofs: LONGINT; val: CHAR);
  816. BEGIN
  817. Portout8 (70H, CHR(ofs)); Wait; Portout8 (71H, val)
  818. END PutNVByte;
  819. (** Compute a checksum for the Intel SMP spec floating pointer structure. *)
  820. PROCEDURE ChecksumMP* (adr: ADDRESS; size: SIZE): LONGINT;
  821. VAR sum: LONGINT; x: ADDRESS; ch: CHAR;
  822. BEGIN
  823. sum := 0;
  824. FOR x := adr TO adr + size-1 DO
  825. SYSTEM.GET (x, ch);
  826. sum := (sum + ORD(ch)) MOD 256
  827. END;
  828. RETURN sum
  829. END ChecksumMP;
  830. (* Search for MP floating pointer structure. *)
  831. PROCEDURE SearchMem (adr: ADDRESS; size: SIZE): ADDRESS;
  832. VAR x, len: LONGINT; ch: CHAR;
  833. BEGIN
  834. WHILE size > 0 DO
  835. SYSTEM.GET (adr, x);
  836. IF x = 05F504D5FH THEN (* "_MP_" found *)
  837. SYSTEM.GET (adr + 8, ch); len := ORD(ch)*16;
  838. IF len > 0 THEN
  839. SYSTEM.GET (adr + 9, ch);
  840. IF (ch = 1X) OR (ch >= 4X) THEN (* version 1.1 or 1.4 or higher *)
  841. IF ChecksumMP(adr, len) = 0 THEN
  842. RETURN adr (* found *)
  843. END
  844. END
  845. END
  846. END;
  847. INC (adr, 16); DEC (size, 16)
  848. END;
  849. RETURN NilAdr (* not found *)
  850. END SearchMem;
  851. (* Search for MP spec info. *)
  852. PROCEDURE SearchMP;
  853. VAR adr: ADDRESS;
  854. BEGIN
  855. adr := 0;
  856. SYSTEM.GET (040EH, SYSTEM.VAL (INTEGER, adr)); (* EBDA address *)
  857. adr := adr*16;
  858. IF adr < 100000H THEN adr := SearchMem(adr, 1024) (* 1. look in EBDA *)
  859. ELSE adr := NilAdr
  860. END;
  861. IF adr = NilAdr THEN (* 2. look in last kb of base memory *)
  862. adr := SearchMem(lowTop + (-lowTop) MOD 10000H - 1024, 1024);
  863. IF adr = NilAdr THEN (* 3. look at top of physical memory *)
  864. adr := SearchMem(memTop - 1024, 1024);
  865. IF adr = NilAdr THEN (* 4. look in BIOS ROM space *)
  866. adr := SearchMem(0E0000H, 20000H)
  867. END
  868. END
  869. END;
  870. IF adr = NilAdr THEN
  871. revMP := 0X; configMP := NilAdr
  872. ELSE
  873. SYSTEM.GET (adr + 9, revMP);
  874. SYSTEM.MOVE(adr + 11, ADDRESSOF(featureMP[0]), 5); (* feature bytes *)
  875. configMP := SYSTEM.GET32 (adr + 4); (* physical address outside reported RAM (spec 1.4 p. 4-2) *)
  876. IF configMP = 0 THEN configMP := NilAdr END
  877. END
  878. END SearchMP;
  879. (* Allocate area for ISA DMA. *)
  880. PROCEDURE AllocateDMA;
  881. VAR old: ADDRESS;
  882. BEGIN
  883. old := lowTop;
  884. dmaSize := DefaultDMASize*1024;
  885. ASSERT((dmaSize >= 0) & (dmaSize <= 65536));
  886. IF (lowTop-dmaSize) DIV 65536 # (lowTop-1) DIV 65536 THEN (* crosses 64KB boundary *)
  887. DEC (lowTop, lowTop MOD 65536) (* round down to 64KB boundary *)
  888. END;
  889. DEC (lowTop, dmaSize); (* allocate memory *)
  890. dmaSize := old - lowTop (* how much was allocated (including rounding) *)
  891. END AllocateDMA;
  892. (* Check if the specified address is RAM. *)
  893. PROCEDURE IsRAM(adr: ADDRESS): BOOLEAN;
  894. CONST Pattern1 = (0BEEFC0DEH); Pattern2 = (0AA55FF00H);
  895. VAR save, x: ADDRESS; ok: BOOLEAN;
  896. BEGIN
  897. ok := FALSE;
  898. SYSTEM.GET (adr, save);
  899. SYSTEM.PUT (adr, Pattern1); (* attempt 1st write *)
  900. x := Pattern2; (* write something else *)
  901. SYSTEM.GET (adr, x); (* attempt 1st read *)
  902. IF x = Pattern1 THEN (* first test passed *)
  903. SYSTEM.PUT (adr, Pattern2); (* attempt 2nd write *)
  904. x := Pattern1; (* write something else *)
  905. SYSTEM.GET (adr, x); (* attempt 2nd read *)
  906. ok := (x = Pattern2)
  907. END;
  908. SYSTEM.PUT (adr, save);
  909. RETURN ok
  910. END IsRAM;
  911. (* Check amount of memory available and update memTop. *)
  912. PROCEDURE CheckMemory;
  913. CONST M = 100000H; ExtMemAdr = M; Step = M;
  914. VAR s: ARRAY 16 OF CHAR; adr: ADDRESS; i: LONGINT;
  915. BEGIN
  916. GetConfig("ExtMemSize", s); (* in MB *)
  917. IF s[0] # 0X THEN (* override detection *)
  918. i := 0; memTop := ExtMemAdr + StrToInt(i, s) * M;
  919. Trace.String("Machine: Memory: ");
  920. ELSE
  921. Trace.String("Machine: Detecting memory... ");
  922. IF memTop >= 15*M THEN (* search for more memory (ignore aliasing) *)
  923. adr := memTop-4;
  924. WHILE (LSH(memTop, -12) < LSH(MaxMemTop, -12)) & IsRAM(adr) DO
  925. memTop := adr + 4;
  926. INC (adr, Step)
  927. END;
  928. IF (memTop <= 0) THEN memTop := 2047 * M ; END;
  929. END
  930. END;
  931. Trace.Green; Trace.IntSuffix(memTop, 0, "B"); Trace.Ln; Trace.Default;
  932. END CheckMemory;
  933. (* Initialize locks. *)
  934. PROCEDURE InitLocks;
  935. VAR i: LONGINT; s: ARRAY 12 OF CHAR;
  936. BEGIN
  937. IF TimeCount # 0 THEN
  938. GetConfig("LockTimeout", s);
  939. i := 0; maxTime := StrToInt(i, s);
  940. IF maxTime > MAX(LONGINT) DIV 1000000 THEN
  941. maxTime := MAX(LONGINT)
  942. ELSE
  943. maxTime := maxTime * 1000000
  944. END
  945. END;
  946. FOR i := 0 TO MaxCPU-1 DO
  947. proc[i].locksHeld := {}; proc[i].preemptCount := 0
  948. END;
  949. FOR i := 0 TO MaxLocks-1 DO
  950. lock[i].locked := FALSE
  951. END
  952. END InitLocks;
  953. (* Return flags state. *)
  954. PROCEDURE -GetFlags (): SET;
  955. CODE {SYSTEM.i386}
  956. PUSHFD
  957. POP EAX
  958. END GetFlags;
  959. (* Set flags state. *)
  960. PROCEDURE -SetFlags (s: SET);
  961. CODE {SYSTEM.i386}
  962. POPFD
  963. END SetFlags;
  964. PROCEDURE -PushFlags*;
  965. CODE {SYSTEM.i386}
  966. PUSHFD
  967. END PushFlags;
  968. PROCEDURE -PopFlags*;
  969. CODE {SYSTEM.i386}
  970. POPFD
  971. END PopFlags;
  972. (** Disable preemption on the current processor (increment the preemption counter). Returns the current processor ID as side effect. *)
  973. PROCEDURE AcquirePreemption* (): LONGINT;
  974. VAR id: LONGINT;
  975. BEGIN
  976. PushFlags; Cli;
  977. id := ID ();
  978. INC (proc[id].preemptCount);
  979. PopFlags;
  980. RETURN id
  981. END AcquirePreemption;
  982. (** Enable preemption on the current processor (decrement the preemption counter). *)
  983. PROCEDURE ReleasePreemption*;
  984. VAR id: LONGINT;
  985. BEGIN
  986. PushFlags; Cli;
  987. id := ID ();
  988. IF StrongChecks THEN
  989. ASSERT(proc[id].preemptCount > 0)
  990. END;
  991. DEC (proc[id].preemptCount);
  992. PopFlags
  993. END ReleasePreemption;
  994. (** Return the preemption counter of the current processor (specified in parameter). *)
  995. PROCEDURE PreemptCount* (id: LONGINT): LONGINT;
  996. BEGIN
  997. IF StrongChecks THEN
  998. (*ASSERT(~(9 IN GetFlags ()));*) (* interrupts off *) (* commented out because check is too strong *)
  999. ASSERT(id = ID ()) (* caller must specify current processor *)
  1000. END;
  1001. RETURN proc[id].preemptCount
  1002. END PreemptCount;
  1003. (* Spin waiting for a lock. Return AL = 1X iff timed out. *)
  1004. PROCEDURE AcquireSpinTimeout(VAR locked: BOOLEAN; count: LONGINT; flags: SET): CHAR;
  1005. CODE {SYSTEM.i386}
  1006. MOV ESI, [EBP+flags] ; ESI := flags
  1007. MOV EDI, [EBP+count] ; EDI := count
  1008. MOV EBX, [EBP+locked] ; EBX := ADR(locked)
  1009. MOV AL, 1 ; AL := 1
  1010. CLI ; switch interrupts off before acquiring lock
  1011. test:
  1012. CMP [EBX], AL ; locked? { AL = 1 }
  1013. JE wait ; yes, go wait
  1014. XCHG [EBX], AL ; set and read the lock atomically. LOCK prefix implicit.
  1015. CMP AL, 1 ; was locked?
  1016. JNE exit ; no, we have it now, interrupts are off, and AL # 1
  1017. wait:
  1018. ; ASSERT(AL = 1)
  1019. XOR ECX, ECX ; just in case some processor interprets REP this way
  1020. REP NOP ; PAUSE instruction; see SpinHint
  1021. TEST ESI, 200H ; bit 9 - IF
  1022. JZ intoff
  1023. STI ; restore interrupt state quickly to allow pending interrupts (e.g. Processors.StopAll/Broadcast)
  1024. NOP ; NOP required, otherwise STI; CLI not interruptable
  1025. CLI ; disable interrupts
  1026. intoff:
  1027. DEC EDI ; counter
  1028. JNZ test ; not timed out yet
  1029. OR EDI, [EBP+count] ; re-fetch original value & set flags
  1030. JZ test ; if count = 0, retry forever
  1031. ; timed out (AL = 1)
  1032. exit:
  1033. END AcquireSpinTimeout;
  1034. (** Acquire a spin-lock and disable interrupts. *)
  1035. PROCEDURE Acquire* (level: LONGINT);
  1036. VAR id, i: LONGINT; flags: SET; start: HUGEINT;
  1037. BEGIN
  1038. id := AcquirePreemption ();
  1039. flags := GetFlags (); (* store state of interrupt flag *)
  1040. IF StrongChecks THEN
  1041. ASSERT(~(9 IN flags) OR (proc[id].locksHeld = {})); (* interrupts enabled => no locks held *)
  1042. ASSERT(~(level IN proc[id].locksHeld)) (* recursive locks not allowed *)
  1043. END;
  1044. IF (TimeCount = 0) OR (maxTime = 0) THEN
  1045. IF AcquireSpinTimeout(lock[level].locked, 0, flags) = 0X THEN END; (* {interrupts off} *)
  1046. ELSE
  1047. start := GetTimer ();
  1048. WHILE AcquireSpinTimeout(lock[level].locked, TimeCount, flags) = 1X DO
  1049. IF GetTimer () - start > maxTime THEN
  1050. trapState := proc;
  1051. trapLocksBusy := {};
  1052. FOR i := 0 TO MaxLocks-1 DO
  1053. IF lock[i].locked THEN INCL(trapLocksBusy, i) END
  1054. END;
  1055. HALT(1301) (* Lock timeout - see Traps *)
  1056. END
  1057. END
  1058. END;
  1059. IF proc[id].locksHeld = {} THEN
  1060. proc[id].state := flags
  1061. END;
  1062. INCL(proc[id].locksHeld, level); (* we now hold the lock *)
  1063. IF StrongChecks THEN (* no lower-level locks currently held by this processor *)
  1064. ASSERT((level = 0) OR (proc[id].locksHeld * {0..level-1} = {}))
  1065. END
  1066. END Acquire;
  1067. (** Release a spin-lock. Switch on interrupts when last lock released. *)
  1068. PROCEDURE Release* (level: LONGINT);
  1069. VAR id: LONGINT; flags: SET;
  1070. BEGIN (* {interrupts off} *)
  1071. id := ID ();
  1072. IF StrongChecks THEN
  1073. ASSERT(~(9 IN GetFlags ())); (* {interrupts off} *)
  1074. ASSERT(lock[level].locked);
  1075. ASSERT(level IN proc[id].locksHeld)
  1076. END;
  1077. EXCL(proc[id].locksHeld, level);
  1078. IF proc[id].locksHeld = {} THEN
  1079. flags := proc[id].state ELSE flags := GetFlags ()
  1080. END;
  1081. lock[level].locked := FALSE;
  1082. SetFlags(flags);
  1083. ReleasePreemption
  1084. END Release;
  1085. (** Acquire all locks. Only for exceptional cases. *)
  1086. PROCEDURE AcquireAll*;
  1087. VAR lock: LONGINT;
  1088. BEGIN
  1089. FOR lock := HighestLock TO LowestLock BY -1 DO Acquire(lock) END
  1090. END AcquireAll;
  1091. (** Release all locks. Reverse of AcquireAll. *)
  1092. PROCEDURE ReleaseAll*;
  1093. VAR lock: LONGINT;
  1094. BEGIN
  1095. FOR lock := LowestLock TO HighestLock DO Release(lock) END
  1096. END ReleaseAll;
  1097. (** Break all locks held by current processor (for exception handling). Returns levels released. *)
  1098. PROCEDURE BreakAll* (): SET;
  1099. VAR id, level: LONGINT; released: SET;
  1100. BEGIN
  1101. id := AcquirePreemption ();
  1102. PushFlags; Cli;
  1103. released := {};
  1104. FOR level := 0 TO MaxLocks-1 DO
  1105. IF level IN proc[id].locksHeld THEN
  1106. lock[level].locked := FALSE; (* break the lock *)
  1107. EXCL(proc[id].locksHeld, level);
  1108. INCL(released, level)
  1109. END
  1110. END;
  1111. IF proc[id].preemptCount > 1 THEN INCL(released, Preemption) END;
  1112. proc[id].preemptCount := 0; (* clear preemption flag *)
  1113. PopFlags;
  1114. RETURN released
  1115. END BreakAll;
  1116. (** Acquire a fine-grained lock on an active object. *)
  1117. PROCEDURE AcquireObject* (VAR locked: BOOLEAN);
  1118. CODE {SYSTEM.i386}
  1119. PUSHFD
  1120. MOV EBX, [EBP+locked] ; EBX := ADR(locked)
  1121. MOV AL, 1
  1122. test:
  1123. CMP [EBX], AL ; locked? { AL = 1 }
  1124. JNE try
  1125. XOR ECX, ECX ; just in case some processor interprets REP this way
  1126. STI
  1127. REP NOP ; PAUSE instruction; see SpinHint
  1128. CLI
  1129. JMP test
  1130. try:
  1131. XCHG [EBX], AL ; set and read the lock atomically. LOCK prefix implicit.
  1132. CMP AL, 1 ; was locked?
  1133. JE test ; yes, try again
  1134. POPFD
  1135. END AcquireObject;
  1136. (** Release an active object lock. *)
  1137. PROCEDURE ReleaseObject* (VAR locked: BOOLEAN);
  1138. CODE {SYSTEM.i386}
  1139. MOV EBX, [EBP+locked] ; EBX := ADR(locked)
  1140. MOV BYTE [EBX], 0
  1141. END ReleaseObject;
  1142. (* Load global descriptor table *)
  1143. PROCEDURE LoadGDT(base: ADDRESS; size: SIZE);
  1144. CODE {SYSTEM.i386, SYSTEM.Privileged}
  1145. SHL DWORD [EBP+size], 16
  1146. MOV EBX, 2
  1147. LGDT [EBP+EBX+size]
  1148. END LoadGDT;
  1149. (* Load segment registers *)
  1150. PROCEDURE LoadSegRegs(data: LONGINT);
  1151. CODE {SYSTEM.i386}
  1152. MOV EAX, [EBP+data]
  1153. MOV DS, AX
  1154. MOV ES, AX
  1155. XOR EAX, EAX
  1156. MOV FS, AX
  1157. MOV GS, AX
  1158. END LoadSegRegs;
  1159. (* Return CS. *)
  1160. PROCEDURE -CS* (): LONGINT;
  1161. CODE {SYSTEM.i386}
  1162. XOR EAX, EAX
  1163. MOV AX, CS
  1164. END CS;
  1165. (** -- Memory management -- *)
  1166. (* Allocate a physical page below 1M. Parameter adr returns physical and virtual address (or NilAdr).*)
  1167. PROCEDURE NewLowPage(VAR adr: ADDRESS);
  1168. BEGIN
  1169. adr := freeLowPage;
  1170. IF freeLowPage # NilAdr THEN
  1171. SYSTEM.GET (freeLowPage, freeLowPage); (* freeLowPage := freeLowPage.next *)
  1172. DEC(freeLowPages)
  1173. END
  1174. END NewLowPage;
  1175. (* Allocate a directly-mapped page. Parameter adr returns physical and virtual address (or NilAdr). *)
  1176. PROCEDURE NewDirectPage(VAR adr: ADDRESS);
  1177. BEGIN
  1178. IF pageHeapAdr # heapEndAdr THEN
  1179. DEC(pageHeapAdr, PS); adr := pageHeapAdr;
  1180. DEC(freeHighPages)
  1181. ELSE
  1182. adr := NilAdr
  1183. END
  1184. END NewDirectPage;
  1185. (* Allocate a physical page. *)
  1186. PROCEDURE NewPage(VAR physAdr: ADDRESS);
  1187. VAR sp, prev: ADDRESS;
  1188. BEGIN
  1189. SYSTEM.GET(pageStackAdr + NodeSP, sp);
  1190. ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *)
  1191. IF sp > MinSP THEN (* stack not empty, pop entry *)
  1192. DEC(sp, AddressSize);
  1193. SYSTEM.GET (pageStackAdr+sp, physAdr);
  1194. SYSTEM.PUT (pageStackAdr+NodeSP, sp);
  1195. SYSTEM.GET (pageStackAdr+NodePrev, prev);
  1196. IF (sp = MinSP) & (prev # NilAdr) THEN
  1197. pageStackAdr := prev
  1198. END;
  1199. DEC(freeHighPages)
  1200. ELSE
  1201. NewDirectPage(physAdr)
  1202. END
  1203. END NewPage;
  1204. (* Deallocate a physical page. *)
  1205. PROCEDURE DisposePage(physAdr: ADDRESS);
  1206. VAR sp, next, newAdr: ADDRESS;
  1207. BEGIN
  1208. SYSTEM.GET (pageStackAdr + NodeSP, sp);
  1209. ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *)
  1210. IF sp = MaxSP THEN (* current stack full *)
  1211. SYSTEM.GET (pageStackAdr + NodeNext, next);
  1212. IF next # NilAdr THEN (* next stack exists, make it current *)
  1213. pageStackAdr := next;
  1214. SYSTEM.GET (pageStackAdr+NodeSP, sp);
  1215. ASSERT(sp = MinSP) (* must be empty *)
  1216. ELSE (* allocate next stack *)
  1217. NewDirectPage(newAdr);
  1218. IF newAdr = NilAdr THEN
  1219. NewLowPage(newAdr); (* try again from reserve *)
  1220. IF newAdr = NilAdr THEN
  1221. IF Stats THEN INC(NlostPages) END;
  1222. RETURN (* give up (the disposed page is lost) *)
  1223. ELSE
  1224. IF Stats THEN INC(NreservePagesUsed) END
  1225. END
  1226. END;
  1227. sp := MinSP; (* will be written to NodeSP below *)
  1228. SYSTEM.PUT (newAdr + NodeNext, next);
  1229. SYSTEM.PUT (newAdr + NodePrev, pageStackAdr);
  1230. pageStackAdr := newAdr
  1231. END
  1232. END;
  1233. (* push entry on current stack *)
  1234. SYSTEM.PUT (pageStackAdr + sp, physAdr);
  1235. SYSTEM.PUT (pageStackAdr + NodeSP, sp + AddressSize);
  1236. INC(freeHighPages)
  1237. END DisposePage;
  1238. (* Allocate virtual address space for mapping. Parameter size must be multiple of page size. Parameter virtAdr returns virtual address or NilAdr on failure. *)
  1239. PROCEDURE NewVirtual(VAR virtAdr: ADDRESS; size: SIZE);
  1240. BEGIN
  1241. ASSERT(size MOD PS = 0);
  1242. IF mapTop+size > MapAreaAdr+MapAreaSize THEN
  1243. virtAdr := NilAdr (* out of virtual space *)
  1244. ELSE
  1245. virtAdr := mapTop;
  1246. INC(mapTop, size)
  1247. END
  1248. END NewVirtual;
  1249. PROCEDURE DisposeVirtual(virtAdr: ADDRESS; size: SIZE);
  1250. (* to do *)
  1251. END DisposeVirtual;
  1252. (* Map a physical page into the virtual address space. Parameter virtAdr is mapped address and phys is mapping value. Returns TRUE iff mapping successful. *)
  1253. PROCEDURE MapPage(virtAdr, phys: ADDRESS): BOOLEAN;
  1254. VAR i, pt: ADDRESS;
  1255. BEGIN
  1256. i := virtAdr DIV RS MOD PTEs;
  1257. SYSTEM.GET (kernelPD + AddressSize*i, pt);
  1258. IF ODD(pt) THEN (* pt present *)
  1259. DEC(pt, pt MOD PS)
  1260. ELSE
  1261. NewPage(pt);
  1262. IF pt = NilAdr THEN RETURN FALSE END;
  1263. SYSTEM.PUT (kernelPD + AddressSize*i, pt + UserPage);
  1264. Fill32(pt, PTEs*AddressSize, PageNotPresent)
  1265. END;
  1266. SYSTEM.PUT (pt + AddressSize*(virtAdr DIV PS MOD PTEs), phys);
  1267. RETURN TRUE
  1268. END MapPage;
  1269. (* Return mapped page address for a given virtual address (ODD if mapped) *)
  1270. PROCEDURE MappedPage(virtAdr: ADDRESS): ADDRESS;
  1271. VAR pt: ADDRESS;
  1272. BEGIN
  1273. SYSTEM.GET (kernelPD + AddressSize*(virtAdr DIV RS MOD PTEs), pt);
  1274. IF ODD(pt) THEN (* pt present *)
  1275. SYSTEM.GET (pt - pt MOD PS + AddressSize*(virtAdr DIV PS MOD PTEs), pt);
  1276. RETURN pt
  1277. ELSE
  1278. RETURN 0 (* ~ODD *)
  1279. END
  1280. END MappedPage;
  1281. (* Unmap a page and return the previous mapping, like MappedPage (). Caller must flush TLB. *)
  1282. PROCEDURE UnmapPage(virtAdr: ADDRESS): ADDRESS;
  1283. VAR t, pt: ADDRESS;
  1284. BEGIN
  1285. SYSTEM.GET (kernelPD + AddressSize*(virtAdr DIV RS MOD PTEs), pt);
  1286. IF ODD(pt) THEN (* pt present *)
  1287. pt := pt - pt MOD PS + AddressSize*(virtAdr DIV PS MOD PTEs);
  1288. SYSTEM.GET (pt, t);
  1289. SYSTEM.PUT (pt, NIL); (* unmap *)
  1290. (* could use INVLPG here, but it is not supported equally on all processors *)
  1291. RETURN t
  1292. ELSE
  1293. RETURN 0 (* ~ODD *)
  1294. END
  1295. END UnmapPage;
  1296. (* Map area [virtAdr..virtAdr+size) directly to area [Adr(phys)..Adr(phys)+size). Returns TRUE iff successful. *)
  1297. PROCEDURE MapDirect(virtAdr: ADDRESS; size: SIZE; phys: ADDRESS): BOOLEAN;
  1298. BEGIN
  1299. (*
  1300. Trace.String("MapDirect "); Trace.Address (virtAdr); Trace.Char(' '); Trace.Address (phys); Trace.Char (' '); Trace.Int (size, 0);
  1301. Trace.Int(size DIV PS, 8); Trace.Ln;
  1302. *)
  1303. ASSERT((virtAdr MOD PS = 0) & (size MOD PS = 0));
  1304. WHILE size # 0 DO
  1305. IF ~ODD(MappedPage(virtAdr)) THEN
  1306. IF ~MapPage(virtAdr, phys) THEN RETURN FALSE END
  1307. END;
  1308. INC(virtAdr, PS); INC(phys, PS); DEC(size, PS)
  1309. END;
  1310. RETURN TRUE
  1311. END MapDirect;
  1312. (* Policy decision for heap expansion. NewBlock for the same block has failed try times. *)
  1313. PROCEDURE ExpandNow(try: LONGINT): BOOLEAN;
  1314. VAR size: SIZE;
  1315. BEGIN
  1316. size := LSH(memBlockTail.endBlockAdr - memBlockHead.beginBlockAdr, -10); (* heap size in KB *)
  1317. RETURN (~ODD(try) OR (size < heapMinKB)) & (size < heapMaxKB)
  1318. END ExpandNow;
  1319. (* Try to expand the heap by at least "size" bytes *)
  1320. PROCEDURE ExpandHeap*(try: LONGINT; size: SIZE; VAR memBlock: MemoryBlock; VAR beginBlockAdr, endBlockAdr: ADDRESS);
  1321. BEGIN
  1322. IF ExpandNow(try) THEN
  1323. IF size < expandMin THEN size := expandMin END;
  1324. beginBlockAdr := memBlockHead.endBlockAdr;
  1325. endBlockAdr := beginBlockAdr;
  1326. INC(endBlockAdr, size);
  1327. SetHeapEndAdr(endBlockAdr); (* in/out parameter *)
  1328. memBlock := memBlockHead;
  1329. (* endBlockAdr of memory block is set by caller after free block has been set in memory block - this process is part of lock-free heap expansion *)
  1330. ELSE
  1331. beginBlockAdr := memBlockHead.endBlockAdr;
  1332. endBlockAdr := memBlockHead.endBlockAdr;
  1333. memBlock := NIL
  1334. END
  1335. END ExpandHeap;
  1336. (* Set memory block end address *)
  1337. PROCEDURE SetMemoryBlockEndAddress*(memBlock: MemoryBlock; endBlockAdr: ADDRESS);
  1338. BEGIN
  1339. ASSERT(endBlockAdr >= memBlock.beginBlockAdr);
  1340. memBlock.endBlockAdr := endBlockAdr
  1341. END SetMemoryBlockEndAddress;
  1342. (* Free unused memory block *)
  1343. PROCEDURE FreeMemBlock*(memBlock: MemoryBlock);
  1344. BEGIN
  1345. HALT(515) (* impossible to free heap in I386 native A2 version *)
  1346. END FreeMemBlock;
  1347. (** Attempt to set the heap end address to the specified address. The returned value is the actual new end address (never smaller than previous value). *)
  1348. PROCEDURE SetHeapEndAdr(VAR endAdr: ADDRESS);
  1349. VAR n, m: SIZE;
  1350. BEGIN
  1351. Acquire(Memory);
  1352. n := LSH(endAdr+(PS-1), -PSlog2) - LSH(heapEndAdr, -PSlog2); (* pages requested *)
  1353. m := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2) - ReservedPages; (* max pages *)
  1354. IF n > m THEN n := m END;
  1355. IF n > 0 THEN INC(heapEndAdr, n*PS); DEC(freeHighPages, n) END;
  1356. endAdr := heapEndAdr;
  1357. Release(Memory)
  1358. END SetHeapEndAdr;
  1359. (** Map a physical memory area (physAdr..physAdr+size-1) into the virtual address space. Parameter virtAdr returns the virtual address of mapped region, or NilAdr on failure. *)
  1360. PROCEDURE MapPhysical*(physAdr: ADDRESS; size: SIZE; VAR virtAdr: ADDRESS);
  1361. VAR ofs: ADDRESS;
  1362. BEGIN
  1363. IF (LSH(physAdr, -PSlog2) <= topPageNum) &
  1364. (LSH(physAdr+size-1, -PSlog2) <= topPageNum) &
  1365. (LSH(physAdr, -PSlog2) >= LSH(LowAdr, -PSlog2)) THEN
  1366. virtAdr := physAdr (* directly mapped *)
  1367. ELSE
  1368. ofs := physAdr MOD PS;
  1369. DEC(physAdr, ofs); INC(size, ofs); (* align start to page boundary *)
  1370. INC(size, (-size) MOD PS); (* align end to page boundary *)
  1371. Acquire(Memory);
  1372. NewVirtual(virtAdr, size);
  1373. IF virtAdr # NilAdr THEN
  1374. IF ~MapDirect(virtAdr, size, physAdr + UserPage) THEN
  1375. DisposeVirtual(virtAdr, size);
  1376. virtAdr := NilAdr
  1377. END
  1378. END;
  1379. Release(Memory);
  1380. IF TraceVerbose THEN
  1381. Acquire (TraceOutput);
  1382. Trace.String("Mapping ");
  1383. Trace.IntSuffix(size, 1, "B"); Trace.String(" at ");
  1384. Trace.Address (physAdr); Trace.String (" - "); Trace.Address (physAdr+size-1);
  1385. IF virtAdr = NilAdr THEN
  1386. Trace.String(" failed")
  1387. ELSE
  1388. Trace.String (" to "); Trace.Address (virtAdr);
  1389. IF ofs # 0 THEN Trace.String (", offset "); Trace.Int(ofs, 0) END
  1390. END;
  1391. Trace.Ln;
  1392. Release (TraceOutput);
  1393. END;
  1394. IF virtAdr # NilAdr THEN INC(virtAdr, ofs) END (* adapt virtual address to correct offset *)
  1395. END
  1396. END MapPhysical;
  1397. (** Unmap an area previously mapped with MapPhysical. *)
  1398. PROCEDURE UnmapPhysical*(virtAdr: ADDRESS; size: SIZE);
  1399. (* to do *)
  1400. END UnmapPhysical;
  1401. (** Return the physical address of the specified range of memory, or NilAdr if the range is not contiguous. It is the caller's responsibility to assure the range remains allocated during the time it is in use. *)
  1402. PROCEDURE PhysicalAdr*(adr: ADDRESS; size: SIZE): ADDRESS;
  1403. VAR physAdr, mapped, expected: ADDRESS;
  1404. BEGIN
  1405. IF (LSH(adr, -PSlog2) <= topPageNum) & (LSH(adr+size-1, -PSlog2) <= topPageNum) THEN
  1406. RETURN adr (* directly mapped *)
  1407. ELSE
  1408. Acquire(Memory);
  1409. mapped := MappedPage(adr);
  1410. Release(Memory);
  1411. IF ODD(mapped) & (size > 0) THEN (* mapped, and range not empty or too big *)
  1412. physAdr := mapped - mapped MOD PS + adr MOD PS; (* strip paging bits and add page offset *)
  1413. (* now check if whole range is physically contiguous *)
  1414. DEC(size, PS - adr MOD PS); (* subtract distance to current page end *)
  1415. IF size > 0 THEN (* range crosses current page end *)
  1416. expected := LSH(mapped, -PSlog2)+1; (* expected physical page *)
  1417. LOOP
  1418. INC(adr, PS); (* step to next page *)
  1419. Acquire(Memory);
  1420. mapped := MappedPage(adr);
  1421. Release(Memory);
  1422. IF ~ODD(mapped) OR (LSH(mapped, -PSlog2) # expected) THEN
  1423. physAdr := NilAdr; EXIT
  1424. END;
  1425. DEC(size, PS);
  1426. IF size <= 0 THEN EXIT END; (* ok *)
  1427. INC(expected)
  1428. END
  1429. ELSE
  1430. (* ok, skip *)
  1431. END
  1432. ELSE
  1433. physAdr := NilAdr
  1434. END;
  1435. RETURN physAdr
  1436. END
  1437. END PhysicalAdr;
  1438. (** Translate a virtual address range to num ranges of physical address. num returns 0 on error. *)
  1439. PROCEDURE TranslateVirtual*(virtAdr: ADDRESS; size: SIZE; VAR num: LONGINT; VAR physAdr: ARRAY OF Range);
  1440. VAR ofs, phys1: ADDRESS; size1: SIZE;
  1441. BEGIN
  1442. Acquire(Memory);
  1443. num := 0;
  1444. LOOP
  1445. IF size = 0 THEN EXIT END;
  1446. IF num = LEN(physAdr) THEN num := 0; EXIT END; (* index check *)
  1447. ofs := virtAdr MOD PS; (* offset in page *)
  1448. size1 := PS - ofs; (* distance to next page boundary *)
  1449. IF size1 > size THEN size1 := size END;
  1450. phys1 := MappedPage(virtAdr);
  1451. IF ~ODD(phys1) THEN num := 0; EXIT END; (* page not present *)
  1452. physAdr[num].adr := phys1 - phys1 MOD PS + ofs;
  1453. physAdr[num].size := size1; INC(num);
  1454. INC(virtAdr, size1); DEC(size, size1)
  1455. END;
  1456. IF num = 0 THEN physAdr[0].adr := NilAdr; physAdr[0].size := 0 END;
  1457. Release(Memory)
  1458. END TranslateVirtual;
  1459. (** Return information on free memory in Kbytes. *)
  1460. PROCEDURE GetFreeK*(VAR total, lowFree, highFree: SIZE);
  1461. CONST KperPage = PS DIV 1024;
  1462. BEGIN
  1463. Acquire(Memory);
  1464. total := totalPages * KperPage;
  1465. lowFree := freeLowPages * KperPage;
  1466. highFree := freeHighPages * KperPage;
  1467. Release(Memory)
  1468. END GetFreeK;
  1469. (** -- Stack -- *)
  1470. (** Extend the stack to include the specified address, if possible. Returns TRUE iff ok. *)
  1471. PROCEDURE ExtendStack*(VAR s: Stack; virtAdr: ADDRESS): BOOLEAN;
  1472. VAR phys: ADDRESS; ok: BOOLEAN;
  1473. BEGIN
  1474. Acquire(Memory);
  1475. ok := FALSE;
  1476. IF (virtAdr < s.high) & (virtAdr >= s.low) THEN
  1477. DEC(virtAdr, virtAdr MOD PS); (* round down to page boundary *)
  1478. IF Stats & (virtAdr < s.adr-PS) THEN INC(Nbigskips) END;
  1479. IF ODD(MappedPage(virtAdr)) THEN (* already mapped *)
  1480. ok := TRUE
  1481. ELSE
  1482. NewPage(phys);
  1483. IF phys # NilAdr THEN
  1484. IF MapPage(virtAdr, phys + UserPage) THEN
  1485. IF virtAdr < s.adr THEN
  1486. s.adr := virtAdr
  1487. ELSE
  1488. IF Stats THEN INC(Nfilled) END
  1489. END;
  1490. ok := TRUE
  1491. ELSE
  1492. DisposePage(phys)
  1493. END
  1494. END
  1495. END
  1496. END;
  1497. Release(Memory);
  1498. RETURN ok
  1499. END ExtendStack;
  1500. (** Allocate a stack. Parameter initSP returns initial stack pointer value. *)
  1501. PROCEDURE NewStack*(VAR s: Stack; process: ANY; VAR initSP: ADDRESS);
  1502. VAR adr, phys: ADDRESS; old: LONGINT; free: SET;
  1503. BEGIN
  1504. ASSERT(InitUserStackSize = PS); (* for now *)
  1505. Acquire(Memory);
  1506. IF Stats THEN INC(NnewStacks) END;
  1507. old := freeStackIndex;
  1508. LOOP
  1509. IF Stats THEN INC(NnewStackLoops) END;
  1510. free := freeStack[freeStackIndex];
  1511. IF free # {} THEN
  1512. adr := 0; WHILE ~(adr IN free) DO INC(adr) END; (* BTW: BSF instruction is not faster *)
  1513. IF Stats THEN INC(NnewStackInnerLoops, adr+1) END;
  1514. EXCL(freeStack[freeStackIndex], SIZE(adr));
  1515. adr := StackAreaAdr + (freeStackIndex*SetSize + adr)*MaxUserStackSize;
  1516. EXIT
  1517. END;
  1518. INC(freeStackIndex);
  1519. IF freeStackIndex = LEN(freeStack) THEN freeStackIndex := 0 END;
  1520. IF freeStackIndex = old THEN HALT(1503) END (* out of stack space *)
  1521. END;
  1522. NewPage(phys); ASSERT(phys # NilAdr); (* allocate one physical page at first *)
  1523. s.high := adr + MaxUserStackSize; s.low := adr + UserStackGuardSize;
  1524. s.adr := s.high - InitUserStackSize; (* at the top of the virtual area *)
  1525. initSP := s.high-AddressSize;
  1526. IF ~MapPage(s.adr, phys + UserPage) THEN HALT(99) END;
  1527. SYSTEM.PUT (initSP, process);
  1528. Release(Memory)
  1529. END NewStack;
  1530. (** Return the process pointer set when the current user stack was created (must be running on user stack). *)
  1531. PROCEDURE -GetProcessPtr* (): ANY;
  1532. CONST Mask = -MaxUserStackSize; Ofs = MaxUserStackSize-4;
  1533. CODE {SYSTEM.i386}
  1534. MOV EAX, Mask
  1535. AND EAX, ESP
  1536. MOV EAX, [EAX+Ofs]
  1537. POP EBX ; pointers are generally passed via stack
  1538. MOV [EBX], EAX
  1539. END GetProcessPtr;
  1540. (** True iff current process works on a kernel stack *)
  1541. PROCEDURE WorkingOnKernelStack* (): BOOLEAN;
  1542. VAR id: LONGINT; sp: ADDRESS;
  1543. BEGIN
  1544. ASSERT(KernelStackSize # MaxUserStackSize - UserStackGuardSize); (* detection does only work with this assumption *)
  1545. sp := CurrentSP ();
  1546. id := ID ();
  1547. RETURN (sp >= procm[id].stack.low) & (sp <= procm[id].stack.high)
  1548. END WorkingOnKernelStack;
  1549. (** Deallocate a stack. Current thread should not dispose its own stack. Uses privileged instructions. *)
  1550. PROCEDURE DisposeStack*(CONST s: Stack);
  1551. VAR adr, phys: ADDRESS;
  1552. BEGIN
  1553. (* First make sure there are no references to virtual addresses of the old stack in the TLBs. This is required because we are freeing the pages, and they could be remapped later at different virtual addresses. DisposeStack will only be called from the thread finalizer, which ensures that the user will no longer be referencing this memory. Therefore we can make this upcall from outside the locked region, avoiding potential deadlock. *)
  1554. GlobalFlushTLB; (* finalizers are only called after Processors has initialized this upcall *)
  1555. Acquire(Memory);
  1556. IF Stats THEN INC(NdisposeStacks) END;
  1557. adr := s.adr; (* unmap and deallocate all pages of stack *)
  1558. REPEAT
  1559. phys := UnmapPage(adr); (* TLB was flushed and no intermediate references possible to unreachable stack *)
  1560. IF ODD(phys) THEN DisposePage(phys - phys MOD PS) END;
  1561. INC(adr, PS)
  1562. UNTIL adr = s.high;
  1563. adr := (adr - MaxUserStackSize - StackAreaAdr) DIV MaxUserStackSize;
  1564. INCL(freeStack[adr DIV 32], SIZE(adr MOD 32));
  1565. Release(Memory)
  1566. END DisposeStack;
  1567. (** Check if the specified stack is valid. *)
  1568. PROCEDURE ValidStack*(CONST s: Stack; sp: ADDRESS): BOOLEAN;
  1569. VAR valid: BOOLEAN;
  1570. BEGIN
  1571. Acquire(Memory);
  1572. valid := (sp MOD 4 = 0) & (sp >= s.adr) & (sp <= s.high);
  1573. WHILE valid & (sp < s.high) DO
  1574. valid := ODD(MappedPage(sp));
  1575. INC(sp, PS)
  1576. END;
  1577. Release(Memory);
  1578. RETURN valid
  1579. END ValidStack;
  1580. (** Update the stack snapshot of the current processor. (for Processors) *)
  1581. PROCEDURE UpdateState*;
  1582. VAR id: LONGINT;
  1583. BEGIN
  1584. ASSERT(CS () MOD 4 = 0); (* to get kernel stack pointer *)
  1585. id := ID ();
  1586. ASSERT(procm[id].stack.high # 0); (* current processor stack has been assigned *)
  1587. procm[id].sp := CurrentBP () (* instead of ESP, just fetch EBP of current procedure (does not contain pointers) *)
  1588. END UpdateState;
  1589. (** Get kernel stack regions for garbage collection. (for Heaps) *)
  1590. PROCEDURE GetKernelStacks*(VAR stack: ARRAY OF Stack);
  1591. VAR i: LONGINT;
  1592. BEGIN (* {UpdateState has been called by each processor} *)
  1593. FOR i := 0 TO MaxCPU-1 DO
  1594. stack[i].adr := procm[i].sp;
  1595. stack[i].high := procm[i].stack.high
  1596. END
  1597. END GetKernelStacks;
  1598. (* Init page tables (paging still disabled until EnableMM is called). *)
  1599. PROCEDURE InitPages;
  1600. VAR i, j, phys, lTop, mTop: ADDRESS;
  1601. BEGIN
  1602. (* get top of high and low memory *)
  1603. mTop := memTop;
  1604. DEC(mTop, mTop MOD PS); (* mTop MOD PS = 0 *)
  1605. topPageNum := LSH(mTop-1, -PSlog2);
  1606. lTop := lowTop;
  1607. DEC(lTop, lTop MOD PS); (* lTop MOD PS = 0 *)
  1608. (* initialize NewDirectPage and SetHeapEndAdr (get kernel range) *)
  1609. (*SYSTEM.GET (LinkAdr + EndBlockOfs, heapEndAdr);*)
  1610. heapEndAdr := 0;
  1611. (* ug *) (*
  1612. SYSTEM.PUT (heapEndAdr, NIL); (* set tag to NIL *)
  1613. INC(heapEndAdr, AddressSize); (* space for NIL *)
  1614. *)
  1615. (* ug: not needed, extension of heap done in GetStaticHeap anyway
  1616. INC(heapEndAdr, K); (* space for free heap block descriptor of type Heaps.HeapBlockDesc at heapEndAdr, initialization is done in Heaps *)
  1617. INC(heapEndAdr, (-heapEndAdr) MOD PS); (* round up to page size *)
  1618. *)
  1619. pageHeapAdr := mTop;
  1620. freeHighPages := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2);
  1621. IF TraceVerbose THEN
  1622. Trace.String("Kernel: "); Trace.Address (LinkAdr); Trace.String(" .. ");
  1623. Trace.Address (heapEndAdr-1); Trace.Ln;
  1624. Trace.String ("High: "); Trace.Address (heapEndAdr); Trace.String(" .. ");
  1625. Trace.Address (pageHeapAdr-1); Trace.String(" = "); Trace.Int (freeHighPages, 0);
  1626. Trace.StringLn (" free pages")
  1627. END;
  1628. (* initialize empty free page stack *)
  1629. NewDirectPage(pageStackAdr); ASSERT(pageStackAdr # NilAdr);
  1630. SYSTEM.PUT (pageStackAdr+NodeSP, SYSTEM.VAL (ADDRESS, MinSP));
  1631. SYSTEM.PUT (pageStackAdr+NodeNext, SYSTEM.VAL (ADDRESS, NilAdr));
  1632. SYSTEM.PUT (pageStackAdr+NodePrev, SYSTEM.VAL (ADDRESS, NilAdr));
  1633. (* free low pages *)
  1634. freeLowPage := NilAdr; freeLowPages := 0;
  1635. i := lTop DIV PS; j := LowAdr DIV PS;
  1636. IF TraceVerbose THEN
  1637. Trace.String("Low: "); Trace.Address (j*PS); Trace.String (".."); Trace.Address (i*PS-1)
  1638. END;
  1639. REPEAT
  1640. DEC(i); phys := i*PS;
  1641. SYSTEM.PUT (phys, freeLowPage); (* phys.next := freeLowPage *)
  1642. freeLowPage := phys; INC(freeLowPages)
  1643. UNTIL i = j;
  1644. IF TraceVerbose THEN
  1645. Trace.String(" = "); Trace.Int(freeLowPages, 1); Trace.StringLn (" free pages")
  1646. END;
  1647. totalPages := LSH(memTop - M + lowTop + dmaSize + PS, -PSlog2); (* what BIOS gave us *)
  1648. (* stacks *)
  1649. ASSERT((StackAreaAdr MOD MaxUserStackSize = 0) & (StackAreaSize MOD MaxUserStackSize = 0));
  1650. FOR i := 0 TO LEN(freeStack)-1 DO freeStack[i] := {0..SetSize-1} END;
  1651. FOR i := MaxUserStacks TO LEN(freeStack)*SetSize-1 DO EXCL(freeStack[i DIV SetSize], SIZE(i MOD SetSize)) END;
  1652. freeStackIndex := 0;
  1653. (* mappings *)
  1654. mapTop := MapAreaAdr;
  1655. (* create the address space *)
  1656. NewPage(kernelPD); ASSERT(kernelPD # NilAdr);
  1657. Fill32(kernelPD, PTEs*4, PageNotPresent);
  1658. IF ~MapDirect(LowAdr, mTop-LowAdr, LowAdr + UserPage) THEN HALT(99) END (* map heap direct *)
  1659. END InitPages;
  1660. (* Generate a memory segment descriptor. type IN {0..7} & dpl IN {0..3}.
  1661. type
  1662. 0 data, expand-up, read-only
  1663. 1 data, expand-up, read-write
  1664. 2 data, expand-down, read-only
  1665. 3 data, expand-down, read-write
  1666. 4 code, non-conforming, execute-only
  1667. 5 code, non-conforming, execute-read
  1668. 6 code, conforming, execute-only
  1669. 7 code, conforming, execute-read
  1670. *)
  1671. PROCEDURE GenMemSegDesc(type, base, limit, dpl: LONGINT; page: BOOLEAN; VAR sd: SegDesc);
  1672. VAR s: SET;
  1673. BEGIN
  1674. sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H;
  1675. s := SYSTEM.VAL (SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1676. ASH(dpl, 13) + ASH(type, 9) + ASH(base, -16) MOD 100H);
  1677. s := s + {12, 15, 22}; (* code/data=1, present=1, 32-bit=1, A=0, AVL=0 *)
  1678. IF page THEN INCL(s, 23) END; (* page granularity *)
  1679. sd.high := SYSTEM.VAL (LONGINT, s)
  1680. END GenMemSegDesc;
  1681. (* Generate a TSS descriptor. *)
  1682. PROCEDURE GenTSSDesc(base: ADDRESS; limit, dpl: LONGINT; VAR sd: SegDesc);
  1683. VAR s: SET;
  1684. BEGIN
  1685. sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H;
  1686. s := SYSTEM.VAL (SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1687. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1688. s := s + {8, 11, 15}; (* type=non-busy TSS, present=1, AVL=0, 32-bit=0 *)
  1689. sd.high := SYSTEM.VAL (LONGINT, s)
  1690. END GenTSSDesc;
  1691. (* Initialize segmentation. *)
  1692. PROCEDURE InitSegments;
  1693. VAR i: LONGINT;
  1694. BEGIN
  1695. (* GDT 0: Null segment *)
  1696. gdt[0].low := 0; gdt[0].high := 0;
  1697. (* GDT 1: Kernel code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1698. GenMemSegDesc(5, 0, M-1, 0, TRUE, gdt[1]);
  1699. (* GDT 2: Kernel stack: expand-up, read-write, base 0, limit 4G, PL 0 *)
  1700. GenMemSegDesc(1, 0, M-1, 0, TRUE, gdt[2]);
  1701. (* GDT 3: User code: conforming, execute-read, base 0, limit 4G, PL 0 *)
  1702. GenMemSegDesc(7, 0, M-1, 0, TRUE, gdt[3]);
  1703. (* GDT 4: User/Kernel data: expand-up, read-write, base 0, limit 4G, PL 3 *)
  1704. GenMemSegDesc(1, 0, M-1, 3, TRUE, gdt[4]);
  1705. (* GDT 5: User stack: expand-down, read-write, base 0, limit 1M, PL 3 *)
  1706. GenMemSegDesc(3, 0, M DIV PS, 3, TRUE, gdt[5]);
  1707. (* GDT TSSOfs..n: Kernel TSS *)
  1708. FOR i := 0 TO MaxCPU-1 DO
  1709. GenTSSDesc(ADDRESSOF(procm[i].tss), SIZEOF(TSSDesc)-1, 0, gdt[TSSOfs+i]);
  1710. procm[i].sp := 0; procm[i].stack.high := 0
  1711. END
  1712. END InitSegments;
  1713. (* Enable segmentation on the current processor. *)
  1714. PROCEDURE EnableSegments;
  1715. BEGIN
  1716. LoadGDT(ADDRESSOF(gdt[0]), SIZEOF(GDT)-1);
  1717. LoadSegRegs(DataSel)
  1718. END EnableSegments;
  1719. (* Allocate a kernel stack. *)
  1720. PROCEDURE NewKernelStack(VAR stack: Stack);
  1721. VAR phys, virt: ADDRESS; size: SIZE;
  1722. BEGIN
  1723. size := KernelStackSize;
  1724. NewVirtual(virt, size + PS); (* add one page for overflow protection *)
  1725. ASSERT(virt # NilAdr, 1502);
  1726. INC(virt, PS); (* leave page open at bottom *)
  1727. stack.low := virt;
  1728. stack.adr := virt; (* return stack *)
  1729. REPEAT
  1730. NewPage(phys); ASSERT(phys # NilAdr);
  1731. IF ~MapPage(virt, phys + KernelPage) THEN HALT(99) END;
  1732. DEC(size, PS); INC(virt, PS)
  1733. UNTIL size = 0;
  1734. stack.high := virt
  1735. END NewKernelStack;
  1736. (* Set task register *)
  1737. PROCEDURE -SetTR(tr: ADDRESS);
  1738. CODE {SYSTEM.i386, SYSTEM.Privileged}
  1739. POP EAX
  1740. LTR AX
  1741. END SetTR;
  1742. (* Enable memory management and switch to new stack in virtual space.
  1743. Stack layout:
  1744. caller1 return
  1745. caller1 EBP <-- caller0 EBP
  1746. [caller0 locals]
  1747. 04 caller0 return
  1748. 00 caller0 EBP <-- EBP
  1749. locals <-- ESP
  1750. *)
  1751. PROCEDURE -EnableMM(pd, esp: ADDRESS);
  1752. CODE {SYSTEM.Pentium, SYSTEM.Privileged}
  1753. POP EBX ; esp
  1754. POP EAX ; pd
  1755. MOV CR3, EAX ; page directory ptr
  1756. MOV ECX, [EBP+4] ; caller0 return
  1757. MOV EDX, [EBP] ; caller0 EBP
  1758. MOV EDX, [EDX+4] ; caller1 return
  1759. MOV EAX, CR0
  1760. OR EAX, 80000000H ; set PG bit
  1761. MOV CR0, EAX ; enable virtual addressing (old stack no longer usable)
  1762. JMP 0 ; flush queue
  1763. WBINVD
  1764. MOV DWORD [EBX-4], 0 ; not UserStackSel (cf. GetUserStack)
  1765. MOV [EBX-8], EDX ; caller1 return on new stack
  1766. MOV DWORD [EBX-12], 0 ; caller1 EBP on new stack
  1767. LEA EBP, [EBX-12] ; new stack top
  1768. MOV ESP, EBP
  1769. JMP ECX ; back to caller0 (whose locals are now inaccessible!)
  1770. END EnableMM;
  1771. (** -- Initialization -- *)
  1772. (** Initialize memory management.
  1773. o every processor calls this once during initialization
  1774. o mutual exclusion with other processors must be guaranteed by the caller
  1775. o interrupts must be off
  1776. o segmentation and paging is enabled
  1777. o return is on the new stack => caller must have no local variables
  1778. *)
  1779. PROCEDURE InitMemory*;
  1780. VAR id: LONGINT;
  1781. BEGIN
  1782. EnableSegments;
  1783. (* allocate stack *)
  1784. id := ID ();
  1785. NewKernelStack(procm[id].stack);
  1786. procm[id].sp := 0;
  1787. (* initialize TSS *)
  1788. Fill32(ADDRESSOF(procm[id].tss), SIZEOF(TSSDesc), 0);
  1789. procm[id].tss.ESP0 := procm[id].stack.high; (* kernel stack org *)
  1790. procm[id].tss.ESS0 := KernelStackSel;
  1791. procm[id].tss.IOBitmapOffset := -1; (* no bitmap *)
  1792. (* enable paging and switch stack *)
  1793. SetTR(KernelTR + id*8);
  1794. EnableMM(kernelPD, procm[id].tss.ESP0)
  1795. END InitMemory;
  1796. (** Initialize a boot page for MP booting. Parameter physAdr returns the physical address of a low page. *)
  1797. PROCEDURE InitBootPage*(start: Startup; VAR physAdr: ADDRESS);
  1798. CONST BootOfs = 800H;
  1799. VAR adr, a: ADDRESS;
  1800. BEGIN
  1801. Acquire(Memory);
  1802. NewLowPage(physAdr);
  1803. Release(Memory);
  1804. ASSERT((physAdr # NilAdr) & (physAdr >= 0) & (physAdr < M) & (physAdr MOD PS = 0));
  1805. adr := physAdr + BootOfs;
  1806. a := adr; (* from SMP.Asm - generated with BinToCode.Kernel smp.bin 800H *)
  1807. SYSTEM.PUT32(a, 0100012EBH); INC(a, 4); SYSTEM.PUT32(a, 000080000H); INC(a, 4);
  1808. SYSTEM.PUT32(a, 000000000H); INC(a, 4); SYSTEM.PUT32(a, 000170000H); INC(a, 4);
  1809. SYSTEM.PUT32(a, 000000000H); INC(a, 4); SYSTEM.PUT32(a, 0010F2EFAH); INC(a, 4);
  1810. SYSTEM.PUT32(a, 02E08081EH); INC(a, 4); SYSTEM.PUT32(a, 00E16010FH); INC(a, 4);
  1811. SYSTEM.PUT32(a, 0E0010F08H); INC(a, 4); SYSTEM.PUT32(a, 0010F010CH); INC(a, 4);
  1812. SYSTEM.PUT32(a, 0B800EBF0H); INC(a, 4); SYSTEM.PUT32(a, 0D08E0010H); INC(a, 4);
  1813. SYSTEM.PUT32(a, 0C08ED88EH); INC(a, 4); SYSTEM.PUT32(a, 00800BC66H); INC(a, 4);
  1814. SYSTEM.PUT32(a, 033660000H); INC(a, 4); SYSTEM.PUT32(a, 0FF2E66C0H); INC(a, 4);
  1815. SYSTEM.PUT32(a, 09008022EH); INC(a, 4);
  1816. (* these offsets are from the last two dwords in SMP.Asm *)
  1817. SYSTEM.PUT32(adr+2, SYSTEM.VAL (LONGINT, start)); (* not a method *)
  1818. SYSTEM.PUT32(adr+16, ADDRESSOF(gdt[0]));
  1819. (* jump at start *)
  1820. SYSTEM.PUT8(physAdr, 0EAX); (* jmp far *)
  1821. SYSTEM.PUT32(physAdr + 1, ASH(physAdr, 16-4) + BootOfs) (* seg:ofs *)
  1822. END InitBootPage;
  1823. (** The BP in a MP system calls this to map the APIC physical address directly. *)
  1824. PROCEDURE InitAPICArea*(adr: ADDRESS; size: SIZE);
  1825. BEGIN
  1826. ASSERT((size = PS) & (adr >= IntelAreaAdr) & (adr+size-1 < IntelAreaAdr+IntelAreaSize));
  1827. IF ~MapDirect(adr, size, adr + UserPage) THEN HALT(99) END
  1828. END InitAPICArea;
  1829. (* Set machine-dependent parameters gcThreshold, expandMin, heapMinKB and heapMaxKB *)
  1830. PROCEDURE SetGCParams*;
  1831. VAR size, t: SIZE;
  1832. BEGIN
  1833. GetFreeK(size, t, t); (* size is total memory size in KB *)
  1834. heapMinKB := size * HeapMin DIV 100;
  1835. heapMaxKB := size * HeapMax DIV 100;
  1836. expandMin := size * ExpandRate DIV 100 * 1024;
  1837. IF expandMin < 0 THEN expandMin := MAX(LONGINT) END;
  1838. gcThreshold := size * Threshold DIV 100 * 1024;
  1839. IF gcThreshold < 0 THEN gcThreshold := MAX(LONGINT) END
  1840. END SetGCParams;
  1841. (** Get first memory block and first free address, heap area in first memory block is automatically expanded to account for the first
  1842. few calls to NEW *)
  1843. PROCEDURE GetStaticHeap*(VAR beginBlockAdr, endBlockAdr, freeBlockAdr: ADDRESS);
  1844. BEGIN
  1845. beginBlockAdr := initialMemBlock.beginBlockAdr;
  1846. endBlockAdr := initialMemBlock.endBlockAdr;
  1847. freeBlockAdr := beginBlockAdr;
  1848. END GetStaticHeap;
  1849. PROCEDURE InModuleHeap(p: ADDRESS): BOOLEAN;
  1850. BEGIN
  1851. RETURN (p >= SYSTEM.VAL(ADDRESS, FirstAddress)) & (p <= SYSTEM.VAL(ADDRESS, LastAddress));
  1852. END InModuleHeap;
  1853. (* returns if an address is a currently allocated heap address *)
  1854. PROCEDURE ValidHeapAddress*(p: ADDRESS): BOOLEAN;
  1855. BEGIN
  1856. RETURN
  1857. (p >= memBlockHead.beginBlockAdr) & (p <= memBlockTail.endBlockAdr)
  1858. OR InModuleHeap(p);
  1859. END ValidHeapAddress;
  1860. (** Jump from kernel to user mode. Every processor calls this during initialization. *)
  1861. PROCEDURE JumpToUserLevel*(userEBP: ADDRESS);
  1862. CODE {SYSTEM.i386}
  1863. PUSH UserStackSel ; SS3
  1864. PUSH DWORD [EBP+userEBP] ; ESP3
  1865. PUSHFD ; EFLAGS3
  1866. PUSH UserCodeSel ; CS3
  1867. CALL L1 ; PUSH L1 (EIP3)
  1868. L1:
  1869. ADD DWORD [ESP], BYTE 5; adjust EIP3 to L2 (L2-L1 = 5)
  1870. IRETD ; switch to level 3 and continue at following instruction
  1871. L2:
  1872. POP EBP ; from level 3 stack (refer to Objects.NewProcess)
  1873. RET ; jump to body of first active object
  1874. END JumpToUserLevel;
  1875. PROCEDURE Ensure32BitAddress*(adr: ADDRESS): LONGINT;
  1876. BEGIN
  1877. RETURN adr
  1878. END Ensure32BitAddress;
  1879. PROCEDURE Is32BitAddress*(adr: ADDRESS): BOOLEAN;
  1880. BEGIN RETURN SYSTEM.VAL (Address32, adr) = adr;
  1881. END Is32BitAddress;
  1882. (**
  1883. * Flush Data Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1884. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1885. * left empty on Intel architecture.
  1886. *)
  1887. PROCEDURE FlushDCacheRange * (adr: ADDRESS; len: LONGINT);
  1888. END FlushDCacheRange;
  1889. (**
  1890. * Invalidate Data Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1891. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1892. * left empty on Intel architecture.
  1893. *)
  1894. PROCEDURE InvalidateDCacheRange * (adr: ADDRESS; len: LONGINT);
  1895. END InvalidateDCacheRange;
  1896. (**
  1897. * Invalidate Instruction Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1898. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1899. * left empty on Intel architecture.
  1900. *)
  1901. PROCEDURE InvalidateICacheRange * (adr: ADDRESS; len: LONGINT);
  1902. END InvalidateICacheRange;
  1903. (* Unexpected - Default interrupt handler *)
  1904. PROCEDURE Unexpected(VAR state: State);
  1905. VAR int: LONGINT; isr, irr: CHAR;
  1906. BEGIN
  1907. int := state.INT;
  1908. IF HandleSpurious & ((int >= IRQ0) & (int <= MaxIRQ) OR (int = MPSPU)) THEN (* unexpected IRQ, get more info *)
  1909. IF (int >= IRQ8) & (int <= IRQ15) THEN
  1910. Portout8 (IntB0, 0BX); Portin8(IntB0, isr);
  1911. Portout8 (IntB0, 0AX); Portin8(IntB0, irr)
  1912. ELSIF (int >= IRQ0) & (int <= IRQ7) THEN
  1913. Portout8 (IntA0, 0BX); Portin8(IntA0, isr);
  1914. Portout8 (IntA0, 0AX); Portin8(IntA0, irr)
  1915. ELSE
  1916. isr := 0X; irr := 0X
  1917. END;
  1918. IF TraceSpurious THEN
  1919. Acquire (TraceOutput);
  1920. Trace.String("INT"); Trace.Int(int, 1);
  1921. Trace.Hex(ORD(isr), -3); Trace.Hex(ORD(irr), -2); Trace.Ln;
  1922. Release (TraceOutput);
  1923. END
  1924. ELSE
  1925. Acquire (TraceOutput);
  1926. Trace.StringLn ("Unexpected interrupt");
  1927. Trace.Memory(ADDRESSOF(state), SIZEOF(State)-4*4); (* exclude last 4 fields *)
  1928. IF int = 3 THEN (* was a HALT or ASSERT *)
  1929. (* It seems that no trap handler is installed (Traps not linked), so wait endlessly, while holding trace lock. This should quiten down the system, although other processors may possibly still run processes. *)
  1930. LOOP END
  1931. ELSE
  1932. Release (TraceOutput);
  1933. SetEAX(int);
  1934. HALT(1801) (* unexpected interrupt *)
  1935. END
  1936. END
  1937. END Unexpected;
  1938. (* InEnableIRQ - Enable a hardware interrupt (caller must hold module lock). *)
  1939. PROCEDURE -InEnableIRQ (int: LONGINT);
  1940. CODE {SYSTEM.i386}
  1941. POP EBX
  1942. CMP EBX, IRQ7
  1943. JG cont2
  1944. IN AL, IntA1
  1945. SUB EBX, IRQ0
  1946. BTR EAX, EBX
  1947. OUT IntA1, AL
  1948. JMP end
  1949. cont2:
  1950. IN AL, IntB1
  1951. SUB EBX, IRQ8
  1952. BTR EAX, EBX
  1953. OUT IntB1, AL
  1954. end:
  1955. END InEnableIRQ;
  1956. (* InDisableIRQ - Disable a hardware interrupt (caller must hold module lock). *)
  1957. PROCEDURE -InDisableIRQ (int: LONGINT);
  1958. CODE {SYSTEM.i386}
  1959. POP EBX
  1960. CMP EBX, IRQ7
  1961. JG cont2
  1962. IN AL, IntA1
  1963. SUB EBX, IRQ0
  1964. BTS EAX, EBX
  1965. OUT IntA1, AL
  1966. JMP end
  1967. cont2:
  1968. IN AL, IntB1
  1969. SUB EBX, IRQ8
  1970. BTS EAX, EBX
  1971. OUT IntB1, AL
  1972. end:
  1973. END InDisableIRQ;
  1974. (** EnableIRQ - Enable a hardware interrupt (also done automatically by InstallHandler). *)
  1975. PROCEDURE EnableIRQ* (int: LONGINT);
  1976. BEGIN
  1977. ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2));
  1978. Acquire(Interrupts); (* protect interrupt mask register *)
  1979. InEnableIRQ(int);
  1980. Release(Interrupts)
  1981. END EnableIRQ;
  1982. (** DisableIRQ - Disable a hardware interrupt. *)
  1983. PROCEDURE DisableIRQ* (int: LONGINT);
  1984. BEGIN
  1985. ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2));
  1986. Acquire(Interrupts); (* protect interrupt mask register *)
  1987. InDisableIRQ(int);
  1988. Release(Interrupts)
  1989. END DisableIRQ;
  1990. (** InstallHandler - Install interrupt handler & enable IRQ if necessary.
  1991. On entry to h interrupts are disabled and may be enabled with Sti. After handling the interrupt
  1992. the state of interrupts are restored. The acknowledgement of a hardware interrupt is done automatically.
  1993. IRQs are mapped from IRQ0 to MaxIRQ. *)
  1994. PROCEDURE InstallHandler* (h: Handler; int: LONGINT);
  1995. VAR (* n: HandlerList; *) i: LONGINT; unexpected: Handler;
  1996. BEGIN
  1997. ASSERT(default.valid); (* initialized *)
  1998. ASSERT(int # IRQ2); (* IRQ2 is used for cascading and remapped to IRQ9 *)
  1999. Acquire(Interrupts);
  2000. (* FieldInterrupt may traverse list while it is being modified *)
  2001. i := 0;
  2002. unexpected := Unexpected;
  2003. IF intHandler[int, 0].handler # unexpected THEN
  2004. WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO
  2005. INC(i)
  2006. END;
  2007. IF i < MaxNumHandlers - 1 THEN
  2008. intHandler[int, i].valid := TRUE;
  2009. intHandler[int, i].handler := h;
  2010. ELSE
  2011. Acquire(TraceOutput);
  2012. Trace.String("Machine.InstallHandler: handler could not be installed for interrupt "); Trace.Int(int, 0);
  2013. Trace.String(" - too many handlers per interrupt number"); Trace.Ln;
  2014. Release(TraceOutput)
  2015. END
  2016. ELSE
  2017. intHandler[int, 0].handler := h;
  2018. IF (int >= IRQ0) & (int <= IRQ15) THEN InEnableIRQ(int) END
  2019. END;
  2020. Release(Interrupts)
  2021. END InstallHandler;
  2022. (** RemoveHandler - Uninstall interrupt handler & disable IRQ if necessary *)
  2023. PROCEDURE RemoveHandler* (h: Handler; int: LONGINT);
  2024. VAR (* p, c: HandlerList; *) i, j, foundIndex: LONGINT;
  2025. BEGIN
  2026. ASSERT(default.valid); (* initialized *)
  2027. Acquire(Interrupts);
  2028. (* find h *)
  2029. i := 0;
  2030. foundIndex := -1;
  2031. WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO
  2032. IF intHandler[int, i].handler = h THEN foundIndex := i END;
  2033. INC(i)
  2034. END;
  2035. IF foundIndex # -1 THEN
  2036. (* h found -> copy interrupt handlers higher than foundIndex *)
  2037. FOR j := foundIndex TO i - 2 DO
  2038. intHandler[int, j] := intHandler[int, j + 1]
  2039. END
  2040. END;
  2041. IF ~intHandler[int, 0].valid THEN
  2042. (* handler h was the only interrupt handler for interrupt int -> install the default handler *)
  2043. intHandler[int, 0] := default;
  2044. IF (int >= IRQ0) & (int <= IRQ15) THEN DisableIRQ(int) END
  2045. END;
  2046. Release(Interrupts)
  2047. END RemoveHandler;
  2048. (*
  2049. PROCEDURE ListIntHandlers*;
  2050. VAR i, j, highest: LONGINT; handler: Handler;
  2051. BEGIN
  2052. highest := 0;
  2053. FOR i := 0 TO IDTSize - 1 DO
  2054. j := 0;
  2055. WHILE (j < MaxNumHandlers - 1) & intHandler[i, j].valid DO INC(j) END;
  2056. Trace.String("int = "); Trace.Int(i, 3); Trace.String(" # installed handlers = "); Trace.Int(j, 0);
  2057. IF j = 1 THEN
  2058. handler := Unexpected;
  2059. IF intHandler[i, 0].handler = handler THEN
  2060. Trace.String(" default handler installed")
  2061. END
  2062. END;
  2063. Trace.Ln;
  2064. IF j > highest THEN highest := j END;
  2065. END;
  2066. Trace.String("highest # installed handlers = "); Trace.Int(highest, 0); Trace.Ln
  2067. END ListIntHandlers;
  2068. *)
  2069. (* Get control registers. *)
  2070. PROCEDURE GetCR0to4(VAR cr: ARRAY OF LONGINT);
  2071. CODE {SYSTEM.Pentium, SYSTEM.Privileged}
  2072. MOV EDI, [EBP+cr]
  2073. MOV EAX, CR0
  2074. XOR EBX, EBX ; CR1 is not documented
  2075. MOV ECX, CR2
  2076. MOV EDX, CR3
  2077. MOV [EDI], EAX
  2078. MOV [EDI+4], EBX
  2079. MOV [EDI+8], ECX
  2080. MOV [EDI+12], EDX
  2081. MOV EAX, CR4 ; Pentium only
  2082. MOV [EDI+16], EAX
  2083. END GetCR0to4;
  2084. (* GetDR0to7 - Get debug registers. *)
  2085. PROCEDURE GetDR0to7(VAR dr: ARRAY OF LONGINT);
  2086. CODE {SYSTEM.i386, SYSTEM.Privileged}
  2087. MOV EDI, [EBP+dr]
  2088. MOV EAX, DR0
  2089. MOV EBX, DR1
  2090. MOV ECX, DR2
  2091. MOV EDX, DR3
  2092. MOV [EDI], EAX
  2093. MOV [EDI+4], EBX
  2094. MOV [EDI+8], ECX
  2095. MOV [EDI+12], EDX
  2096. XOR EAX, EAX ; DR4 is not documented
  2097. XOR EBX, EBX ; DR5 is not documented
  2098. MOV ECX, DR6
  2099. MOV EDX, DR7
  2100. MOV [EDI+16], EAX
  2101. MOV [EDI+20], EBX
  2102. MOV [EDI+24], ECX
  2103. MOV [EDI+28], EDX
  2104. END GetDR0to7;
  2105. (* GetSegments - Get segment registers. *)
  2106. PROCEDURE GetSegments(VAR ss, es, ds, fs, gs: LONGINT);
  2107. CODE {SYSTEM.i386}
  2108. XOR EAX, EAX
  2109. MOV EBX, [EBP+ss]
  2110. MOV AX, SS
  2111. MOV [EBX], EAX
  2112. MOV EBX, [EBP+es]
  2113. MOV AX, ES
  2114. MOV [EBX], EAX
  2115. MOV EBX, [EBP+ds]
  2116. MOV AX, DS
  2117. MOV [EBX], EAX
  2118. MOV EBX, [EBP+fs]
  2119. MOV AX, FS
  2120. MOV [EBX], EAX
  2121. MOV EBX, [EBP+gs]
  2122. MOV AX, GS
  2123. MOV [EBX], EAX
  2124. END GetSegments;
  2125. (* CLTS - Clear task-switched flag. *)
  2126. PROCEDURE -CLTS;
  2127. CODE {SYSTEM.i386, SYSTEM.Privileged}
  2128. CLTS
  2129. END CLTS;
  2130. (* GetFPU - Store floating-point environment (28 bytes) and mask all floating-point exceptions. *)
  2131. PROCEDURE -GetFPU(adr: ADDRESS);
  2132. CODE {SYSTEM.i386, SYSTEM.FPU}
  2133. POP EBX
  2134. FNSTENV [EBX] ; also masks all exceptions
  2135. FWAIT
  2136. END GetFPU;
  2137. (* CR2 - Get page fault address. *)
  2138. PROCEDURE -CR2* (): ADDRESS;
  2139. CODE {SYSTEM.i386, SYSTEM.Privileged}
  2140. MOV EAX, CR2
  2141. END CR2;
  2142. (** GetExceptionState - Get exception state from interrupt state (and switch on interrupts). *)
  2143. PROCEDURE GetExceptionState* (VAR int: State; VAR exc: ExceptionState);
  2144. VAR id: LONGINT; level0: BOOLEAN;
  2145. BEGIN
  2146. (* save all state information while interrupts are still disabled *)
  2147. exc.halt := -int.INT; id := ID ();
  2148. IF int.INT = PF THEN exc.pf := CR2 () ELSE exc.pf := 0 END;
  2149. GetCR0to4(exc.CR);
  2150. GetDR0to7(exc.DR);
  2151. CLTS; (* ignore task switch flag *)
  2152. IF int.INT = MF THEN
  2153. GetFPU(ADDRESSOF(exc.FPU[0]));
  2154. int.PC := SYSTEM.VAL (ADDRESS, exc.FPU[3]); (* modify PC according to FPU info *)
  2155. (* set halt code according to FPU info *)
  2156. IF 2 IN exc.FPU[1] THEN exc.halt := -32 (* division by 0 *)
  2157. ELSIF 3 IN exc.FPU[1] THEN exc.halt := -33 (* overflow *)
  2158. ELSIF 0 IN exc.FPU[1] THEN exc.halt := -34 (* operation invalid *)
  2159. ELSIF 6 IN exc.FPU[1] THEN exc.halt := -35 (* stack fault *)
  2160. ELSIF 1 IN exc.FPU[1] THEN exc.halt := -36 (* denormalized *)
  2161. ELSIF 4 IN exc.FPU[1] THEN exc.halt := -37 (* underflow *)
  2162. ELSIF 5 IN exc.FPU[1] THEN exc.halt := -38 (* precision loss *)
  2163. ELSE (* {exc.halt = -16} *)
  2164. END
  2165. ELSE
  2166. Fill32(ADDRESSOF(exc.FPU[0]), LEN(exc.FPU)*SIZEOF(SET), 0)
  2167. END;
  2168. SetupFPU;
  2169. level0 := (int.CS MOD 4 = KernelLevel);
  2170. IF int.INT = BP THEN (* breakpoint (HALT) *)
  2171. IF level0 THEN
  2172. exc.halt := int.SP (* get halt code *)
  2173. (* if HALT(MAX(INTEGER)), leave halt code on stack when returning, but not serious problem.*)
  2174. ELSE
  2175. SYSTEM.GET (int.SP, exc.halt); (* get halt code from outer stack *)
  2176. IF exc.halt >= MAX(INTEGER) THEN INC (int.SP, AddressSize) END (* pop halt code from outer stack *)
  2177. END;
  2178. IF exc.halt < MAX(INTEGER) THEN DEC (int.PC) END; (* point to the INT 3 instruction (assume 0CCX, not 0CDX 3X) *)
  2179. ELSIF int.INT = OVF THEN (* overflow *)
  2180. DEC (int.PC) (* point to the INTO instruction (assume 0CEX, not 0CDX 4X) *)
  2181. ELSIF int.INT = PF THEN (* page fault *)
  2182. IF int.PC = 0 THEN (* reset PC to return address of indirect CALL to 0 *)
  2183. IF level0 THEN int.PC := int.SP (* ret adr *) ELSE SYSTEM.GET (int.SP, int.PC) END
  2184. END
  2185. END;
  2186. (* get segment registers *)
  2187. GetSegments(exc.SS, exc.ES, exc.DS, exc.FS, exc.GS);
  2188. IF level0 THEN (* from same level, no ESP, SS etc. on stack *)
  2189. exc.SP := ADDRESSOF(int.SP) (* stack was here when interrupt happened *)
  2190. ELSE (* from outer level *)
  2191. exc.SP := int.SP; exc.SS := int.SS
  2192. END
  2193. END GetExceptionState;
  2194. (* FieldInterrupt and FieldIRQ *)
  2195. (*
  2196. At entry to a Handler procedure the stack is as follows:
  2197. 72 -- .GS
  2198. 68 -- .FS
  2199. 64 -- .DS
  2200. 60 -- .ES ; or haltcode
  2201. -- if (VMBit IN .FLAGS) --
  2202. 56 -- .SS
  2203. 52 -- .ESP ; or haltcode
  2204. -- (VMBit IN .EFLAGS) OR (CS MOD 4 < .CS MOD 4) --
  2205. 48 -- .EFLAGS
  2206. 44 -- .CS
  2207. 40 -- .EIP ; rest popped by IRETD
  2208. 36 -- .ERR/EBP ; pushed by processor or glue code, popped by POP EBP
  2209. 32 -- .INT <-- .ESP0 ; pushed by glue code, popped by POP EBP
  2210. 28 -- .EAX
  2211. 24 -- .ECX
  2212. 20 -- .EDX
  2213. 16 -- .EBX
  2214. 12 -- .ESP0
  2215. 08 -- .BP/ERR ; exchanged by glue code
  2216. 04 -- .ESI
  2217. 00 24 .EDI <--- state: State
  2218. -- 20 ptr
  2219. -- 16 object pointer for DELEGATE
  2220. -- 12 TAG(state)
  2221. -- 08 ADR(state)
  2222. -- 04 EIP' (RET to FieldInterrupt)
  2223. -- 00 EBP' <-- EBP
  2224. -- -- locals <-- ESP
  2225. *)
  2226. PROCEDURE FieldInterrupt;
  2227. CODE {SYSTEM.i386} ; 3 bytes implicit code skipped: PUSH EBP; MOV EBP, ESP
  2228. entry:
  2229. PUSHAD ; save all registers (EBP = error code)
  2230. LEA EBP, [ESP+36] ; procedure link (for correct tracing of interrupt procedures)
  2231. MOV EBX, [ESP+32] ; EBX = int number
  2232. IMUL EBX, EBX, MaxNumHandlers
  2233. IMUL EBX, EBX, 12
  2234. LEA EAX, intHandler
  2235. ADD EAX, EBX ; address of intHandler[int, 0]
  2236. loop: ; call all handlers for the interrupt
  2237. MOV ECX, ESP
  2238. PUSH EAX ; save ptr for linked list
  2239. PUSH DWORD [EAX+8] ; delegate
  2240. PUSH stateTag ; TAG(state)
  2241. PUSH ECX ; ADR(state)
  2242. CALL DWORD [EAX+4] ; call handler
  2243. ADD ESP, 12
  2244. CLI ; handler may have re-enabled interrupts
  2245. POP EAX
  2246. ADD EAX, 12
  2247. MOV EBX, [EAX]
  2248. CMP EBX, 0
  2249. JNE loop
  2250. POPAD ; now EBP = error code
  2251. POP EBP ; now EBP = INT
  2252. POP EBP ; now EBP = caller EBP
  2253. IRETD
  2254. END FieldInterrupt;
  2255. PROCEDURE FieldIRQ;
  2256. CODE {SYSTEM.i386} ; 3 bytes implicit code skipped: PUSH EBP; MOV EBP, ESP
  2257. entry:
  2258. PUSHAD ; save all registers (EBP = error code)
  2259. LEA EBP, [ESP+36] ; procedure link (for correct tracing of interrupt procedures)
  2260. ; PUSH [ESP+32] ; int number
  2261. ; CALL traceInterruptIn
  2262. MOV EBX, [ESP+32] ; EBX = int number
  2263. CMP BL, IRQ0 + 7 ; if irq=7 then check for spurious interrupt on master
  2264. JNE skip1
  2265. MOV AL, 0BH
  2266. OUT IntA0, AL
  2267. IN AL, IntA0
  2268. BT AX, 7
  2269. JNC end
  2270. skip1:
  2271. CMP BL, IRQ8 + 7 ; if irq=15 then check for spurious interrupt on slave
  2272. JNE skip2
  2273. MOV AL, 0BH
  2274. OUT IntB0, AL
  2275. IN AL, IntB0
  2276. BT AX, 7
  2277. MOV AL, 20H
  2278. JNC irq0 ; acknowledge IRQ on master
  2279. skip2:
  2280. IMUL EBX, EBX, MaxNumHandlers
  2281. IMUL EBX, EBX, 12
  2282. LEA EAX, intHandler
  2283. ADD EAX, EBX ; address of intHandler[int, 0]
  2284. loop: ; call all handlers for the interrupt
  2285. MOV ECX, ESP
  2286. PUSH EAX ; save ptr for linked list
  2287. PUSH DWORD [EAX+8] ; delegate
  2288. PUSH stateTag ; TAG(state)
  2289. PUSH ECX ; ADR(state)
  2290. CALL DWORD [EAX+4] ; call handler
  2291. ADD ESP, 12
  2292. CLI ; handler may have re-enabled interrupts
  2293. POP EAX
  2294. ADD EAX, 12
  2295. MOV EBX, [EAX]
  2296. CMP EBX, 0
  2297. JNE loop
  2298. ; PUSH [ESP+32] ; int number
  2299. ; CALL traceInterruptOut
  2300. ; ack interrupt
  2301. MOV AL, 20H ; undoc PC ed. 2 p. 1018
  2302. CMP BYTE [ESP+32], IRQ8
  2303. JB irq0
  2304. OUT IntB0, AL ; 2nd controller
  2305. irq0:
  2306. OUT IntA0, AL ; 1st controller
  2307. end:
  2308. POPAD ; now EBP = error code
  2309. POP EBP ; now EBP = INT
  2310. POP EBP ; now EBP = caller EBP
  2311. IRETD
  2312. END FieldIRQ;
  2313. (* LoadIDT - Load interrupt descriptor table *)
  2314. PROCEDURE LoadIDT(base: ADDRESS; size: SIZE);
  2315. CODE {SYSTEM.i386, SYSTEM.Privileged}
  2316. SHL DWORD [EBP+size], 16
  2317. MOV EBX, 2
  2318. LIDT [EBP+EBX+size]
  2319. END LoadIDT;
  2320. (** Init - Initialize interrupt handling. Called once during initialization. Uses NEW. *)
  2321. (*
  2322. The glue code is:
  2323. entry0: ; entry point for interrupts without error code
  2324. PUSH 0 ; fake error code
  2325. entry1: ; entry point for interrupts with error code
  2326. XCHG [ESP], EBP ; exchange error code and caller EBP
  2327. PUSH int ; interrupt number
  2328. JMP FieldInterrupt:entry
  2329. *)
  2330. PROCEDURE InitInterrupts*;
  2331. VAR a: ADDRESS; o, i: LONGINT; p: PROCEDURE; mask: SET;
  2332. BEGIN
  2333. stateTag := SYSTEM.TYPECODE(State);
  2334. (* initialise 8259 interrupt controller chips *)
  2335. Portout8 (IntA0, 11X); Portout8 (IntA1, CHR(IRQ0));
  2336. Portout8 (IntA1, 4X); Portout8 (IntA1, 1X); Portout8 (IntA1, 0FFX);
  2337. Portout8 (IntB0, 11X); Portout8 (IntB1, CHR(IRQ8));
  2338. Portout8 (IntB1, 2X); Portout8 (IntB1, 1X); Portout8 (IntB1, 0FFX);
  2339. (* enable interrupts from second interrupt controller, chained to line 2 of controller 1 *)
  2340. Portin8(IntA1, SYSTEM.VAL (CHAR, mask));
  2341. EXCL(mask, IRQ2-IRQ0);
  2342. Portout8 (IntA1, SYSTEM.VAL (CHAR, mask));
  2343. (*
  2344. NEW(default); default.next := NIL; default.handler := Unexpected;
  2345. *)
  2346. (*
  2347. newrec (SYSTEM.VAL (ANY, default), SYSTEM.TYPECODE (HandlerList));
  2348. *)
  2349. (* default.next := NIL; default.handler := Unexpected; *)
  2350. default.valid := TRUE; default.handler := Unexpected;
  2351. FOR i := 0 TO IDTSize-1 DO (* set up glue code *)
  2352. intHandler[i, 0] := default; o := 0;
  2353. (* PUSH error code, int num & regs *)
  2354. glue[i][o] := 6AX; INC (o); glue[i][o] := 0X; INC (o); (* PUSH 0 ; {o = 2} *)
  2355. glue[i][o] := 87X; INC (o); glue[i][o] := 2CX; INC (o); glue[i][o] := 24X; INC (o); (* XCHG [ESP], EBP *)
  2356. glue[i][o] := 6AX; INC (o); glue[i][o] := CHR(i); INC (o); (* PUSH i *)
  2357. IF (i >= IRQ0) & (i <= IRQ15) THEN p := FieldIRQ ELSE p := FieldInterrupt END;
  2358. a := SYSTEM.VAL (ADDRESS, p) + 3 - (ADDRESSOF(glue[i][o]) + 5);
  2359. glue[i][o] := 0E9X; INC (o); (* JMP FieldInterrupt.entry *)
  2360. SYSTEM.PUT32 (ADDRESSOF(glue[i][o]), a);
  2361. (* set up IDT entry *)
  2362. IF (i > 31) OR ~(i IN {8, 10..14, 17}) THEN a := ADDRESSOF(glue[i][0]) (* include PUSH 0 *)
  2363. ELSE a := ADDRESSOF(glue[i][2]) (* skip PUSH 0, processor supplies error code *)
  2364. END;
  2365. idt[i].offsetBits0to15 := INTEGER(a MOD 10000H);
  2366. (* IRQ0 must be at level 0 because time slicing in Objects needs to set interrupted process' ESP *)
  2367. (* all irq's are handled at level 0, because of priority experiment in Objects.FieldIRQ *)
  2368. IF TRUE (* (i < IRQ0) OR (i > IRQ15) OR (i = IRQ0) OR (i = IRQ0 + 1)*) THEN
  2369. idt[i].selector := KernelCodeSel; (* gdt[1] -> non-conformant segment => level 0 *)
  2370. idt[i].gateType := SYSTEM.VAL (INTEGER, 0EE00H) (* present, DPL 3, system, 386 interrupt *)
  2371. ELSE (* {IRQ0..IRQ15} - {IRQ0 + 1} *)
  2372. idt[i].selector := UserCodeSel; (* gdt[3] -> conformant segment => level 0 or 3 *)
  2373. idt[i].gateType := SYSTEM.VAL (INTEGER, 08E00H) (* present, DPL 0, system, 386 interrupt *)
  2374. END;
  2375. idt[i].offsetBits16to31 := INTEGER(a DIV 10000H)
  2376. END
  2377. END InitInterrupts;
  2378. (** Start - Start handling interrupts. Every processor calls this once during initialization. *)
  2379. PROCEDURE Start*;
  2380. BEGIN
  2381. ASSERT(default.valid); (* initialized *)
  2382. LoadIDT(ADDRESSOF(idt[0]), SIZEOF(IDT)-1);
  2383. Sti
  2384. END Start;
  2385. (* Return current instruction pointer *)
  2386. PROCEDURE CurrentPC* (): ADDRESS;
  2387. CODE {SYSTEM.i386}
  2388. MOV EAX, [EBP+4]
  2389. END CurrentPC;
  2390. (* Return current frame pointer *)
  2391. PROCEDURE -CurrentBP* (): ADDRESS;
  2392. CODE {SYSTEM.i386}
  2393. MOV EAX, EBP
  2394. END CurrentBP;
  2395. (* Set current frame pointer *)
  2396. PROCEDURE -SetBP* (bp: ADDRESS);
  2397. CODE {SYSTEM.i386}
  2398. POP EBP
  2399. END SetBP;
  2400. (* Return current stack pointer *)
  2401. PROCEDURE -CurrentSP* (): ADDRESS;
  2402. CODE {SYSTEM.i386}
  2403. MOV EAX, ESP
  2404. END CurrentSP;
  2405. (* Set current stack pointer *)
  2406. PROCEDURE -SetSP* (sp: ADDRESS);
  2407. CODE {SYSTEM.i386}
  2408. POP ESP
  2409. END SetSP;
  2410. (* Save minimal FPU state (for synchronous process switches). *)
  2411. (* saving FPU state takes 108 bytes memory space, no alignment required *)
  2412. PROCEDURE -FPUSaveMin* (VAR state: SSEState);
  2413. CODE {SYSTEM.i386, SYSTEM.FPU}
  2414. POP EAX
  2415. FNSTCW [EAX] ; control word is at state[0]
  2416. FWAIT
  2417. END FPUSaveMin;
  2418. (* Restore minimal FPU state. *)
  2419. PROCEDURE -FPURestoreMin* (VAR state: SSEState);
  2420. CODE {SYSTEM.i386, SYSTEM.FPU}
  2421. POP EAX
  2422. FLDCW [EAX] ; control word is at state[0]
  2423. END FPURestoreMin;
  2424. (* Save full FPU state (for asynchronous process switches). *)
  2425. PROCEDURE -FPUSaveFull* (VAR state: SSEState);
  2426. CODE {SYSTEM.i386, SYSTEM.FPU}
  2427. POP EAX
  2428. FSAVE [EAX]
  2429. END FPUSaveFull;
  2430. (* Restore full FPU state. *)
  2431. PROCEDURE -FPURestoreFull* (VAR state: SSEState);
  2432. CODE {SYSTEM.i386, SYSTEM.FPU}
  2433. POP EAX
  2434. FRSTOR [EAX]
  2435. END FPURestoreFull;
  2436. (* stateAdr must be the address of a 16-byte aligned memory area of at least 512 bytes *)
  2437. PROCEDURE -SSESaveFull* (stateAdr: ADDRESS);
  2438. CODE {SYSTEM.P2, SYSTEM.FPU, SYSTEM.SSE2}
  2439. POP EAX
  2440. FXSAVE [EAX]
  2441. FWAIT
  2442. FNINIT
  2443. END SSESaveFull;
  2444. PROCEDURE -SSERestoreFull* (stateAdr: ADDRESS);
  2445. CODE {SYSTEM.P2, SYSTEM.FPU, SYSTEM.SSE2}
  2446. POP EAX
  2447. FXRSTOR [EAX]
  2448. END SSERestoreFull;
  2449. PROCEDURE -SSESaveMin* (stateAdr: ADDRESS);
  2450. CODE {SYSTEM.i386, SYSTEM.FPU, SYSTEM.SSE2}
  2451. POP EAX
  2452. FNSTCW [EAX]
  2453. FWAIT
  2454. STMXCSR [EAX+24]
  2455. END SSESaveMin;
  2456. PROCEDURE -SSERestoreMin* (stateAdr: ADDRESS);
  2457. CODE {SYSTEM.i386, SYSTEM.FPU, SYSTEM.SSE2}
  2458. POP EAX
  2459. FLDCW [EAX]
  2460. LDMXCSR [EAX+24]
  2461. END SSERestoreMin;
  2462. (* Helper functions for SwitchTo. *)
  2463. PROCEDURE -PushState* (CONST state: State);
  2464. CODE {SYSTEM.i386}
  2465. POP EAX ; ADR (state)
  2466. POP EBX ; TYPECODE (state), ignored
  2467. PUSH DWORD [EAX+48] ; FLAGS
  2468. PUSH DWORD [EAX+44] ; CS
  2469. PUSH DWORD [EAX+40] ; PC
  2470. PUSH DWORD [EAX+28] ; EAX
  2471. PUSH DWORD [EAX+24] ; ECX
  2472. PUSH DWORD [EAX+20] ; EDX
  2473. PUSH DWORD [EAX+16] ; EBX
  2474. PUSH DWORD 0 ; ignored
  2475. PUSH DWORD [EAX+36] ; BP
  2476. PUSH DWORD [EAX+4] ; ESI
  2477. PUSH DWORD [EAX+0] ; EDI
  2478. END PushState;
  2479. PROCEDURE -JumpState*;
  2480. CODE {SYSTEM.i386}
  2481. POPAD
  2482. IRETD
  2483. END JumpState;
  2484. PROCEDURE -CallLocalIPC*;
  2485. CODE {SYSTEM.i386}
  2486. INT MPIPCLocal
  2487. END CallLocalIPC;
  2488. PROCEDURE -HLT*;
  2489. CODE {SYSTEM.i386, SYSTEM.Privileged}
  2490. STI ; (* required according to ACPI 2.0 spec section 8.2.2 *)
  2491. HLT
  2492. END HLT;
  2493. PROCEDURE -GetEAX*(): LONGINT;
  2494. CODE{SYSTEM.i386}
  2495. END GetEAX;
  2496. PROCEDURE -GetECX*(): LONGINT;
  2497. CODE{SYSTEM.i386}
  2498. MOV EAX,ECX
  2499. END GetECX;
  2500. PROCEDURE -GetESI*(): LONGINT;
  2501. CODE{SYSTEM.i386}
  2502. MOV EAX,ESI
  2503. END GetESI;
  2504. PROCEDURE -GetEDI*(): LONGINT;
  2505. CODE{SYSTEM.i386}
  2506. MOV EAX,EDI
  2507. END GetEDI;
  2508. PROCEDURE -SetEAX*(n: LONGINT);
  2509. CODE{SYSTEM.i386} POP EAX
  2510. END SetEAX;
  2511. PROCEDURE -SetEBX*(n: LONGINT);
  2512. CODE{SYSTEM.i386}
  2513. POP EBX
  2514. END SetEBX;
  2515. PROCEDURE -SetECX*(n: LONGINT);
  2516. CODE{SYSTEM.i386}
  2517. POP ECX
  2518. END SetECX;
  2519. PROCEDURE -SetEDX*(n: LONGINT);
  2520. CODE{SYSTEM.i386}
  2521. POP EDX
  2522. END SetEDX;
  2523. PROCEDURE -SetESI*(n: LONGINT);
  2524. CODE{SYSTEM.i386}
  2525. POP ESI
  2526. END SetESI;
  2527. PROCEDURE -SetEDI*(n: LONGINT);
  2528. CODE{SYSTEM.i386}
  2529. POP EDI
  2530. END SetEDI;
  2531. PROCEDURE Portin8*(port: LONGINT; VAR val: CHAR);
  2532. CODE{SYSTEM.i386}
  2533. MOV EDX,[EBP+port]
  2534. IN AL, DX
  2535. MOV ECX, [EBP+val]
  2536. MOV [ECX], AL
  2537. END Portin8;
  2538. PROCEDURE Portin16*(port: LONGINT; VAR val: INTEGER);
  2539. CODE{SYSTEM.i386}
  2540. MOV EDX,[EBP+port]
  2541. IN AX, DX
  2542. MOV ECX, [EBP+val]
  2543. MOV [ECX], AX
  2544. END Portin16;
  2545. PROCEDURE Portin32*(port: LONGINT; VAR val: LONGINT);
  2546. CODE{SYSTEM.i386}
  2547. MOV EDX,[EBP+port]
  2548. IN EAX, DX
  2549. MOV ECX, [EBP+val]
  2550. MOV [ECX], EAX
  2551. END Portin32;
  2552. PROCEDURE Portout8*(port: LONGINT; val: CHAR);
  2553. CODE{SYSTEM.i386}
  2554. MOV AL,[EBP+val]
  2555. MOV EDX,[EBP+port]
  2556. OUT DX,AL
  2557. END Portout8;
  2558. PROCEDURE Portout16*(port: LONGINT; val: INTEGER);
  2559. CODE{SYSTEM.i386}
  2560. MOV AX,[EBP+val]
  2561. MOV EDX,[EBP+port]
  2562. OUT DX,AX
  2563. END Portout16;
  2564. PROCEDURE Portout32*(port: LONGINT; val: LONGINT);
  2565. CODE{SYSTEM.i386}
  2566. MOV EAX,[EBP+val]
  2567. MOV EDX,[EBP+port]
  2568. OUT DX,EAX
  2569. END Portout32;
  2570. (* Kernel mode upcall to perform global processor halt. *)
  2571. PROCEDURE KernelCallHLT*;
  2572. CODE {SYSTEM.i386}
  2573. MOV EAX, 2
  2574. INT MPKC
  2575. END KernelCallHLT;
  2576. (* Parse processor entry in MP config table. *)
  2577. PROCEDURE CPUID1*(): LONGINT;
  2578. CODE {SYSTEM.i386, SYSTEM.Pentium}
  2579. MOV EAX, 1
  2580. CPUID
  2581. MOV EAX, EBX
  2582. END CPUID1;
  2583. (** -- Atomic operations -- *)
  2584. (** Atomic INC(x). *)
  2585. PROCEDURE -AtomicInc*(VAR x: LONGINT);
  2586. CODE {SYSTEM.i386}
  2587. POP EAX
  2588. LOCK
  2589. INC DWORD [EAX]
  2590. END AtomicInc;
  2591. (** Atomic DEC(x). *)
  2592. PROCEDURE -AtomicDec*(VAR x: LONGINT);
  2593. CODE {SYSTEM.i386}
  2594. POP EAX
  2595. LOCK
  2596. DEC DWORD [EAX]
  2597. END AtomicDec;
  2598. (** Atomic EXCL. *)
  2599. PROCEDURE AtomicExcl* (VAR s: SET; bit: LONGINT);
  2600. CODE {SYSTEM.i386}
  2601. MOV EAX, [EBP+bit]
  2602. MOV EBX, [EBP+s]
  2603. LOCK
  2604. BTR [EBX], EAX
  2605. END AtomicExcl;
  2606. (** Atomic INC(x, y). *)
  2607. PROCEDURE -AtomicAdd*(VAR x: LONGINT; y: LONGINT);
  2608. CODE {SYSTEM.i386}
  2609. POP EBX
  2610. POP EAX
  2611. LOCK
  2612. ADD DWORD [EAX], EBX
  2613. END AtomicAdd;
  2614. (** Atomic test-and-set. Set x = TRUE and return old value of x. *)
  2615. PROCEDURE -AtomicTestSet*(VAR x: BOOLEAN): BOOLEAN;
  2616. CODE {SYSTEM.i386}
  2617. POP EBX
  2618. MOV AL, 1
  2619. XCHG [EBX], AL
  2620. END AtomicTestSet;
  2621. (* Atomic compare-and-swap. Set x = new if x = old and return old value of x *)
  2622. PROCEDURE -AtomicCAS* (VAR x: LONGINT; old, new: LONGINT): LONGINT;
  2623. CODE {SYSTEM.i386}
  2624. POP EBX ; new
  2625. POP EAX ; old
  2626. POP ECX ; address of x
  2627. DB 0F0X, 00FX, 0B1X, 019X ; LOCK CMPXCHG [ECX], EBX; atomicly compare x with old and set it to new if equal
  2628. END AtomicCAS;
  2629. PROCEDURE CopyState* (CONST from: State; VAR to: State);
  2630. BEGIN
  2631. to.EDI := from.EDI; to.ESI := from.ESI;
  2632. to.EBX := from.EBX; to.EDX := from.EDX;
  2633. to.ECX := from.ECX; to.EAX := from.EAX;
  2634. to.BP := from.BP; to.PC := from.PC;
  2635. to.CS := from.CS; to.FLAGS := from.FLAGS;
  2636. to.SP := from.SP
  2637. END CopyState;
  2638. (* function returning the number of processors that are available to Aos *)
  2639. PROCEDURE NumberOfProcessors*( ): LONGINT;
  2640. BEGIN
  2641. RETURN numberOfProcessors
  2642. END NumberOfProcessors;
  2643. (*! non portable code, for native Aos only *)
  2644. PROCEDURE SetNumberOfProcessors*(num: LONGINT);
  2645. BEGIN
  2646. numberOfProcessors := num;
  2647. END SetNumberOfProcessors;
  2648. (* function for changing byte order *)
  2649. PROCEDURE ChangeByteOrder* (n: LONGINT): LONGINT;
  2650. CODE { SYSTEM.Pentium }
  2651. MOV EAX, [EBP+n] ; load n in eax
  2652. BSWAP EAX ; swap byte order
  2653. END ChangeByteOrder;
  2654. (* Write a value to the APIC. *)
  2655. PROCEDURE ApicPut(ofs: SIZE; val: SET);
  2656. BEGIN
  2657. IF TraceApic THEN
  2658. Acquire(TraceOutput);
  2659. Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" := "); Trace.Hex(SYSTEM.VAL (LONGINT, val), 9); Trace.Ln;
  2660. Release(TraceOutput);
  2661. END;
  2662. SYSTEM.PUT(localAPIC+ofs, SYSTEM.VAL (LONGINT, val))
  2663. END ApicPut;
  2664. (* Read a value from the APIC. *)
  2665. PROCEDURE ApicGet(ofs: SIZE): SET;
  2666. VAR val: SET;
  2667. BEGIN
  2668. SYSTEM.GET(localAPIC+ofs, SYSTEM.VAL (LONGINT, val));
  2669. IF TraceApic THEN
  2670. Acquire(TraceOutput);
  2671. Trace.String(" ("); Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" = ");
  2672. Trace.Hex(SYSTEM.VAL(LONGINT, val), 9); Trace.StringLn (")");
  2673. Release(TraceOutput);
  2674. END;
  2675. RETURN val
  2676. END ApicGet;
  2677. (* Handle interprocessor interrupt. During upcall interrupts are off and processor is at kernel level. *)
  2678. PROCEDURE HandleIPC(VAR state: State);
  2679. VAR id: LONGINT;
  2680. BEGIN
  2681. id := ID();
  2682. IF ~TraceProcessor OR (id IN allProcessors) THEN
  2683. IF FrontBarrier IN ipcFlags THEN
  2684. AtomicExcl(ipcFrontBarrier, id);
  2685. WHILE ipcFrontBarrier # {} DO SpinHint END (* wait for all *)
  2686. END;
  2687. ipcHandler(id, state, ipcMessage); (* interrupts off and at kernel level *)
  2688. IF BackBarrier IN ipcFlags THEN
  2689. AtomicExcl(ipcBackBarrier, id);
  2690. WHILE ipcBackBarrier # {} DO SpinHint END (* wait for all *)
  2691. END;
  2692. AtomicExcl(ipcBusy, id) (* ack - after this point we do not access shared variables for this broadcast *)
  2693. END;
  2694. IF state.INT = MPIPC THEN
  2695. ApicPut(0B0H, {}) (* EOI (not needed for NMI or local call, see 7.4.10.6) *)
  2696. END
  2697. END HandleIPC;
  2698. (* Handle MP error interrupt. *)
  2699. PROCEDURE HandleError(VAR state: State);
  2700. VAR esr: SET; (* int: LONGINT; *)
  2701. BEGIN
  2702. (* int := state.INT; *) esr := ApicGet(280H);
  2703. ApicPut(0B0H, {}); (* EOI *)
  2704. HALT(2302) (* SMP error *)
  2705. END HandleError;
  2706. (* Interprocessor broadcasting. Lock level SMP. *)
  2707. PROCEDURE LocalBroadcast(h: BroadcastHandler; msg: Message; flags: SET);
  2708. BEGIN
  2709. IF Self IN flags THEN ipcBusy := allProcessors
  2710. ELSE ipcBusy := allProcessors - {ID()}
  2711. END;
  2712. ipcFrontBarrier := ipcBusy; ipcBackBarrier := ipcBusy;
  2713. ipcHandler := h; ipcMessage := msg; ipcFlags := flags;
  2714. IF numProcessors > 1 THEN (* ICR: Fixed, Physical, Edge, All Excl. Self, INT IPC *)
  2715. ApicPut(300H, {18..19} + SYSTEM.VAL (SET, MPIPC));
  2716. (*REPEAT UNTIL ~(12 IN ApicGet(300H))*) (* wait for send to finish *)
  2717. END;
  2718. IF Self IN flags THEN CallLocalIPC END; (* "send" to self also *)
  2719. WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack before we release locks *)
  2720. ipcHandler := NIL; ipcMessage := NIL (* no race, because we have IPC lock *)
  2721. END LocalBroadcast;
  2722. (** Broadcast an operation to all processors. *)
  2723. PROCEDURE Broadcast* (h: BroadcastHandler; msg: Message; flags: SET);
  2724. BEGIN
  2725. Acquire(Processors);
  2726. LocalBroadcast(h, msg, flags);
  2727. Release(Processors)
  2728. END Broadcast;
  2729. (* Start all halted processors. *) (* Lock level Processors. *)
  2730. PROCEDURE StartAll*;
  2731. BEGIN
  2732. Acquire(Processors); (* wait for any pending Stops to finish, and disallow further Stops *)
  2733. ASSERT(stopped & (ipcBusy = {}));
  2734. ipcBusy := allProcessors - {ID()};
  2735. stopped := FALSE;
  2736. WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack *)
  2737. Release(Processors)
  2738. END StartAll;
  2739. PROCEDURE HandleFlushTLB(id: LONGINT; CONST state: State; msg: Message);
  2740. CODE {SYSTEM.i386, SYSTEM.Privileged}
  2741. MOV EAX, CR3
  2742. MOV CR3, EAX
  2743. END HandleFlushTLB;
  2744. (** Flush the TLBs on all processors (multiprocessor-safe). *)
  2745. PROCEDURE GlobalFlushTLB;
  2746. BEGIN
  2747. Acquire(Processors);
  2748. LocalBroadcast(HandleFlushTLB, NIL, {Self, FrontBarrier, BackBarrier});
  2749. Release(Processors)
  2750. END GlobalFlushTLB;
  2751. PROCEDURE HandleFlushCache(id: LONGINT; CONST state: State; msg: Message);
  2752. CODE {SYSTEM.Pentium, SYSTEM.Privileged}
  2753. WBINVD ; write back and invalidate internal cache and initiate write back and invalidation of external caches
  2754. END HandleFlushCache;
  2755. (** Flush the caches on all processors (multiprocessor-safe). *)
  2756. PROCEDURE GlobalFlushCache;
  2757. BEGIN
  2758. Acquire(Processors);
  2759. LocalBroadcast(HandleFlushCache, NIL, {Self, FrontBarrier, BackBarrier});
  2760. Release(Processors)
  2761. END GlobalFlushCache;
  2762. (* Activate the garbage collector in single-processor mode. Lock level ALL. *)
  2763. PROCEDURE HandleKernelCall(VAR state: State);
  2764. BEGIN (* level 0 *)
  2765. IF IFBit IN state.FLAGS THEN
  2766. Sti (* re-enable interrupts *)
  2767. END;
  2768. CASE state.EAX OF (* see KernelCall* *)
  2769. |2: (* HLT *)
  2770. IF IFBit IN state.FLAGS THEN
  2771. HLT
  2772. END
  2773. END
  2774. END HandleKernelCall;
  2775. (*
  2776. (** Activate the garbage collector immediately (multiprocessor-safe). *)
  2777. PROCEDURE GlobalGC*;
  2778. BEGIN
  2779. Acquire(Processors);
  2780. gcBarrier := allProcessors;
  2781. LocalBroadcast(HandleGC, NIL, {Self, BackBarrier});
  2782. Release(Processors);
  2783. END GlobalGC;
  2784. *)
  2785. PROCEDURE HandleGetTimestamp(id: LONGINT; CONST state: State; msg: Message);
  2786. BEGIN
  2787. time[id] := GetTimer()
  2788. END HandleGetTimestamp;
  2789. (** Get timestamp on all processors (for testing). *)
  2790. PROCEDURE GlobalGetTimestamp;
  2791. VAR t: TimeArray; i: LONGINT; mean, var, n: HUGEINT;
  2792. BEGIN
  2793. Acquire(Processors);
  2794. LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier});
  2795. LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier});
  2796. t := time;
  2797. Release(Processors);
  2798. Acquire (TraceOutput);
  2799. FOR i := 0 TO numProcessors-1 DO Trace.HIntHex(t[i], 17) END;
  2800. IF numProcessors > 1 THEN
  2801. mean := 0;
  2802. n := numProcessors;
  2803. FOR i := 0 TO numProcessors-1 DO
  2804. INC (mean, t[i])
  2805. END;
  2806. mean := mean DIV n;
  2807. var := 0;
  2808. FOR i := 0 TO numProcessors-1 DO
  2809. n := t[i] - mean;
  2810. INC (var, n * n)
  2811. END;
  2812. var := var DIV (numProcessors - 1);
  2813. Trace.String(" mean="); Trace.HIntHex(mean, 16);
  2814. Trace.String(" var="); Trace.HIntHex(var, 16);
  2815. Trace.String(" var="); Trace.Int(SHORT (var), 1);
  2816. Trace.String(" diff:");
  2817. FOR i := 0 TO numProcessors-1 DO
  2818. Trace.Int(SHORT (t[i] - mean), 1); Trace.Char(" ")
  2819. END
  2820. END;
  2821. Release (TraceOutput);
  2822. END GlobalGetTimestamp;
  2823. PROCEDURE ParseProcessor(adr: ADDRESS);
  2824. VAR id, idx, signature, family, feat, ver, log: LONGINT; flags: SET; string : ARRAY 8 OF CHAR;
  2825. BEGIN
  2826. SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, flags));
  2827. id := ASH(SYSTEM.VAL (LONGINT, flags * {8..15}), -8);
  2828. ver := ASH(SYSTEM.VAL (LONGINT, flags * {16..23}), -16);
  2829. SYSTEM.GET (adr+4, signature);
  2830. family := ASH(signature, -8) MOD 10H;
  2831. SYSTEM.GET (adr+8, feat);
  2832. idx := -1;
  2833. IF (family # 0) & (signature MOD 1000H # 0FFFH) & (24 IN flags) & (id < LEN(idMap)) & (idMap[id] = -1) THEN
  2834. IF 25 IN flags THEN idx := 0 (* boot processor *)
  2835. ELSIF numProcessors < maxProcessors THEN idx := numProcessors; INC(numProcessors)
  2836. ELSE (* skip *)
  2837. END
  2838. END;
  2839. IF idx # -1 THEN apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx)) END;
  2840. Trace.String(" Processor "); Trace.Int(id, 1);
  2841. Trace.String(", APIC"); Trace.Hex(ver, -3);
  2842. Trace.String(", ver "); Trace.Int(family, 1);
  2843. Trace.Char("."); Trace.Int(ASH(signature, -4) MOD 10H, 1);
  2844. Trace.Char("."); Trace.Int(signature MOD 10H, 1);
  2845. Trace.String(", features "); Trace.Hex(feat, 9);
  2846. Trace.String(", ID "); Trace.Int(idx, 1);
  2847. IF (threadsPerCore > 1) THEN Trace.String(" ("); Trace.Int(threadsPerCore, 0); Trace.String(" threads)"); END;
  2848. Trace.Ln;
  2849. IF (threadsPerCore > 1) THEN
  2850. GetConfig("DisableHyperthreading", string);
  2851. IF (string = "1") THEN
  2852. Trace.String("Machine: Hyperthreading disabled."); Trace.Ln;
  2853. RETURN;
  2854. END;
  2855. log := (LSH(CPUID1(), -16) MOD 256);
  2856. WHILE log > 1 DO
  2857. INC(id); DEC(log);
  2858. IF numProcessors < maxProcessors THEN
  2859. idx := numProcessors; INC(numProcessors);
  2860. apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx))
  2861. END
  2862. END
  2863. END
  2864. END ParseProcessor;
  2865. (* Parse MP configuration table. *)
  2866. PROCEDURE ParseMPConfig;
  2867. VAR adr, x: ADDRESS; i: LONGINT; entries: INTEGER; ch: CHAR; s: SET; str: ARRAY 8 OF CHAR;
  2868. BEGIN
  2869. localAPIC := 0; numProcessors := 1; allProcessors := {0};
  2870. FOR i := 0 TO LEN(idMap)-1 DO idMap[i] := -1 END; (* all unassigned *)
  2871. FOR i := 0 TO MaxCPU-1 DO started[i] := FALSE END;
  2872. adr := configMP;
  2873. GetConfig("MaxProcs", str);
  2874. i := 0; maxProcessors := StrToInt(i, str);
  2875. IF maxProcessors = 0 THEN maxProcessors := MaxCPU END;
  2876. IF (maxProcessors > 0) & (adr # NilAdr) THEN (* MP config table present, possible multi-processor *)
  2877. Trace.String("Machine: Intel MP Spec "); Trace.Int(ORD(revMP) DIV 10H + 1, 1);
  2878. Trace.Char("."); Trace.Int(ORD(revMP) MOD 10H, 1); Trace.Ln;
  2879. IF TraceVerbose THEN
  2880. IF ODD(ASH(ORD(featureMP[1]), -7)) THEN
  2881. Trace.StringLn (" PIC mode");
  2882. (* to do: enable SymIO *)
  2883. ELSE
  2884. Trace.StringLn (" Virtual wire mode");
  2885. END
  2886. END;
  2887. IF featureMP[0] # 0X THEN (* pre-defined configuration *)
  2888. Trace.String(" Default config "); Trace.Int(ORD(featureMP[0]), 1); Trace.Ln;
  2889. localAPIC := 0FEE00000H;
  2890. apicVer[0] := 0; apicVer[1] := 0
  2891. ELSE (* configuration defined in table *)
  2892. MapPhysical(adr, 68*1024, adr); (* 64K + 4K header *)
  2893. SYSTEM.GET (adr, x); ASSERT(x = 504D4350H); (* check signature *)
  2894. SYSTEM.GET (adr+4, x); (* length *)
  2895. ASSERT(ChecksumMP(adr, x MOD 10000H) = 0);
  2896. IF TraceVerbose THEN
  2897. Trace.String(" ID: ");
  2898. FOR x := adr+8 TO adr+27 DO
  2899. SYSTEM.GET (x, ch); Trace.Char(ch);
  2900. IF x = adr+15 THEN Trace.Char(" ") END
  2901. END;
  2902. Trace.Ln
  2903. END;
  2904. localAPIC := 0; SYSTEM.GET(adr+36, SYSTEM.VAL (LONGINT, localAPIC));
  2905. IF TraceVerbose THEN Trace.String(" Local APIC:"); Trace.Address (localAPIC); Trace.Ln END;
  2906. SYSTEM.GET (adr+34, entries);
  2907. INC(adr, 44); (* skip header *)
  2908. WHILE entries > 0 DO
  2909. SYSTEM.GET (adr, ch); (* type *)
  2910. CASE ORD(ch) OF
  2911. 0: (* processor *)
  2912. ParseProcessor(adr);
  2913. INC(adr, 20)
  2914. |1: (* bus *)
  2915. IF TraceVerbose THEN
  2916. SYSTEM.GET (adr+1, ch);
  2917. Trace.String(" Bus "); Trace.Int(ORD(ch), 1); Trace.String(": ");
  2918. FOR x := adr+2 TO adr+7 DO SYSTEM.GET (x, ch); Trace.Char(ch) END;
  2919. Trace.Ln
  2920. END;
  2921. INC(adr, 8)
  2922. |2: (* IO APIC *)
  2923. IF TraceVerbose THEN
  2924. SYSTEM.GET (adr+1, ch); Trace.String(" IO APIC ID:"); Trace.Hex(ORD(ch), -3);
  2925. SYSTEM.GET (adr+2, ch); Trace.String(", version "); Trace.Int(ORD(ch), 1);
  2926. SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, s)); IF ~(24 IN s) THEN Trace.String(" (disabled)") END;
  2927. Trace.Ln
  2928. END;
  2929. INC(adr, 8)
  2930. |3: (* IO interrupt assignment *)
  2931. INC(adr, 8)
  2932. |4: (* Local interrupt assignment *)
  2933. INC(adr, 8)
  2934. END; (* CASE *)
  2935. DEC(entries)
  2936. END
  2937. END
  2938. END;
  2939. IF localAPIC = 0 THEN (* single processor *)
  2940. Trace.StringLn ("Machine: Single-processor");
  2941. apicVer[0] := 0
  2942. END;
  2943. started[0] := TRUE;
  2944. FOR i := 0 TO MaxCPU-1 DO revIDmap[i] := -1 END;
  2945. FOR i := 0 TO LEN(idMap)-1 DO
  2946. x := idMap[i];
  2947. IF x # -1 THEN
  2948. ASSERT(revIDmap[x] = -1); (* no duplicate APIC ids *)
  2949. revIDmap[x] := SHORT(SHORT(i))
  2950. END
  2951. END;
  2952. (* timer configuration *)
  2953. GetConfig("TimerRate", str);
  2954. i := 0; timerRate := StrToInt(i, str);
  2955. IF timerRate = 0 THEN timerRate := 1000 END;
  2956. IF TraceProcessor THEN
  2957. GetConfig("TraceProc", str);
  2958. i := 0; traceProcessor := StrToInt(i, str) # 0
  2959. END
  2960. END ParseMPConfig;
  2961. (* Return the current average measured bus clock speed in Hz. *)
  2962. PROCEDURE GetBusClockRate(): LONGINT;
  2963. VAR timer: LONGINT; t: LONGINT;
  2964. BEGIN
  2965. t := ticks;
  2966. REPEAT UNTIL ticks # t; (* wait for edge *)
  2967. timer := ticks + ClockRateDelay;
  2968. ApicPut(380H, SYSTEM.VAL (SET, MAX(LONGINT))); (* initial count *)
  2969. REPEAT UNTIL timer - ticks <= 0;
  2970. t := MAX(LONGINT) - SYSTEM.VAL (LONGINT, ApicGet(390H)); (* current count *)
  2971. IF t <= MAX(LONGINT) DIV 1000 THEN
  2972. RETURN 1000 * t DIV ClockRateDelay
  2973. ELSE
  2974. RETURN t DIV ClockRateDelay * 1000
  2975. END
  2976. END GetBusClockRate;
  2977. (* Initialize APIC timer for timeslicing. *)
  2978. PROCEDURE InitMPTimer;
  2979. VAR rate: LONGINT;
  2980. BEGIN
  2981. IF timerRate > 0 THEN
  2982. ApicPut(3E0H, {0,1,3}); (* divide by 1 *)
  2983. ApicPut(320H, {16} + SYSTEM.VAL (SET, MPTMR)); (* masked, one-shot *)
  2984. rate := GetBusClockRate();
  2985. busHz0[ID()] := rate;
  2986. rate := (rate+500000) DIV 1000000 * 1000000; (* round to nearest MHz *)
  2987. busHz1[ID()] := rate;
  2988. ApicPut(320H, {17} + SYSTEM.VAL (SET, MPTMR)); (* unmasked, periodic *)
  2989. ApicPut(380H, SYSTEM.VAL (SET, rate DIV timerRate)) (* initial count *)
  2990. END
  2991. END InitMPTimer;
  2992. (* Handle multiprocessor timer interrupt. *)
  2993. PROCEDURE HandleMPTimer(VAR state: State);
  2994. BEGIN (* {interrupts off} *)
  2995. timer(ID(), state);
  2996. Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *)
  2997. Timeslice(state);
  2998. ApicPut(0B0H, {}); (* EOI *)
  2999. END HandleMPTimer;
  3000. (* Handle uniprocessor timer interrupt. *)
  3001. PROCEDURE HandleUPTimer(VAR state: State);
  3002. BEGIN (* {interrupts off} *)
  3003. timer(0, state);
  3004. Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *)
  3005. Timeslice(state)
  3006. END HandleUPTimer;
  3007. PROCEDURE DummyEvent(id: LONGINT; CONST state: State);
  3008. END DummyEvent;
  3009. (** Install a processor timer event handler. *)
  3010. PROCEDURE InstallEventHandler* (h: EventHandler);
  3011. BEGIN
  3012. IF h # NIL THEN timer := h ELSE timer := DummyEvent END
  3013. END InstallEventHandler;
  3014. (* Initialize APIC for current processor. *)
  3015. PROCEDURE InitAPIC;
  3016. BEGIN
  3017. (* enable APIC, set focus checking & set spurious interrupt handler *)
  3018. ASSERT(MPSPU MOD 16 = 15); (* low 4 bits set, p. 7-29 *)
  3019. ApicPut(0F0H, {8} + SYSTEM.VAL (SET, MPSPU));
  3020. (* set error interrupt handler *)
  3021. ApicPut(370H, SYSTEM.VAL (SET, MPERR));
  3022. InitMPTimer
  3023. END InitAPIC;
  3024. (* Start processor activity. *)
  3025. PROCEDURE StartMP;
  3026. VAR id: LONGINT; state: State;
  3027. BEGIN (* running at kernel level with interrupts on *)
  3028. InitAPIC;
  3029. id := ID(); (* timeslicing is disabled, as we are running at kernel level *)
  3030. Acquire (TraceOutput);
  3031. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" running");
  3032. Release (TraceOutput);
  3033. IF TraceProcessor & traceProcessor & (id = numProcessors-1) THEN
  3034. DEC(numProcessors) (* exclude from rest of activity *)
  3035. ELSE
  3036. INCL(allProcessors, id)
  3037. END;
  3038. (* synchronize with boot processor - end of mutual exclusion *)
  3039. started[id] := TRUE;
  3040. IF TraceProcessor & ~(id IN allProcessors) THEN
  3041. Acquire (TraceOutput);
  3042. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" tracing");
  3043. Release (TraceOutput);
  3044. LOOP
  3045. IF traceProcessorProc # NIL THEN traceProcessorProc(id, state) END;
  3046. SpinHint
  3047. END
  3048. END;
  3049. (* wait until woken up *)
  3050. WHILE stopped DO SpinHint END;
  3051. (* now fully functional, including storage allocation *)
  3052. AtomicExcl(ipcBusy, id); (* ack *)
  3053. Acquire (TraceOutput);
  3054. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn(" scheduling");
  3055. Release (TraceOutput);
  3056. ASSERT(id = ID()); (* still running on same processor *)
  3057. start;
  3058. END StartMP;
  3059. (* Subsequent processors start executing here. *)
  3060. PROCEDURE EnterMP;
  3061. (* no local variables allowed, because stack is switched. *)
  3062. BEGIN (* running at kernel level with interrupts off *)
  3063. InitProcessor;
  3064. InitMemory; (* switch stack *)
  3065. Start;
  3066. StartMP
  3067. END EnterMP;
  3068. (* Start another processor. *)
  3069. PROCEDURE StartProcessor(phys: ADDRESS; apicid: LONGINT; startup: BOOLEAN);
  3070. VAR j, k: LONGINT; s: SET; timer: LONGINT;
  3071. BEGIN
  3072. (* clear APIC errors *)
  3073. ApicPut(280H, {}); s := ApicGet(280H);
  3074. (* assert INIT *)
  3075. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3076. ApicPut(300H, {8, 10, 14, 15}); (* set Dest, INIT, Phys, Assert, Level *)
  3077. timer := ticks + 5; (* > 200us *)
  3078. REPEAT UNTIL timer - ticks <= 0;
  3079. (* deassert INIT *)
  3080. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3081. ApicPut(300H, {8, 10, 15}); (* set Dest, INIT, Deassert, Phys, Level *)
  3082. IF startup THEN (* send STARTUP if required *)
  3083. j := 0; k := 2;
  3084. WHILE j # k DO
  3085. ApicPut(280H, {});
  3086. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3087. (* set Dest, Startup, Deassert, Phys, Edge *)
  3088. ApicPut(300H, {9, 10} + SYSTEM.VAL (SET, phys DIV 4096 MOD 256));
  3089. timer := ticks + 10; (* ~10ms *)
  3090. REPEAT UNTIL timer - ticks <= 0;
  3091. IF ~(12 IN ApicGet(300H)) THEN (* idle *)
  3092. IF ApicGet(280H) * {0..3, 5..7} = {} THEN k := j (* ESR success, exit *)
  3093. ELSE INC(j) (* retry *)
  3094. END
  3095. ELSE INC(j) (* retry *)
  3096. END
  3097. END
  3098. END
  3099. END StartProcessor;
  3100. (* Boot other processors, one at a time. *)
  3101. PROCEDURE BootMP;
  3102. VAR phys, page0Adr: ADDRESS; i: LONGINT; timer: LONGINT;
  3103. BEGIN
  3104. stopped := TRUE; ipcBusy := {}; (* other processors can be woken with StartAll *)
  3105. InitBootPage(EnterMP, phys);
  3106. MapPhysical(0, 4096, page0Adr); (* map in BIOS data area *)
  3107. Acquire(TraceOutput); Trace.String("Machine: Booting processors... "); Trace.Ln; Release(TraceOutput);
  3108. FOR i := 1 TO numProcessors-1 DO
  3109. (* set up booting for old processor types that reset on INIT & don't understand STARTUP *)
  3110. SYSTEM.PUT (page0Adr + 467H, ASH(phys, 16-4));
  3111. PutNVByte(15, 0AX); (* shutdown status byte *)
  3112. (* attempt to start another processor *)
  3113. Acquire(TraceOutput); Trace.String(" P0 starting P"); Trace.Int(i, 1); Trace.Ln; Release(TraceOutput);
  3114. StartProcessor(phys, revIDmap[i], apicVer[i] >= 10H); (* try booting processor i *)
  3115. (* wait for CPU to become active *)
  3116. timer := ticks + 5000; (* ~5s timeout *)
  3117. REPEAT SpinHint UNTIL started[i] OR (timer - ticks <= 0);
  3118. (* end of mutual exclusion *)
  3119. Acquire(TraceOutput);
  3120. IF started[i] THEN
  3121. Trace.String(" P0 recognized P"); Trace.Int(i, 1);
  3122. ELSE
  3123. Trace.String(" P0 timeout on P"); Trace.Int(i, 1);
  3124. END;
  3125. Trace.Ln;
  3126. Release(TraceOutput);
  3127. END;
  3128. SYSTEM.PUT (page0Adr + 467H, SYSTEM.VAL (LONGINT, 0));
  3129. UnmapPhysical(page0Adr, 4096);
  3130. PutNVByte(15, 0X) (* restore shutdown status *)
  3131. END BootMP;
  3132. (* Timer interrupt handler. *)
  3133. PROCEDURE TimerInterruptHandler(VAR state: State);
  3134. BEGIN
  3135. INC(ticks);
  3136. DEC(eventCount);
  3137. IF eventCount = 0 THEN
  3138. eventCount := eventMax; event(state)
  3139. END
  3140. END TimerInterruptHandler;
  3141. PROCEDURE Dummy(VAR state: State);
  3142. END Dummy;
  3143. PROCEDURE InitTicks;
  3144. CONST Div = (2*TimerClock + Second) DIV (2*Second); (* timer clock divisor *)
  3145. BEGIN
  3146. eventCount := 0; eventMax := 0; event := Dummy;
  3147. (* initialize timer hardware *)
  3148. ASSERT(Div <= 65535);
  3149. Portout8(43H, 34X); Wait; (* mode 2, rate generator *)
  3150. Portout8(40H, CHR(Div MOD 100H)); Wait;
  3151. Portout8(40H, CHR(ASH(Div, -8)));
  3152. InstallHandler(TimerInterruptHandler, IRQ0)
  3153. END InitTicks;
  3154. (* Set timer upcall. The handler procedure will be called at a rate of Second/divisor Hz. *)
  3155. PROCEDURE InstallTickHandler(handler: Handler; divisor: LONGINT);
  3156. BEGIN
  3157. eventMax := divisor; event := handler;
  3158. eventCount := eventMax
  3159. END InstallTickHandler;
  3160. (* Initialize processors *)
  3161. PROCEDURE InitProcessors*;
  3162. BEGIN
  3163. traceProcessor := FALSE; traceProcessorProc := NIL;
  3164. ASSERT(Second = 1000); (* use of Machine.ticks *)
  3165. InitTicks;
  3166. timer := DummyEvent;
  3167. ParseMPConfig;
  3168. InstallHandler(HandleIPC, MPIPCLocal);
  3169. IF localAPIC # 0 THEN (* APIC present *)
  3170. InitAPICArea(localAPIC, 4096);
  3171. InitAPICIDAdr(localAPIC+20H, idMap);
  3172. ASSERT(MPSPU MOD 16 = 15); (* use default handler (see 7.4.11.1) *)
  3173. InstallHandler(HandleError, MPERR);
  3174. InstallHandler(HandleMPTimer, MPTMR);
  3175. InstallHandler(HandleIPC, MPIPC);
  3176. InitAPIC;
  3177. IF numProcessors > 1 THEN BootMP END
  3178. ELSE
  3179. IF timerRate > 0 THEN
  3180. InstallTickHandler(HandleUPTimer, Second DIV timerRate)
  3181. END
  3182. END;
  3183. InstallHandler(HandleKernelCall, MPKC);
  3184. END InitProcessors;
  3185. VAR scrollLines: LONGINT;
  3186. (* Send and print character *)
  3187. PROCEDURE TraceChar (c: CHAR);
  3188. VAR status: SHORTINT;
  3189. (* Scroll the screen by one line. *)
  3190. PROCEDURE Scroll;
  3191. VAR adr: ADDRESS; off: SIZE; i,j: LONGINT;
  3192. BEGIN
  3193. IF (traceDelay > 0) & (scrollLines MOD TraceHeight = 0) THEN
  3194. FOR i := 0 TO traceDelay-1 DO
  3195. FOR j := 0 TO 1000000 DO END;
  3196. END;
  3197. END;
  3198. INC(scrollLines);
  3199. adr := traceBase + TraceLen;
  3200. SYSTEM.MOVE (adr, adr - TraceLen, TraceSize - TraceLen);
  3201. adr := traceBase + TraceSize - TraceLen;
  3202. FOR off := 0 TO TraceLen - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (adr + off, 100H * 7H + 32) END
  3203. END Scroll;
  3204. BEGIN
  3205. IF TraceV24 IN traceMode THEN
  3206. REPEAT (* wait until port is ready to accept a character *)
  3207. Portin8 (SHORT(tracePort + 5), SYSTEM.VAL(CHAR,status))
  3208. UNTIL ODD (status DIV 20H); (* THR empty *)
  3209. Portout8 (SHORT(tracePort), c);
  3210. END;
  3211. IF TraceScreen IN traceMode THEN
  3212. IF c = 9X THEN c := 20X END;
  3213. IF c = 0DX THEN (* CR *)
  3214. DEC (tracePos, tracePos MOD TraceLen)
  3215. ELSIF c = 0AX THEN (* LF *)
  3216. IF tracePos < TraceSize THEN
  3217. INC (tracePos, TraceLen) (* down to next line *)
  3218. ELSE
  3219. Scroll
  3220. END
  3221. ELSE
  3222. IF tracePos >= TraceSize THEN
  3223. Scroll;
  3224. DEC (tracePos, TraceLen)
  3225. END;
  3226. SYSTEM.PUT16 (traceBase + tracePos, 100H * traceColor + ORD (c));
  3227. INC (tracePos, SIZEOF(INTEGER))
  3228. END
  3229. END
  3230. END TraceChar;
  3231. (* Change color *)
  3232. PROCEDURE TraceColor (c: SHORTINT);
  3233. BEGIN traceColor := c;
  3234. END TraceColor;
  3235. VAR traceDelay: LONGINT;
  3236. (* Initialise tracing. *)
  3237. PROCEDURE InitTrace;
  3238. CONST MaxPorts = 8;
  3239. VAR i, p, bps: LONGINT; off: SIZE; s, name: ARRAY 32 OF CHAR;
  3240. baselist: ARRAY MaxPorts OF LONGINT;
  3241. BEGIN
  3242. GetConfig ("TraceMode", s);
  3243. p := 0; traceMode := SYSTEM.VAL (SET, StrToInt (p, s));
  3244. IF TraceScreen IN traceMode THEN
  3245. GetConfig ("TraceMem", s);
  3246. p := 0; traceBase := SYSTEM.VAL (ADDRESS, StrToInt (p, s));
  3247. IF traceBase = 0 THEN traceBase := 0B8000H END; (* default screen buffer *)
  3248. FOR off := 0 TO TraceSize - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (traceBase + off, 100H * 7H + 32) END;
  3249. tracePos := 0;
  3250. Portout8(3D4H, 0EX);
  3251. Portout8(3D5H, CHR((TraceWidth*TraceHeight) DIV 100H));
  3252. Portout8(3D4H, 0FX);
  3253. Portout8(3D5H, CHR((TraceWidth*TraceHeight) MOD 100H));
  3254. GetConfig("TraceDelay", s);
  3255. p := 0; traceDelay := StrToInt(p, s);
  3256. END;
  3257. IF TraceV24 IN traceMode THEN
  3258. FOR i := 0 TO MaxPorts - 1 DO
  3259. COPY ("COMx", name); name[3] := CHR (ORD ("1") + i);
  3260. GetConfig (name, s); p := 0; baselist[i] := StrToInt (p, s);
  3261. END;
  3262. IF baselist[0] = 0 THEN baselist[0] := 3F8H END; (* COM1 port default values *)
  3263. IF baselist[1] = 0 THEN baselist[1] := 2F8H END; (* COM2 port default values *)
  3264. GetConfig("TracePort", s); p := 0; p := StrToInt(p, s); DEC(p);
  3265. IF (p >= 0) & (p < MaxPorts) THEN tracePort := baselist[p] ELSE tracePort := baselist[0] END;
  3266. ASSERT(tracePort > 0);
  3267. GetConfig("TraceBPS", s); p := 0; bps := StrToInt(p, s);
  3268. IF bps <= 0 THEN bps := 38400 END;
  3269. Portout8 (SHORT(tracePort + 3), 80X); (* Set the Divisor Latch Bit - DLAB = 1 *)
  3270. bps := 115200 DIV bps; (* compiler DIV/PORTOUT bug workaround *)
  3271. Portout8 (SHORT(tracePort + 1), CHR (bps DIV 100H)); (* Set the Divisor Latch MSB *)
  3272. Portout8 (SHORT(tracePort), CHR (bps MOD 100H)); (* Set the Divisor Latch LSB *)
  3273. Portout8 (SHORT(tracePort + 3), 3X); (* 8N1 *)
  3274. Portout8 (SHORT(tracePort + 4), 3X); (* Set DTR, RTS on in the MCR *)
  3275. Portout8 (SHORT(tracePort + 1), 0X); (* Disable receive interrupts *)
  3276. END;
  3277. traceColor := 7; Trace.Char := TraceChar; Trace.Color := TraceColor;
  3278. END InitTrace;
  3279. (* The following procedure is linked as the first block in the bootfile *)
  3280. PROCEDURE {NOPAF, FIXED(0100000H)} FirstAddress;
  3281. (* ; RELOCATION HAS BECOME VOID WITH NEW RELOCATING BOOTLOADER
  3282. ; ; relocate the bootfile from 0x1000 to target address 0x100000
  3283. ; PUSHAD
  3284. ; MOV ESI,1000H
  3285. ; MOV EDI,100000H
  3286. ; MOV ECX, LastAddress
  3287. ; SUB ECX, EDI
  3288. ; CLD
  3289. ; REP MOVSB
  3290. ; POPAD
  3291. ;
  3292. ; ; continue in relocated bootfile
  3293. ; JMP DWORD 100000H - 1000H + Skip
  3294. ;Skip:
  3295. *)
  3296. BEGIN (* no PAF --> no variables !! *)
  3297. CODE{SYSTEM.i386}
  3298. ; save arguments passed by bootloader
  3299. MOV bootFlag, EAX
  3300. MOV initRegs0,ESI
  3301. MOV initRegs1, EDI
  3302. END;
  3303. Init; (* call initializer as first action of the kernel *)
  3304. END FirstAddress;
  3305. (* empty section allocated at end of bootfile *)
  3306. PROCEDURE {NOPAF, ALIGNED(32)} LastAddress;
  3307. CODE {SYSTEM.i386}
  3308. END LastAddress;
  3309. (* Init code called from OBL. EAX = boot table offset. ESI, EDI=initRegs. 2k stack is available. No trap handling. *)
  3310. (* must be called from module caller chain *)
  3311. PROCEDURE Init*;
  3312. BEGIN
  3313. initRegs[0] := initRegs0;
  3314. initRegs[1] := initRegs1;
  3315. (* registers 6 and 7 get converted to 32 bit, cf. PCB.Assigne
  3316. SYSTEM.GETREG(6, initRegs[0]); SYSTEM.GETREG(7, initRegs[1]); (* initRegs0 & initRegs1 *)
  3317. *)
  3318. SYSTEM.PUT16(0472H, 01234H); (* soft boot flag, for when we reboot *)
  3319. ReadBootTable(bootFlag);
  3320. InitTrace;
  3321. Trace.String("Machine: "); Trace.Blue;Trace.StringLn (Version); Trace.Default;
  3322. CheckMemory;
  3323. SearchMP;
  3324. AllocateDMA; (* must be called after SearchMP, as lowTop is modified *)
  3325. version := Version;
  3326. InitBoot;
  3327. InitProcessor;
  3328. InitLocks;
  3329. NmaxUserStacks := MaxUserStacks;
  3330. ASSERT(ASH(1, PSlog2) = PS);
  3331. Trace.String("Machine: Enabling MMU... ");
  3332. InitSegments; (* enable flat segments *)
  3333. InitPages; (* create page tables *)
  3334. InitMemory; (* switch on segmentation, paging and switch stack *)
  3335. Trace.Green; Trace.StringLn("Ok"); Trace.Default;
  3336. (* allocate empty memory block with enough space for at least one free block *)
  3337. memBlockHead := SYSTEM.VAL (MemoryBlock, ADDRESSOF (initialMemBlock));
  3338. memBlockTail := memBlockHead;
  3339. initialMemBlock.beginBlockAdr := SYSTEM.VAL (ADDRESS, LastAddress);
  3340. initialMemBlock.endBlockAdr := initialMemBlock.beginBlockAdr + StaticBlockSize;
  3341. initialMemBlock.size := initialMemBlock.endBlockAdr - initialMemBlock.beginBlockAdr;
  3342. FOR i := 0 TO IDTSize - 1 DO
  3343. FOR j := 0 TO MaxNumHandlers - 1 DO
  3344. intHandler[i, j].valid := FALSE;
  3345. intHandler[i, j].handler := NIL
  3346. END
  3347. END;
  3348. default.valid := FALSE; (* initialized later *)
  3349. END Init;
  3350. BEGIN
  3351. END Machine.
  3352. (*
  3353. 03.03.1998 pjm First version
  3354. 30.06.1999 pjm ProcessorID moved to AosProcessor
  3355. *)
  3356. (**
  3357. Notes
  3358. This module defines an interface to the boot environment of the system. The facilities provided here are only intended for the lowest levels of the system, and should never be directly imported by user modules (exceptions are noted below). They are highly specific to the system hardware and firmware architecture.
  3359. Typically a machine has some type of firmware that performs initial testing and setup of the system. The firmware initiates the operating system bootstrap loader, which loads the boot file. This module is the first module in the statically linked boot file that gets control.
  3360. There are two more-or-less general procedures in this module: GetConfig and StrToInt. GetConfig is used to query low-level system settings, e.g., the location of the boot file system. StrToInt is a utility procedure that parses numeric strings.
  3361. Config strings:
  3362. ExtMemSize Specifies size of extended memory (above 1MB) in MB. This value is not checked for validity. Setting it false may cause the system to fail, possible after running for some time. The memory size is usually detected automatically, but if the detection does not work for some reason, or if you want to limit the amount of memory detected, this string can be set. For example, if the machine has 64MB of memory, this value can be set as ExtMemSize="63".
  3363. *)