BIOS.AMD64.Machine.Mod 120 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940
  1. MODULE Machine; (** AUTHOR "pjm"; PURPOSE "Bootstrapping, configuration and machine interface"; *)
  2. (* The code of this module body must be the first in the statically linked boot file. *)
  3. IMPORT SYSTEM, Trace;
  4. CONST
  5. Version = "A2 Revision 2958 (26.02.2010)";
  6. MaxCPU* = 8; (** maximum number of processors (up to 16) *)
  7. DefaultObjectFileExtension* = ".Abx";
  8. (** bits in features variable *)
  9. MTTR* = 12; MMX* = 23; HTT* = 28;
  10. MaxDisks = 2; (* maximum number of disks with BIOS parameters *)
  11. HeapAdr = 100000H;
  12. MaxMemTop = 4000000H * 4000000H; (* maximal 52bit wide physical address (architectural limit) *)
  13. DefaultDMASize = 20; (* default size of ISA DMA area in KB *)
  14. CONST
  15. StrongChecks = FALSE; (* perform strong checks *)
  16. Stats* = FALSE; (* acquire statistics *)
  17. TimeCount = 0 (* 100000 *); (* number of lock tries before checking timeout - 0 to disable *)
  18. (** standard lock levels (in order) *) (* also refer to Traps.Show *)
  19. TraceOutput* = 0; (* Trace output *)
  20. Memory* = 1; (* Virtual memory management, stack and page allocation *)
  21. Heaps* = 2; (* Storage allocation and Garbage collection *)
  22. Interrupts* = 3 ; (* Interrupt handling. *)
  23. Modules* = 4; (* Module list *)
  24. Objects* = 5; (* Ready queue *)
  25. Processors* = 6; (* Interprocessor interrupts *)
  26. KernelLog* = 7; (* Atomic output *)
  27. (** highest level is all object locks *)
  28. Preemption* = 31; (** flag for BreakAll *)
  29. MaxLocks = 8; (* { <= 32 } *)
  30. LowestLock = 0; HighestLock = MaxLocks-1;
  31. CONST
  32. TraceVerbose = FALSE; (* write out verbose trace info *)
  33. AddressSize = SIZEOF(ADDRESS);
  34. SetSize = MAX (SET) + 1;
  35. (** error codes *)
  36. Ok* = 0;
  37. (* standard multipliers *)
  38. K = 1024; M = 100000H; (* 1K, 1M *)
  39. (* paging sizes *)
  40. PS = 4096; (* page size in bytes *)
  41. PSlog2 = 12; (* ASH(1, PSlog2) = PS *)
  42. TPS = 4096; (* translation page size *)
  43. PTEs = TPS DIV AddressSize; (* number of entries per translation page table *)
  44. RS = PTEs * PS; (* region covered by a page table in bytes *)
  45. ReservedPages = 8; (* pages reserved on page heap (not for normal heap use) *)
  46. NilAdr* = -1; (** nil value for addresses (not same as pointer NIL value) *)
  47. (* free page stack page node layout *)
  48. NodeSP = 0;
  49. NodeNext = AddressSize;
  50. NodePrev = AddressSize*2;
  51. MinSP = AddressSize*3; MaxSP = PS;
  52. (*
  53. 0 sp
  54. AddressSize nextAdr
  55. AddressSize*2 prevAdr
  56. AddressSize*3 first entry
  57. 4092 last entry
  58. *)
  59. (* virtual memory layout. no area will cross the 2G boundary, to avoid LONGINT sign problems. *)
  60. MapAreaAdr = (80000000H); (* dynamic mappings: bottom part of 2G..4G *)
  61. MapAreaSize = 64*M;
  62. IntelAreaAdr = (0FEE00000H); (* reserved by Intel for APIC: 4G-18M..4G-18M+4K *)
  63. IntelAreaSize = 00001000H;
  64. StackAreaAdr = MapAreaAdr+MapAreaSize; (* stacks: middle part of 2G..4G *)
  65. StackAreaSize = IntelAreaAdr-StackAreaAdr;
  66. (* stack sizes *)
  67. KernelStackSize = 2*PS; (* multiple of PS *)
  68. MaxUserStackSize = 128*K; (* multiple of PS *)
  69. InitUserStackSize = PS; (* must be PS (or change NewStack) *)
  70. UserStackGuardSize = PS; (* multiple of PS left unallocated at bottom of stack virtual area *)
  71. MaxUserStacks = StackAreaSize DIV MaxUserStackSize;
  72. (* physical memory layout *)
  73. LowAdr = PS; (* lowest physical address used *)
  74. LinkAdr = M; (* address where kernel is linked, also address where heap begins *)
  75. StaticBlockSize = 32; (* static heap block size *)
  76. BlockHeaderSize = 2 * AddressSize;
  77. RecordDescSize = 3 * AddressSize; (* needs to be adapted in case Heaps.RecordDesc is changed *)
  78. (* gdt indices *)
  79. TSSOfs = 8; (* offset in GDT of TSSs *)
  80. StackOfs = TSSOfs + MaxCPU; (* offset in GDT of stacks *)
  81. GDTSize = TSSOfs + MaxCPU * 2; (* TSS descriptors need 16 bytes each *)
  82. (* gdt selectors *)
  83. Kernel32CodeSel = 1*8; (* selector 1 in gdt, RPL 0 *)
  84. Kernel64CodeSel = 2*8; (* selector 2 in gdt, RPL 0 *)
  85. User32CodeSel = 3*8 + 3; (* selector 3 in gdt, RPL 3 *)
  86. User64CodeSel = 4*8 + 3; (* selector 4 in gdt, RPL 3 *)
  87. KernelStackSel = 5*8; (* selector 5 in gdt, RPL 0 *)
  88. UserStackSel = 6*8 + 3; (* selector 6 in gdt, RPL 3 *)
  89. DataSel = 7*8; (* selector 7 in gdt, RPL 0 *)
  90. KernelTR = TSSOfs*8; (* selector in gdt, RPL 0 *)
  91. (* paging flags *)
  92. PageNotPresent = 0; (* not present page *)
  93. KernelPage = 3; (* supervisor, present, r/w *)
  94. UserPage = 7; (* user, present, r/w *)
  95. HeapMin = 50; (* "minimum" heap size as percentage of total memory size (used for heap expansion in scope of GC ) *)
  96. HeapMax = 95; (* "maximum" heap size as percentage of total memory size (used for heap expansion in scope of GC) *)
  97. ExpandRate = 1; (* always extend heap with at least this percentage of total memory size *)
  98. Threshold = 10; (* periodic GC initiated when this percentage of total memory size bytes has "passed through" NewBlock *)
  99. InitialHeapIncrement = 4096;
  100. HeaderSize = 40H; (* cf. Linker0 *)
  101. EndBlockOfs = 38H; (* cf. Linker0 *)
  102. MemoryBlockOfs = BlockHeaderSize + RecordDescSize + BlockHeaderSize; (* memory block (including header) starts at offset HeaderSize *)
  103. CONST
  104. (** pre-defined interrupts 0-31, used with InstallHandler *)
  105. DE* = 0; DB* = 1; NMI* = 2; BP* = 3; OVF* = 4; BR* = 5; UD* = 6; NM* = 7;
  106. DF* = 8; TS* = 10; NP* = 11; SSF* = 12; GP* = 13; PF* = 14; MF*= 16; AC*= 17; MC* = 18;
  107. IRQ0* = 32; (* {IRQ0 MOD 8 = 0} *)
  108. IRQ2 = IRQ0 + 2;
  109. IRQ7 = IRQ0 + 7;
  110. IRQ8 = IRQ0 + 8;
  111. IRQ15 = 47;
  112. MaxIRQ* = IRQ15; (** hardware interrupt numbers *)
  113. MPKC* = 49; (** SMP: kernel call *)
  114. SoftInt* = 58; (** temporary software interrupt *)
  115. MPIPCLocal* = 59; (** SMP: local interprocessor interrupt *)
  116. MPTMR* = 60; (** SMP: timer interrupt *)
  117. MPIPC* = 61; (** SMP: interprocessor interrupt *)
  118. MPERR* = 62; (** SMP: error interrupt *)
  119. MPSPU* = 63; (** SMP: spurious interrupt {MOD 16 = 15} *)
  120. IDTSize = 64;
  121. MaxNumHandlers = 16;
  122. TraceSpurious = FALSE; (* no message on spurious hardware interrupts *)
  123. HandleSpurious = TRUE OR TraceSpurious; (* do not trap on spurious interrupts *)
  124. IntA0 = 020H; IntA1 = 021H; (* Interrupt Controller 1 *)
  125. IntB0 = 0A0H; IntB1 = 0A1H; (* Interrupt Controller 2 *)
  126. (** RFLAGS bits *)
  127. IFBit* = 9; VMBit* = 17;
  128. KernelLevel* = 0; UserLevel* = 3; (** CS MOD 4 *)
  129. Second* = 1000; (* frequency of ticks increments in Hz *)
  130. CONST
  131. Self* = 0; FrontBarrier* = 1; BackBarrier* = 2; (** Broadcast flags. *)
  132. TraceApic = FALSE;
  133. TraceProcessor = FALSE; (* remove this hack! *)
  134. ClockRateDelay = 50; (* ms - delay when timing bus clock rate *)
  135. TimerClock = 1193180; (* timer clock is 1.19318 MHz *)
  136. CONST
  137. (* low level tracing *)
  138. TraceV24 = 2; TraceScreen = 0;
  139. TraceWidth = 80; TraceHeight = 25;
  140. TraceLen = TraceWidth * SIZEOF (INTEGER);
  141. TraceSize = TraceLen * TraceHeight;
  142. TYPE
  143. Vendor* = ARRAY 13 OF CHAR;
  144. IDMap* = ARRAY 16 OF SHORTINT;
  145. TYPE
  146. Stack* = RECORD (** values are read-only *)
  147. low: ADDRESS; (* lowest virtual address that may be allocated for stack *)
  148. adr*: ADDRESS; (* lowest address on allocated stack *) (* exported for Objects only *)
  149. high*: ADDRESS; (* next virtual address after stack *) (* exported for Objects only *)
  150. END;
  151. (* task state segment *)
  152. TSSDesc = RECORD (* 1, p. 485 and p. 612 for required fields *)
  153. Reserved1: LONGINT;
  154. RSP0 {ALIGNED(4)}, RSP1{ALIGNED(4)}, RSP2{ALIGNED(4)}: HUGEINT;
  155. Reserved2, Reserved3: LONGINT;
  156. IST1 {ALIGNED(4)}, IST2 {ALIGNED(4)}, IST3 {ALIGNED(4)}, IST4{ALIGNED(4)}, IST5{ALIGNED(4)}, IST6{ALIGNED(4)}, IST7{ALIGNED(4)}: HUGEINT;
  157. Reserved4, Reserved5: LONGINT;
  158. Reserved6, IOMapBaseAddress: INTEGER;
  159. (* Implicit: IOBitmap: ARRAY 8192 DIV 4 OF SET *)
  160. END;
  161. Startup* = PROCEDURE; (** can not be a method *)
  162. (* global descriptor table *)
  163. SegDesc = RECORD
  164. low, high: LONGINT
  165. END;
  166. GDT = ARRAY GDTSize OF SegDesc;
  167. Range* = RECORD
  168. adr*: ADDRESS; size*: SIZE;
  169. END;
  170. TYPE
  171. (** processor state, ordering of record fields is predefined! *)
  172. State* = RECORD (* offsets used in FieldInterrupt, FieldIRQ and Objects.RestoreState *)
  173. R15*, R14*, R13*, R12*, R11*, R10*, R9*, R8*: HUGEINT;
  174. RDI*, RSI*, ERR*, RSP0*, RBX*, RDX*, RCX*, RAX*: HUGEINT; (** RSP0 = ADR(s.INT) *)
  175. INT*, BP*, PC*, CS*: HUGEINT; (* RBP and ERR are exchanged by glue code, for procedure link *)
  176. FLAGS*: SET;
  177. SP*, SS*: HUGEINT;
  178. END;
  179. (** exception state, ordering of record fields is predefined! *)
  180. ExceptionState* = RECORD
  181. halt*: SIZE; (** halt code *)
  182. pf*: ADDRESS; (** page fault address *)
  183. locks*: SET; (** active locks *)
  184. SP*: ADDRESS; (** actual RSP value at time of interrupt *)
  185. CR*: ARRAY 16 OF HUGEINT; (** control registers *)
  186. DR*: ARRAY 16 OF HUGEINT; (** debug registers *)
  187. FPU*: ARRAY 7 OF SET (** floating-point state *)
  188. END;
  189. Handler* = PROCEDURE {DELEGATE} (VAR state: State);
  190. HandlerRec = RECORD
  191. valid: BOOLEAN; (* offset 0 *)
  192. handler {ALIGNED(4)}: Handler (* offset 4 *)
  193. END;
  194. GateDescriptor = RECORD
  195. offsetBits0to15: INTEGER;
  196. selector: INTEGER;
  197. gateType: INTEGER;
  198. offsetBits16to31: INTEGER;
  199. offsetBits32to63: LONGINT;
  200. reserved: LONGINT;
  201. END;
  202. IDT = ARRAY IDTSize OF GateDescriptor;
  203. SSEState* = ARRAY (512+16) OF CHAR;
  204. TYPE
  205. MemoryBlock* = POINTER TO MemoryBlockDesc;
  206. MemoryBlockDesc* = RECORD
  207. next- {UNTRACED}: MemoryBlock;
  208. startAdr-: ADDRESS; (* unused field for I386 *)
  209. size-: SIZE; (* unused field for I386 *)
  210. beginBlockAdr-, endBlockAdr-: ADDRESS
  211. END;
  212. TYPE
  213. EventHandler = PROCEDURE (id: LONGINT; CONST state: State);
  214. Message* = POINTER TO RECORD END; (** Broadcast message. *)
  215. BroadcastHandler = PROCEDURE (id: LONGINT; CONST state: State; msg: Message);
  216. TimeArray = ARRAY MaxCPU OF HUGEINT;
  217. Address32* = LONGINT;
  218. VAR
  219. lowTop*: ADDRESS; (** top of low memory *)
  220. memTop*: ADDRESS; (** top of memory *)
  221. dmaSize*: SIZE; (** size of ISA dma area, above lowTop (for use in Aos.Diskettes) *)
  222. configMP: ADDRESS; (** MP spec config table physical address (outside reported RAM) *)
  223. revMP: CHAR; (** MP spec revision *)
  224. featureMP: ARRAY 5 OF CHAR; (** MP spec feature bytes 1-5 *)
  225. version-: ARRAY 64 OF CHAR; (** Aos version *)
  226. SSESupport-: BOOLEAN;
  227. SSE2Support-: BOOLEAN;
  228. features-, features2-: SET; (** processor features *)
  229. fcr*: SET; (** default floating-point control register value (default rounding mode is towards -infinity, for ENTIER) *)
  230. mhz*: HUGEINT; (** clock rate of GetTimer in MHz, or 0 if not known *)
  231. chs: ARRAY MaxDisks OF RECORD cyls, hds, spt: LONGINT END;
  232. initRegs0, initRegs1: HUGEINT;
  233. initRegs: ARRAY 2 OF HUGEINT; (* kernel parameters *)
  234. config: ARRAY 2048 OF CHAR; (* config strings *)
  235. bootFlag: ADDRESS;
  236. idAdr: ADDRESS; (* address of processor ID register *)
  237. map: IDMap;
  238. bootID: LONGINT; (* ID of boot processor (0) *)
  239. numberOfProcessors: LONGINT; (* number of processors installed during start up *)
  240. coresPerProcessor : LONGINT; (* number of cores per physical package *)
  241. threadsPerCore : LONGINT; (* number of threads per core *)
  242. CONST
  243. CacheLineSize = 128;
  244. TYPE
  245. (* Synchronization variables should reside in own cache line. This data structure should be aligned to CacheLineSize. *)
  246. Lock = RECORD
  247. locked : BOOLEAN;
  248. filler : ARRAY CacheLineSize - 1 OF CHAR;
  249. END;
  250. VAR
  251. lock: ARRAY MaxLocks OF Lock; (** all locks *)
  252. (*
  253. Every element in the proc array belongs to one processor. It is therefore sufficient to disable interrupts to protect the consistency of these elements. Race conditions with interrupts handled on the same processor are avoided by disabling interrupts for the entire time that a lock is held (using locksHeld & state). The data structures are padded to CacheLineSize to separate the locks out on cache lines of their own, to avoid false sharing.
  254. *)
  255. proc-, trapState-: ARRAY MaxCPU OF RECORD
  256. locksHeld-: SET; (** locks held by a processor *)
  257. state-: SET; (** processor flags (interrupt state) at entry to its first lock *)
  258. preemptCount-: LONGINT; (** if 0, preemption is allowed *)
  259. padding : ARRAY CacheLineSize - 20 OF CHAR;
  260. END;
  261. (* the data structures above should be aligned to CacheLineSize *)
  262. padding : ARRAY 92 OF CHAR;
  263. trapLocksBusy-: SET;
  264. maxTime: HUGEINT;
  265. VAR
  266. gdt: GDT; (* global descriptor table *)
  267. procm: ARRAY MaxCPU OF RECORD (* indexed by ID () *)
  268. tss: TSSDesc;
  269. sp: ADDRESS; (* snapshot for GC *)
  270. stack: Stack
  271. END;
  272. kernelPML4: ADDRESS; (* physical address of page directory *)
  273. freeLowPage: ADDRESS; (* free low page stack pointer (link at offset 0 in page). All addresses physical. NIL = -1 *)
  274. freeLowPages, freeHighPages, totalPages: HUGEINT; (* number of free pages and total number of pages *)
  275. mapTop: ADDRESS; (* virtual address of end of memory mapping area *)
  276. heapEndAdr: ADDRESS; (* virtual address of end of heap (page aligned) *)
  277. topPageNum: HUGEINT; (* page containing byte memTop-1 *)
  278. pageHeapAdr: ADDRESS; (* address (physical and virtual) of bottom of page heap area *)
  279. pageStackAdr: ADDRESS; (* virtual address of top page of free page stack *)
  280. freeStack: ARRAY (MaxUserStacks+SetSize-1) DIV SetSize OF SET; (* free stack bitmap *)
  281. freeStackIndex: HUGEINT; (* current position in bitmap (rotates) *)
  282. Nbigskips-: LONGINT; (* number of times a stack was extended leaving a hole *)
  283. Nfilled-: LONGINT; (* number of times a "hole" in a stack was filled *)
  284. NnewStacks-, NnewStackLoops-, NnewStackInnerLoops-, NdisposeStacks-,
  285. NlostPages-, NreservePagesUsed-, NmaxUserStacks-: HUGEINT;
  286. VAR
  287. idt: IDT; (* interrupt descriptor table *)
  288. glue: ARRAY IDTSize OF ARRAY 15 OF CHAR; (* code *)
  289. intHandler: ARRAY IDTSize, MaxNumHandlers OF HandlerRec; (* array of handlers for interrupts, the table is only filled up to MaxNumHandlers - 1, the last element in each row acts as a sentinel *)
  290. stateTag: ADDRESS;
  291. default: HandlerRec;
  292. i, j, ticks*: LONGINT; (** timer ticks. Use Kernel.GetTicks() to read, don't write *)
  293. VAR
  294. ipcBusy, ipcFlags, ipcFrontBarrier, ipcBackBarrier: SET;
  295. ipcHandler: BroadcastHandler;
  296. ipcMessage: Message;
  297. numProcessors-: LONGINT; (* number of processors we attempted to boot (some may have failed) *)
  298. maxProcessors: LONGINT; (* max number of processors we are allowed to boot (-1 for uni) *)
  299. allProcessors-: SET; (* IDs of all successfully booted processors *)
  300. localAPIC: ADDRESS; (* address of local APIC, 0 if not present *)
  301. apicVer: ARRAY MaxCPU OF LONGINT; (* APIC version *)
  302. started: ARRAY MaxCPU OF BOOLEAN; (* CPU started successfully / CPU halted *)
  303. busHz0, busHz1: ARRAY MaxCPU OF LONGINT; (* unrounded and rounded bus speed in Hz *)
  304. timer: EventHandler;
  305. timerRate: LONGINT; (* Hz - rate at which CPU timers run - for timeslicing and profiling *)
  306. stopped: BOOLEAN; (* StopAll was called *)
  307. idMap: IDMap;
  308. revIDmap: ARRAY MaxCPU OF SHORTINT;
  309. time: TimeArray;
  310. eventCount, eventMax: LONGINT;
  311. event: Handler;
  312. expandMin, heapMinKB, heapMaxKB : SIZE;
  313. gcThreshold-: SIZE;
  314. memBlockHead-{UNTRACED}, memBlockTail-{UNTRACED}: MemoryBlock; (* refer to the same memory block for I386, not traced by GC *)
  315. initialMemBlock: MemoryBlockDesc;
  316. traceProcessorProc*: EventHandler; (** temp tracing *)
  317. traceProcessor: BOOLEAN;
  318. Timeslice*: Handler;
  319. start*: PROCEDURE;
  320. VAR
  321. traceMode: SET; (* tracing mode: Screen or V24 *)
  322. traceBase: ADDRESS; (* screen buffer base address *)
  323. tracePos: SIZE; (* current screen cursor *)
  324. tracePort: LONGINT; (* serial base port *)
  325. traceColor: SHORTINT; (* current screen tracing color *)
  326. (** -- Processor identification -- *)
  327. (** Return current processor ID (0 to MaxNum-1). *)
  328. PROCEDURE ID* (): LONGINT;
  329. CODE {SYSTEM.AMD64}
  330. ; todo: use MOV instead of LEA as soon as assembler returns address for global variables
  331. LEA RAX, idAdr ; get address of idAdr
  332. MOV RAX, [RAX] ; get value of idAdr
  333. MOV EAX, [RAX] ; dereference idAdr
  334. LEA RBX, map ; address of map
  335. SHR EAX, 24
  336. AND EAX, 15
  337. MOV AL, [RBX + RAX]
  338. END ID;
  339. (** -- Miscellaneous -- *)
  340. (** This procedure should be called in all spin loops as a hint to the processor (e.g. Pentium 4). *)
  341. PROCEDURE -SpinHint*;
  342. CODE {SYSTEM.AMD64}
  343. PAUSE
  344. END SpinHint;
  345. (** Fill "size" bytes at "destAdr" with "filler". "size" must be multiple of 4. *)
  346. PROCEDURE Fill32* (destAdr: ADDRESS; size: SIZE; filler: LONGINT);
  347. CODE {SYSTEM.AMD64}
  348. MOV RDI, [RBP + destAdr]
  349. MOV RCX, [RBP + size]
  350. MOV EAX, [RBP + filler]
  351. TEST RCX, 3
  352. JZ ok
  353. PUSH 8 ; ASSERT failure
  354. INT 3
  355. ok:
  356. SHR RCX, 2
  357. CLD
  358. REP STOSD
  359. END Fill32;
  360. (** Return timer value of the current processor, or 0 if not available. *)
  361. (* e.g. ARM does not have a fine-grained timer *)
  362. PROCEDURE -GetTimer* (): HUGEINT;
  363. CODE {SYSTEM.AMD64}
  364. XOR RAX, RAX
  365. RDTSC ; set EDX:EAX
  366. SHL RDX, 32
  367. OR RAX, RDX
  368. END GetTimer;
  369. (** Disable interrupts and return old interrupt state. *)
  370. PROCEDURE -DisableInterrupts* (): SET;
  371. CODE {SYSTEM.AMD64}
  372. PUSHFQ
  373. CLI
  374. POP RAX
  375. END DisableInterrupts;
  376. (** Restore interrupt state. Parameter s must be return value of earlier DisableInterrupts call on same processor. *)
  377. PROCEDURE -RestoreInterrupts* (s: SET);
  378. CODE {SYSTEM.AMD64}
  379. POPFQ
  380. END RestoreInterrupts;
  381. (** Return TRUE iff interrupts are enabled on the current processor. *)
  382. PROCEDURE -InterruptsEnabled* (): BOOLEAN;
  383. CODE {SYSTEM.AMD64}
  384. PUSHFQ
  385. POP RAX
  386. SHR RAX, 9
  387. AND AL, 1
  388. END InterruptsEnabled;
  389. (** -- Processor initialization -- *)
  390. PROCEDURE -SetFCR (s: SET);
  391. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  392. FLDCW WORD [RSP] ; parameter s
  393. POP RAX
  394. END SetFCR;
  395. PROCEDURE -FCR (): SET;
  396. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  397. PUSH 0
  398. FNSTCW WORD [RSP]
  399. FWAIT
  400. POP RAX
  401. END FCR;
  402. PROCEDURE -InitFPU;
  403. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  404. FNINIT
  405. END InitFPU;
  406. (** Setup FPU control word of current processor. *)
  407. PROCEDURE SetupFPU*;
  408. BEGIN
  409. InitFPU; SetFCR(fcr)
  410. END SetupFPU;
  411. (* Set up flags (3, p. 20)
  412. Bit
  413. 1,3,5,15,19..31 - no change
  414. 0,2,4,6..7,11 - CF,PF,AF,ZF,SF,OF off
  415. 8 - TF off
  416. 9 - IF off (no interrupts)
  417. 10 - DF off
  418. 12..13 - IOPL = 3
  419. 14 - NT off (no Windows)
  420. 16 - RF off (no Interference)
  421. 17- VM off (no virtual 8086 mode)
  422. 18 - AC off (no 486 alignment checks) *)
  423. PROCEDURE -SetupFlags;
  424. CODE {SYSTEM.AMD64}
  425. PUSHFD
  426. AND DWORD [RSP], 0FFF8802AH
  427. OR DWORD [RSP], 3000H
  428. POPFD
  429. END SetupFlags;
  430. (* Set up various 486-specific flags (3, p. 23)
  431. 1. Enable exception 16 on math errors.
  432. 2. Disable supervisor mode faults on write to read-only pages
  433. (386-compatible for stack checking).
  434. 3. Enable the Alignment Check field in RFLAGS *)
  435. PROCEDURE -Setup486Flags;
  436. CODE {SYSTEM.486, SYSTEM.Privileged}
  437. MOV EAX, CR0
  438. OR EAX, 00040020H
  439. AND EAX, 0FFFEFFFFH
  440. MOV CR0, EAX
  441. END Setup486Flags;
  442. (* Set up 586-specific things *)
  443. PROCEDURE -Setup586Flags;
  444. CODE {SYSTEM.586, SYSTEM.Privileged}
  445. MOV EAX, CR4
  446. BTR EAX, 2 ; clear TSD
  447. MOV CR4, EAX
  448. END Setup586Flags;
  449. (* Disable exceptions caused by math in new task. (1, p. 479) *)
  450. PROCEDURE -DisableMathTaskEx;
  451. CODE {SYSTEM.386, SYSTEM.Privileged}
  452. MOV EAX,CR0
  453. AND AL, 0F5H
  454. MOV CR0, EAX
  455. END DisableMathTaskEx;
  456. (* Disable math emulation (1, p. 479) , bit 2 of CR0 *)
  457. PROCEDURE -DisableEmulation;
  458. CODE {SYSTEM.386, SYSTEM.Privileged}
  459. MOV EAX, CR0
  460. AND AL, 0FBH
  461. MOV CR0, EAX
  462. END DisableEmulation;
  463. (** CPU identification *)
  464. PROCEDURE CPUID*(function : LONGINT; VAR eax, ebx, ecx, edx : SET);
  465. CODE {SYSTEM.AMD64}
  466. MOV EAX, [RBP+function] ; CPUID function parameter
  467. MOV RSI, [RBP+ecx] ; copy ecx into ECX (sometimes used as input parameter)
  468. MOV ECX, [RSI]
  469. CPUID ; execute CPUID
  470. MOV RSI, [RBP+eax] ; copy EAX into eax;
  471. MOV [RSI], EAX
  472. MOV RSI, [RBP+ebx] ; copy EBX into ebx
  473. MOV [RSI], EBX
  474. MOV RSI, [RBP+ecx] ; copy ECX into ecx
  475. MOV [RSI], ECX
  476. MOV RSI, [RBP+edx] ; copy EDX into edx
  477. MOV [RSI], EDX
  478. END CPUID;
  479. (* If the CPUID instruction is supported, the ID flag (bit 21) of the EFLAGS register is r/w *)
  480. PROCEDURE CpuIdSupported*() : BOOLEAN;
  481. CODE {SYSTEM.AMD64}
  482. PUSHFQ ; save RFLAGS
  483. POP RAX ; store RFLAGS in RAX
  484. MOV EBX, EAX ; save EBX for later testing
  485. XOR EAX, 00200000H ; toggle bit 21
  486. PUSH RAX ; push to stack
  487. POPFQ ; save changed RAX to RFLAGS
  488. PUSHFQ ; push RFLAGS to TOS
  489. POP RAX ; store RFLAGS in RAX
  490. CMP EAX, EBX ; see if bit 21 has changed
  491. SETNE AL; ; return TRUE if bit 21 has changed, FALSE otherwise
  492. END CpuIdSupported;
  493. (** Initialise current processor. Must be called by every processor. *)
  494. PROCEDURE InitProcessor*;
  495. BEGIN
  496. SetupFlags;
  497. Setup486Flags;
  498. Setup586Flags;
  499. DisableMathTaskEx;
  500. DisableEmulation;
  501. SetupFPU;
  502. END InitProcessor;
  503. (** Initialize APIC ID address. *)
  504. PROCEDURE InitAPICIDAdr* (adr: ADDRESS; CONST m: IDMap);
  505. VAR s: SET;
  506. BEGIN
  507. s := DisableInterrupts ();
  508. idAdr := adr; map := m;
  509. RestoreInterrupts (s)
  510. END InitAPICIDAdr;
  511. PROCEDURE InitBoot;
  512. VAR
  513. largestFunction, i: LONGINT;
  514. eax, ebx, ecx, edx : SET;
  515. logicalProcessorCount : LONGINT;
  516. u: ARRAY 8 OF CHAR; vendor : Vendor;
  517. PROCEDURE GetString(VAR string : ARRAY OF CHAR; offset : LONGINT; register : SET);
  518. BEGIN
  519. string[offset] :=CHR(SYSTEM.VAL(LONGINT, register * {0..7}));
  520. string[offset+1] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {8..15}, -8)));
  521. string[offset+2] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {16..23}, -16)));
  522. string[offset+3] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {24..31}, -24)));
  523. END GetString;
  524. BEGIN
  525. vendor := "Unknown"; features := {}; features2 := {};
  526. coresPerProcessor := 1; threadsPerCore := 1;
  527. IF CpuIdSupported() THEN
  528. (* Assume that all processors are the same *)
  529. (* CPUID standard function 0 returns: eax: largest CPUID standard function supported, ebx, edx, ecx: vendor string *)
  530. CPUID(0, eax, ebx, ecx, edx);
  531. largestFunction := SYSTEM.VAL(LONGINT, eax);
  532. ASSERT(LEN(vendor) >= 13);
  533. GetString(vendor, 0, ebx); GetString(vendor, 4, edx); GetString(vendor, 8, ecx); vendor[12] := 0X;
  534. IF (largestFunction >= 1) THEN
  535. (* CPUID standard function 1 returns: CPU features in ecx & edx *)
  536. CPUID(1, eax, ebx, ecx, edx);
  537. features := SYSTEM.VAL(SET, edx);
  538. features2 := SYSTEM.VAL(SET, ecx);
  539. (* The code below is used to determine the number of threads per processor core (hyperthreading). This is required
  540. since processors supporting hyperthreading are listed only once in the MP tables, so we need to know the
  541. exact number of threads per processor to start the processor correctly *)
  542. IF (HTT IN features) THEN (* multithreading supported by CPU *)
  543. (* logical processor count = number of cores * number of threads per core = total number of threads supported *)
  544. logicalProcessorCount := SYSTEM.VAL(LONGINT, LSH(ebx * {16..23}, -16));
  545. IF (vendor = "GenuineIntel") THEN
  546. IF (largestFunction >= 4) THEN
  547. (* CPUID standard function 4 returns: number of processor cores -1 on this die eax[26.31] *)
  548. ecx := SYSTEM.VAL(SET, 0); (* input parameter - must be set to 0 *)
  549. CPUID(4, eax, ebx, ecx, edx);
  550. coresPerProcessor := SYSTEM.VAL(LONGINT, LSH(eax * {26..31}, -26)) + 1;
  551. threadsPerCore := logicalProcessorCount DIV coresPerProcessor;
  552. ELSE
  553. threadsPerCore := logicalProcessorCount;
  554. END;
  555. ELSIF (vendor = "AuthenticAMD") THEN
  556. (* CPUID extended function 1 returns: largest extended function *)
  557. CPUID((80000000H), eax, ebx, ecx, edx);
  558. largestFunction := SYSTEM.VAL(LONGINT, eax - {31}); (* remove sign *)
  559. IF (largestFunction >= 8) THEN
  560. (* CPUID extended function 8 returns: *)
  561. CPUID((80000008H), eax, ebx, ecx, edx);
  562. coresPerProcessor := SYSTEM.VAL(LONGINT, ecx * {0..7}) + 1;
  563. threadsPerCore := logicalProcessorCount DIV coresPerProcessor;
  564. ELSIF (largestFunction >= 1) THEN
  565. (* CPUID extended function 1 returns CmpLegacy bit in ecx *)
  566. CPUID((80000001H), eax, ebx, ecx, edx);
  567. IF 1 IN ecx THEN (* CmpLegacy bit set -> no hyperthreading *)
  568. coresPerProcessor := logicalProcessorCount;
  569. threadsPerCore := 1;
  570. END;
  571. ELSE
  572. (* single-core, single-thread *)
  573. END;
  574. ELSE
  575. Trace.String("Machine: "); Trace.Yellow; Trace.String("Warning: Cannot detect hyperthreading, unknown CPU vendor ");
  576. Trace.String(vendor); Trace.Ln; Trace.Default;
  577. END;
  578. END;
  579. END;
  580. END;
  581. Trace.String("Machine: "); Trace.Int(coresPerProcessor, 0); Trace.String(" cores per physical package, ");
  582. Trace.Int(threadsPerCore, 0); Trace.String(" threads per core.");
  583. Trace.Ln;
  584. InitFPU;
  585. fcr := (FCR () - {0, 2, 3, 10, 11}) + {0 .. 5, 8, 9}; (* default FCR RC=00B *)
  586. bootID := 0; map[0] := 0;
  587. idAdr := ADDRESSOF (bootID);
  588. (* allow user to specify GetTimer rate, for tracing purposes *)
  589. GetConfig ("MHz", u);
  590. i := 0; mhz := StrToInt (i, u);
  591. END InitBoot;
  592. (** -- Configuration and bootstrapping -- *)
  593. (** Return the value of the configuration string specified by parameter name in parameter val. Returns val = "" if the string was not found, or has an empty value. *)
  594. PROCEDURE GetConfig* (CONST name: ARRAY OF CHAR; VAR val: ARRAY OF CHAR);
  595. VAR i, src: LONGINT; ch: CHAR;
  596. BEGIN
  597. ASSERT (name[0] # "="); (* no longer supported, use GetInit instead *)
  598. src := 0;
  599. LOOP
  600. ch := config[src];
  601. IF ch = 0X THEN EXIT END;
  602. i := 0;
  603. LOOP
  604. ch := config[src];
  605. IF (ch # name[i]) OR (name[i] = 0X) THEN EXIT END;
  606. INC (i); INC (src)
  607. END;
  608. IF (ch = 0X) & (name[i] = 0X) THEN (* found: (src^ = 0X) & (name[i] = 0X) *)
  609. i := 0;
  610. REPEAT
  611. INC (src); ch := config[src]; val[i] := ch; INC (i);
  612. IF i = LEN(val) THEN val[i - 1] := 0X; RETURN END (* val too short *)
  613. UNTIL ch = 0X;
  614. val[i] := 0X; RETURN
  615. ELSE
  616. WHILE ch # 0X DO (* skip to end of name *)
  617. INC (src); ch := config[src]
  618. END;
  619. INC (src);
  620. REPEAT (* skip to end of value *)
  621. ch := config[src]; INC (src)
  622. UNTIL ch = 0X
  623. END
  624. END;
  625. val[0] := 0X
  626. END GetConfig;
  627. (** Get CHS parameters of first two BIOS-supported hard disks. *)
  628. PROCEDURE GetDiskCHS* (d: LONGINT; VAR cyls, hds, spt: LONGINT);
  629. BEGIN
  630. cyls := chs[d].cyls; hds := chs[d].hds; spt := chs[d].spt
  631. END GetDiskCHS;
  632. (** Get parameter values from Init string. If n = 0, return val = ASH(bx, 16) + ax, and if n = 1, return val = ASH(dx, 16) + cx, where ax, bx, cx, dx are the register values after the OBL boot loader or noboot.exe have executed the 16-bit x86 code in the Init string. *)
  633. PROCEDURE GetInit* (n: LONGINT; VAR val: HUGEINT);
  634. BEGIN
  635. val := initRegs[n]
  636. END GetInit;
  637. (** Convert a string to an integer. Parameter i specifies where in the string scanning should begin (usually 0 in the first call). Scanning stops at the first non-valid character, and i returns the updated position. Parameter s is the string to be scanned. The value is returned as result, or 0 if not valid. Syntax: number = ["-"] digit {digit} ["H" | "h"] . digit = "0" | ... "9" | "A" .. "F" | "a" .. "f" . If the number contains any hexdecimal letter, or if it ends in "H" or "h", it is interpreted as hexadecimal. *)
  638. PROCEDURE StrToInt* (VAR i: LONGINT; CONST s: ARRAY OF CHAR): LONGINT;
  639. VAR vd, vh, sgn, d: LONGINT; hex: BOOLEAN;
  640. BEGIN
  641. vd := 0; vh := 0; hex := FALSE;
  642. IF s[i] = "-" THEN sgn := -1; INC (i) ELSE sgn := 1 END;
  643. LOOP
  644. IF (s[i] >= "0") & (s[i] <= "9") THEN d := ORD (s[i])-ORD ("0")
  645. ELSIF (CAP (s[i]) >= "A") & (CAP (s[i]) <= "F") THEN d := ORD (CAP (s[i]))-ORD ("A") + 10; hex := TRUE
  646. ELSE EXIT
  647. END;
  648. vd := 10*vd + d; vh := 16*vh + d;
  649. INC (i)
  650. END;
  651. IF CAP (s[i]) = "H" THEN hex := TRUE; INC (i) END; (* optional H *)
  652. IF hex THEN vd := vh END;
  653. RETURN sgn * vd
  654. END StrToInt;
  655. (* Delay for IO *)
  656. PROCEDURE -Wait*;
  657. CODE {SYSTEM.AMD64}
  658. JMP N1
  659. N1: JMP N2
  660. N2: JMP N3
  661. N3:
  662. END Wait;
  663. (* Reset processor by causing a double fault. *)
  664. PROCEDURE Reboot;
  665. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  666. PUSH DWORD 0
  667. PUSH DWORD 0
  668. LIDT [RSP]
  669. INT 3
  670. END Reboot;
  671. (** Shut down the system. If parameter reboot is set, attempt to reboot the system. *)
  672. PROCEDURE Shutdown* (reboot: BOOLEAN);
  673. VAR i: LONGINT;
  674. BEGIN
  675. Cli;
  676. IF reboot THEN (* attempt reboot *)
  677. Portout8 (70H, 8FX); (* Reset type: p. 5-37 AT Tech. Ref. *)
  678. Wait; Portout8 (71H, 0X); (* Note: soft boot flag was set in InitMemory *)
  679. Wait; Portout8 (70H, 0DX);
  680. Wait; Portout8 (64H, 0FEX); (* reset CPU *)
  681. FOR i := 1 TO 10000 DO END;
  682. Reboot
  683. END;
  684. LOOP END
  685. END Shutdown;
  686. (* Get hard disk parameters. *)
  687. PROCEDURE GetPar (p: ADDRESS; ofs: LONGINT): LONGINT;
  688. VAR ch: CHAR;
  689. BEGIN
  690. SYSTEM.GET (p + 12 + ofs, ch);
  691. RETURN ORD (ch)
  692. END GetPar;
  693. (* Read boot table. *)
  694. PROCEDURE ReadBootTable (bt: ADDRESS);
  695. VAR i, p: ADDRESS; j, d, type, addr, size, heapSize: LONGINT; ch: CHAR;
  696. BEGIN
  697. heapSize := 0; lowTop := 0;
  698. p := bt; d := 0;
  699. LOOP
  700. SYSTEM.GET (p, type);
  701. IF type = -1 THEN
  702. EXIT (* end *)
  703. ELSIF type = 3 THEN (* boot memory/top of low memory *)
  704. SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size);
  705. lowTop := addr + size
  706. ELSIF type = 4 THEN (* free memory/extended memory size *)
  707. SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size);
  708. IF addr = HeapAdr THEN heapSize := size END
  709. ELSIF type = 5 THEN (* HD config *)
  710. IF d < MaxDisks THEN
  711. chs[d].cyls := GetPar (p, 0) + 100H * GetPar (p, 1);
  712. chs[d].hds := GetPar (p, 2); chs[d].spt := GetPar (p, 14);
  713. INC (d)
  714. END
  715. ELSIF type = 8 THEN (* config strings *)
  716. i := p + 8; j := 0; (* copy the config strings over *)
  717. LOOP
  718. SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j);
  719. IF ch = 0X THEN EXIT END;
  720. REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X; (* end of name *)
  721. REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X (* end of value *)
  722. END
  723. END;
  724. SYSTEM.GET (p + 4, size); INC (p, size)
  725. END;
  726. ASSERT((heapSize # 0) & (lowTop # 0));
  727. memTop := HeapAdr + heapSize
  728. END ReadBootTable;
  729. (** Read a byte from the non-volatile setup memory. *)
  730. PROCEDURE GetNVByte* (ofs: LONGINT): CHAR;
  731. VAR c: CHAR;
  732. BEGIN
  733. Portout8 (70H, CHR(ofs)); Wait; Portin8(71H, c);
  734. RETURN c
  735. END GetNVByte;
  736. (** Write a byte to the non-volatile setup memory. *)
  737. PROCEDURE PutNVByte* (ofs: LONGINT; val: CHAR);
  738. BEGIN
  739. Portout8 (70H, CHR(ofs)); Wait; Portout8 (71H, val)
  740. END PutNVByte;
  741. (** Compute a checksum for the Intel SMP spec floating pointer structure. *)
  742. PROCEDURE ChecksumMP* (adr: ADDRESS; size: SIZE): LONGINT;
  743. VAR sum: LONGINT; x: ADDRESS; ch: CHAR;
  744. BEGIN
  745. sum := 0;
  746. FOR x := adr TO adr + size-1 DO
  747. SYSTEM.GET (x, ch);
  748. sum := (sum + ORD(ch)) MOD 256
  749. END;
  750. RETURN sum
  751. END ChecksumMP;
  752. (* Search for MP floating pointer structure. *)
  753. PROCEDURE SearchMem (adr: ADDRESS; size: SIZE): ADDRESS;
  754. VAR x, len: LONGINT; ch: CHAR;
  755. BEGIN
  756. WHILE size > 0 DO
  757. SYSTEM.GET (adr, x);
  758. IF x = 05F504D5FH THEN (* "_MP_" found *)
  759. SYSTEM.GET (adr + 8, ch); len := ORD(ch)*16;
  760. IF len > 0 THEN
  761. SYSTEM.GET (adr + 9, ch);
  762. IF (ch = 1X) OR (ch >= 4X) THEN (* version 1.1 or 1.4 or higher *)
  763. IF ChecksumMP(adr, len) = 0 THEN
  764. RETURN adr (* found *)
  765. END
  766. END
  767. END
  768. END;
  769. INC (adr, 16); DEC (size, 16)
  770. END;
  771. RETURN NilAdr (* not found *)
  772. END SearchMem;
  773. (* Search for MP spec info. *)
  774. PROCEDURE SearchMP;
  775. VAR adr: ADDRESS;
  776. BEGIN
  777. adr := 0;
  778. SYSTEM.GET (040EH, SYSTEM.VAL (INTEGER, adr)); (* EBDA address *)
  779. adr := adr*16;
  780. IF adr < 100000H THEN adr := SearchMem(adr, 1024) (* 1. look in EBDA *)
  781. ELSE adr := NilAdr
  782. END;
  783. IF adr = NilAdr THEN (* 2. look in last kb of base memory *)
  784. adr := SearchMem(lowTop + (-lowTop) MOD 10000H - 1024, 1024);
  785. IF adr = NilAdr THEN (* 3. look at top of physical memory *)
  786. adr := SearchMem(memTop - 1024, 1024);
  787. IF adr = NilAdr THEN (* 4. look in BIOS ROM space *)
  788. adr := SearchMem(0E0000H, 20000H)
  789. END
  790. END
  791. END;
  792. IF adr = NilAdr THEN
  793. revMP := 0X; configMP := NilAdr
  794. ELSE
  795. SYSTEM.GET (adr + 9, revMP);
  796. SYSTEM.MOVE(adr + 11, ADDRESSOF(featureMP[0]), 5); (* feature bytes *)
  797. configMP := SYSTEM.GET32 (adr + 4); (* physical address outside reported RAM (spec 1.4 p. 4-2) *)
  798. IF configMP = 0 THEN configMP := NilAdr END
  799. END
  800. END SearchMP;
  801. (* Allocate area for ISA DMA. *)
  802. PROCEDURE AllocateDMA;
  803. VAR old: ADDRESS;
  804. BEGIN
  805. old := lowTop;
  806. dmaSize := DefaultDMASize*1024;
  807. ASSERT((dmaSize >= 0) & (dmaSize <= 65536));
  808. IF (lowTop-dmaSize) DIV 65536 # (lowTop-1) DIV 65536 THEN (* crosses 64KB boundary *)
  809. DEC (lowTop, lowTop MOD 65536) (* round down to 64KB boundary *)
  810. END;
  811. DEC (lowTop, dmaSize); (* allocate memory *)
  812. dmaSize := old - lowTop (* how much was allocated (including rounding) *)
  813. END AllocateDMA;
  814. (* Check if the specified address is RAM. *)
  815. PROCEDURE IsRAM(adr: ADDRESS): BOOLEAN;
  816. CONST Pattern1 = (0BEEFC0DEH); Pattern2 = (0AA55FF00H);
  817. VAR save, x: LONGINT; ok: BOOLEAN;
  818. BEGIN
  819. ok := FALSE;
  820. SYSTEM.GET (adr, save);
  821. SYSTEM.PUT (adr, Pattern1); (* attempt 1st write *)
  822. x := Pattern2; (* write something else *)
  823. SYSTEM.GET (adr, x); (* attempt 1st read *)
  824. IF x = Pattern1 THEN (* first test passed *)
  825. SYSTEM.PUT (adr, Pattern2); (* attempt 2nd write *)
  826. x := Pattern1; (* write something else *)
  827. SYSTEM.GET (adr, x); (* attempt 2nd read *)
  828. ok := (x = Pattern2)
  829. END;
  830. SYSTEM.PUT (adr, save);
  831. RETURN ok
  832. END IsRAM;
  833. (* Map the physical address in the second virtual page *)
  834. PROCEDURE -InvalidateTLB (address: ADDRESS);
  835. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  836. POP RAX
  837. INVLPG [RAX]
  838. END InvalidateTLB;
  839. PROCEDURE -GetPML4Base (): ADDRESS;
  840. CODE {SYSTEM.AMD64}
  841. MOV RAX, CR3
  842. END GetPML4Base;
  843. PROCEDURE -INVLPG (adr: ADDRESS);
  844. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  845. POP RAX
  846. INVLPG [RAX]
  847. END INVLPG;
  848. (* Check amount of memory available and update memTop. *)
  849. PROCEDURE CheckMemory;
  850. CONST K = 1024; M = K * K; PS = 2 * M; ExtMemAdr = M;
  851. TPS = 4 * K; UserPage = 7; PageNotPresent = 0;
  852. VAR s: ARRAY 16 OF CHAR; i: LONGINT;
  853. physicalAddress, pml4Base, pdpBase, pdBase: ADDRESS;
  854. pml4e, pdpe, pde, lastTable: ADDRESS;
  855. PROCEDURE AllocateTranslationTable (VAR baseAddress, firstEntry: ADDRESS);
  856. BEGIN
  857. baseAddress := lastTable;
  858. firstEntry := baseAddress;
  859. INC (lastTable, TPS);
  860. Fill32 (baseAddress, TPS, PageNotPresent)
  861. END AllocateTranslationTable;
  862. BEGIN
  863. GetConfig("ExtMemSize", s); (* in MB *)
  864. IF s[0] # 0X THEN (* override detection *)
  865. i := 0;
  866. memTop := ExtMemAdr + (StrToInt(i, s)) * M
  867. END;
  868. pml4Base := GetPML4Base ();
  869. DEC (pml4Base, pml4Base MOD TPS);
  870. SYSTEM.GET (pml4Base, pdpBase);
  871. DEC (pdpBase, pdpBase MOD TPS);
  872. SYSTEM.GET (pdpBase, pdBase);
  873. DEC (pdBase, pdBase MOD TPS);
  874. physicalAddress := PS;
  875. lastTable := pdBase + TPS;
  876. pml4e := pml4Base;
  877. pdpe := pdpBase;
  878. pde := pdBase;
  879. WHILE (pml4e < pml4Base + TPS) DO
  880. WHILE (pdpe < pdpBase + TPS) DO
  881. WHILE (pde < pdBase + TPS) DO
  882. INC (pde, 8);
  883. SYSTEM.PUT (pde, physicalAddress + UserPage + 80H);
  884. INVLPG (physicalAddress);
  885. INC (physicalAddress, PS);
  886. IF physicalAddress >= memTop THEN RETURN END;
  887. END;
  888. INC (pdpe, 8);
  889. AllocateTranslationTable (pdBase, pde);
  890. SYSTEM.PUT (pdpe, pde + UserPage);
  891. END;
  892. INC (pml4e, 8);
  893. AllocateTranslationTable (pdpBase, pdpe);
  894. SYSTEM.PUT (pml4e, pdpe + UserPage);
  895. END;
  896. HALT (99);
  897. END CheckMemory;
  898. (* Initialize locks. *)
  899. PROCEDURE InitLocks;
  900. VAR i: LONGINT; s: ARRAY 12 OF CHAR;
  901. BEGIN
  902. IF TimeCount # 0 THEN
  903. GetConfig("LockTimeout", s);
  904. i := 0; maxTime := StrToInt(i, s);
  905. IF maxTime > MAX(LONGINT) DIV 1000000 THEN
  906. maxTime := MAX(LONGINT)
  907. ELSE
  908. maxTime := maxTime * 1000000
  909. END
  910. END;
  911. FOR i := 0 TO MaxCPU-1 DO
  912. proc[i].locksHeld := {}; proc[i].preemptCount := 0
  913. END;
  914. FOR i := 0 TO MaxLocks-1 DO
  915. lock[i].locked := FALSE
  916. END
  917. END InitLocks;
  918. (* Return flags state. *)
  919. PROCEDURE -GetFlags (): SET;
  920. CODE {SYSTEM.AMD64}
  921. PUSHFQ
  922. POP RAX
  923. END GetFlags;
  924. (* Set flags state. *)
  925. PROCEDURE -SetFlags (s: SET);
  926. CODE {SYSTEM.AMD64}
  927. POPFQ
  928. END SetFlags;
  929. PROCEDURE -PushFlags*;
  930. CODE {SYSTEM.AMD64}
  931. PUSHFQ
  932. END PushFlags;
  933. PROCEDURE -PopFlags*;
  934. CODE {SYSTEM.AMD64}
  935. POPFQ
  936. END PopFlags;
  937. (** Disable preemption on the current processor (increment the preemption counter). Returns the current processor ID as side effect. *)
  938. PROCEDURE AcquirePreemption* (): LONGINT;
  939. VAR id: LONGINT;
  940. BEGIN
  941. PushFlags; Cli;
  942. id := ID ();
  943. INC (proc[id].preemptCount);
  944. PopFlags;
  945. RETURN id
  946. END AcquirePreemption;
  947. (** Enable preemption on the current processor (decrement the preemption counter). *)
  948. PROCEDURE ReleasePreemption*;
  949. VAR id: LONGINT;
  950. BEGIN
  951. PushFlags; Cli;
  952. id := ID ();
  953. IF StrongChecks THEN
  954. ASSERT(proc[id].preemptCount > 0)
  955. END;
  956. DEC (proc[id].preemptCount);
  957. PopFlags
  958. END ReleasePreemption;
  959. (** Return the preemption counter of the current processor (specified in parameter). *)
  960. PROCEDURE PreemptCount* (id: LONGINT): LONGINT;
  961. BEGIN
  962. IF StrongChecks THEN
  963. (*ASSERT(~(9 IN GetFlags ()));*) (* interrupts off *) (* commented out because check is too strong *)
  964. ASSERT(id = ID ()) (* caller must specify current processor *)
  965. END;
  966. RETURN proc[id].preemptCount
  967. END PreemptCount;
  968. (* Spin waiting for a lock. Return AL = 1X iff timed out. *)
  969. PROCEDURE AcquireSpinTimeout(VAR locked: BOOLEAN; count: LONGINT; flags: SET): CHAR;
  970. CODE {SYSTEM.AMD64}
  971. MOV RSI, [RBP + flags] ; RSI := flags
  972. MOV EDI, [RBP + count] ; RDI := count
  973. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  974. MOV AL, 1 ; AL := 1
  975. CLI ; switch interrupts off before acquiring lock
  976. test:
  977. CMP [RBX], AL ; locked? { AL = 1 }
  978. JE wait ; yes, go wait
  979. XCHG [RBX], AL ; set and read the lock atomically. LOCK prefix implicit.
  980. CMP AL, 1 ; was locked?
  981. JNE exit ; no, we have it now, interrupts are off, and AL # 1
  982. wait:
  983. ; ASSERT(AL = 1)
  984. XOR RCX, RCX ; just in case some processor interprets REP this way
  985. REP NOP ; PAUSE instruction (* see SpinHint *)
  986. TEST RSI, 200H ; bit 9 - IF
  987. JZ intoff
  988. STI ; restore interrupt state quickly to allow pending interrupts (e.g. AosProcessors.StopAll/Broadcast)
  989. NOP ; NOP required, otherwise STI; CLI not interruptable
  990. CLI ; disable interrupts
  991. intoff:
  992. DEC EDI ; counter
  993. JNZ test ; not timed out yet
  994. OR EDI, [RBP + count] ; re-fetch original value & set flags
  995. JZ test ; if count = 0, retry forever
  996. ; timed out (AL = 1)
  997. exit:
  998. END AcquireSpinTimeout;
  999. (** Acquire a spin-lock and disable interrupts. *)
  1000. PROCEDURE Acquire* (level: LONGINT);
  1001. VAR id, i: LONGINT; flags: SET; start: HUGEINT;
  1002. BEGIN
  1003. id := AcquirePreemption ();
  1004. flags := GetFlags (); (* store state of interrupt flag *)
  1005. IF StrongChecks THEN
  1006. ASSERT(~(9 IN flags) OR (proc[id].locksHeld = {})); (* interrupts enabled => no locks held *)
  1007. ASSERT(~(level IN proc[id].locksHeld)) (* recursive locks not allowed *)
  1008. END;
  1009. IF (TimeCount = 0) OR (maxTime = 0) THEN
  1010. IF AcquireSpinTimeout(lock[level].locked, 0, flags) = 0X THEN END; (* {interrupts off} *)
  1011. ELSE
  1012. start := GetTimer ();
  1013. WHILE AcquireSpinTimeout(lock[level].locked, TimeCount, flags) = 1X DO
  1014. IF GetTimer () - start > maxTime THEN
  1015. trapState := proc;
  1016. trapLocksBusy := {};
  1017. FOR i := 0 TO MaxLocks-1 DO
  1018. IF lock[i].locked THEN INCL(trapLocksBusy, i) END
  1019. END;
  1020. HALT(1301) (* Lock timeout - see Traps *)
  1021. END
  1022. END
  1023. END;
  1024. IF proc[id].locksHeld = {} THEN
  1025. proc[id].state := flags
  1026. END;
  1027. INCL(proc[id].locksHeld, level); (* we now hold the lock *)
  1028. IF StrongChecks THEN (* no lower-level locks currently held by this processor *)
  1029. ASSERT((level = 0) OR (proc[id].locksHeld * {0..level-1} = {}))
  1030. END
  1031. END Acquire;
  1032. (** Release a spin-lock. Switch on interrupts when last lock released. *)
  1033. PROCEDURE Release* (level: LONGINT);
  1034. VAR id: LONGINT; flags: SET;
  1035. BEGIN (* {interrupts off} *)
  1036. id := ID ();
  1037. IF StrongChecks THEN
  1038. ASSERT(~(9 IN GetFlags ())); (* {interrupts off} *)
  1039. ASSERT(lock[level].locked);
  1040. ASSERT(level IN proc[id].locksHeld)
  1041. END;
  1042. EXCL(proc[id].locksHeld, level);
  1043. IF proc[id].locksHeld = {} THEN
  1044. flags := proc[id].state ELSE flags := GetFlags ()
  1045. END;
  1046. lock[level].locked := FALSE;
  1047. SetFlags(flags);
  1048. ReleasePreemption
  1049. END Release;
  1050. (** Acquire all locks. Only for exceptional cases. *)
  1051. PROCEDURE AcquireAll*;
  1052. VAR lock: LONGINT;
  1053. BEGIN
  1054. FOR lock := HighestLock TO LowestLock BY -1 DO Acquire(lock) END
  1055. END AcquireAll;
  1056. (** Release all locks. Reverse of AcquireAll. *)
  1057. PROCEDURE ReleaseAll*;
  1058. VAR lock: LONGINT;
  1059. BEGIN
  1060. FOR lock := LowestLock TO HighestLock DO Release(lock) END
  1061. END ReleaseAll;
  1062. (** Break all locks held by current processor (for exception handling). Returns levels released. *)
  1063. PROCEDURE BreakAll* (): SET;
  1064. VAR id, level: LONGINT; released: SET;
  1065. BEGIN
  1066. id := AcquirePreemption ();
  1067. PushFlags; Cli;
  1068. released := {};
  1069. FOR level := 0 TO MaxLocks-1 DO
  1070. IF level IN proc[id].locksHeld THEN
  1071. lock[level].locked := FALSE; (* break the lock *)
  1072. EXCL(proc[id].locksHeld, level);
  1073. INCL(released, level)
  1074. END
  1075. END;
  1076. IF proc[id].preemptCount > 1 THEN INCL(released, Preemption) END;
  1077. proc[id].preemptCount := 0; (* clear preemption flag *)
  1078. PopFlags;
  1079. RETURN released
  1080. END BreakAll;
  1081. (** Acquire a fine-grained lock on an active object. *)
  1082. PROCEDURE AcquireObject* (VAR locked: BOOLEAN);
  1083. CODE {SYSTEM.AMD64}
  1084. PUSHFQ
  1085. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  1086. MOV AL, 1
  1087. test:
  1088. CMP [RBX], AL ; locked? { AL = 1 }
  1089. JNE try
  1090. STI
  1091. PAUSE ; PAUSE instruction (* see SpinHint *)
  1092. CLI
  1093. JMP test
  1094. try:
  1095. XCHG [RBX], AL ; set and read the lock atomically. LOCK prefix implicit.
  1096. CMP AL, 1 ; was locked?
  1097. JE test ; yes, try again
  1098. POPFQ
  1099. END AcquireObject;
  1100. (** Release an active object lock. *)
  1101. PROCEDURE ReleaseObject* (VAR locked: BOOLEAN);
  1102. CODE {SYSTEM.AMD64}
  1103. MOV RBX, [RBP + locked] ; RBX := ADR(locked)
  1104. MOV BYTE [RBX], 0
  1105. END ReleaseObject;
  1106. (* Load global descriptor table *)
  1107. PROCEDURE LoadGDT(base: ADDRESS; size: SIZE);
  1108. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1109. ; LGDT needs 10 bytes: 2 for the 16-bit limit and 8 for the 64-bit base address in this order
  1110. ; Assumption: size argument in front of base -> promote size value to upper 48 bits of size
  1111. SHL QWORD [RBP + size], 64-16
  1112. LGDT [RBP + size + (64-16) / 8]
  1113. END LoadGDT;
  1114. (* Load segment registers *)
  1115. PROCEDURE LoadSegRegs(data: INTEGER);
  1116. CODE {SYSTEM.AMD64}
  1117. MOV AX, [RBP + data]
  1118. MOV DS, AX
  1119. XOR AX, AX
  1120. MOV ES, AX
  1121. MOV FS, AX
  1122. MOV GS, AX
  1123. END LoadSegRegs;
  1124. (* Return CS. *)
  1125. PROCEDURE -CS* (): INTEGER;
  1126. CODE {SYSTEM.AMD64}
  1127. MOV AX, CS
  1128. END CS;
  1129. (** -- Memory management -- *)
  1130. (* Allocate a physical page below 1M. Parameter adr returns physical and virtual address (or NilAdr).*)
  1131. PROCEDURE NewLowPage(VAR adr: ADDRESS);
  1132. BEGIN
  1133. adr := freeLowPage;
  1134. IF freeLowPage # NilAdr THEN
  1135. SYSTEM.GET (freeLowPage, freeLowPage); (* freeLowPage := freeLowPage.next *)
  1136. DEC(freeLowPages)
  1137. END
  1138. END NewLowPage;
  1139. (* Allocate a directly-mapped page. Parameter adr returns physical and virtual address (or NilAdr). *)
  1140. PROCEDURE NewDirectPage(VAR adr: ADDRESS);
  1141. BEGIN
  1142. IF pageHeapAdr # heapEndAdr THEN
  1143. DEC(pageHeapAdr, PS); adr := pageHeapAdr;
  1144. DEC(freeHighPages)
  1145. ELSE
  1146. adr := NilAdr
  1147. END
  1148. END NewDirectPage;
  1149. (* Allocate a physical page. *)
  1150. PROCEDURE NewPage(VAR physAdr: ADDRESS);
  1151. VAR sp, prev: ADDRESS;
  1152. BEGIN
  1153. SYSTEM.GET(pageStackAdr + NodeSP, sp);
  1154. ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *)
  1155. IF sp > MinSP THEN (* stack not empty, pop entry *)
  1156. DEC(sp, AddressSize);
  1157. SYSTEM.GET (pageStackAdr+sp, physAdr);
  1158. SYSTEM.PUT (pageStackAdr+NodeSP, sp);
  1159. SYSTEM.GET (pageStackAdr+NodePrev, prev);
  1160. IF (sp = MinSP) & (prev # NilAdr) THEN
  1161. pageStackAdr := prev
  1162. END;
  1163. DEC(freeHighPages)
  1164. ELSE
  1165. NewDirectPage(physAdr)
  1166. END
  1167. END NewPage;
  1168. (* Deallocate a physical page. *)
  1169. PROCEDURE DisposePage(physAdr: ADDRESS);
  1170. VAR sp, next, newAdr: ADDRESS;
  1171. BEGIN
  1172. SYSTEM.GET (pageStackAdr + NodeSP, sp);
  1173. ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *)
  1174. IF sp = MaxSP THEN (* current stack full *)
  1175. SYSTEM.GET (pageStackAdr + NodeNext, next);
  1176. IF next # NilAdr THEN (* next stack exists, make it current *)
  1177. pageStackAdr := next;
  1178. SYSTEM.GET (pageStackAdr+NodeSP, sp);
  1179. ASSERT(sp = MinSP) (* must be empty *)
  1180. ELSE (* allocate next stack *)
  1181. NewDirectPage(newAdr);
  1182. IF newAdr = NilAdr THEN
  1183. NewLowPage(newAdr); (* try again from reserve *)
  1184. IF newAdr = NilAdr THEN
  1185. IF Stats THEN INC(NlostPages) END;
  1186. RETURN (* give up (the disposed page is lost) *)
  1187. ELSE
  1188. IF Stats THEN INC(NreservePagesUsed) END
  1189. END
  1190. END;
  1191. sp := MinSP; (* will be written to NodeSP below *)
  1192. SYSTEM.PUT (newAdr + NodeNext, next);
  1193. SYSTEM.PUT (newAdr + NodePrev, pageStackAdr);
  1194. pageStackAdr := newAdr
  1195. END
  1196. END;
  1197. (* push entry on current stack *)
  1198. SYSTEM.PUT (pageStackAdr + sp, physAdr);
  1199. SYSTEM.PUT (pageStackAdr + NodeSP, sp + AddressSize);
  1200. INC(freeHighPages)
  1201. END DisposePage;
  1202. (* Allocate virtual address space for mapping. Parameter size must be multiple of page size. Parameter virtAdr returns virtual address or NilAdr on failure. *)
  1203. PROCEDURE NewVirtual(VAR virtAdr: ADDRESS; size: SIZE);
  1204. BEGIN
  1205. ASSERT(size MOD PS = 0);
  1206. (*
  1207. IF mapTop+size > MapAreaAdr+MapAreaSize THEN
  1208. virtAdr := NilAdr (* out of virtual space *)
  1209. ELSE
  1210. virtAdr := mapTop;
  1211. INC(mapTop, size)
  1212. END
  1213. *)
  1214. (* this code is commented because PACO produces weird behaviour when used with
  1215. 64-bit ADDRESS*)
  1216. virtAdr := mapTop;
  1217. INC(mapTop, size)
  1218. END NewVirtual;
  1219. PROCEDURE DisposeVirtual(virtAdr: ADDRESS; size: SIZE);
  1220. (* to do *)
  1221. END DisposeVirtual;
  1222. (* Map a physical page into the virtual address space. Parameter virtAdr is mapped address and phys is mapping value. Returns TRUE iff mapping successful. *)
  1223. PROCEDURE MapTable (base, index: ADDRESS): ADDRESS;
  1224. VAR pt: ADDRESS;
  1225. BEGIN
  1226. SYSTEM.GET (base + index * AddressSize, pt);
  1227. IF ODD (pt) THEN (* pt present *)
  1228. DEC (pt, pt MOD TPS)
  1229. ELSE
  1230. NewPage(pt);
  1231. IF pt = NilAdr THEN RETURN NilAdr END;
  1232. SYSTEM.PUT (base + index * AddressSize, pt + UserPage);
  1233. Fill32 (pt, TPS, PageNotPresent)
  1234. END;
  1235. RETURN pt;
  1236. END MapTable;
  1237. PROCEDURE MapPage(virtAdr, phys: ADDRESS): BOOLEAN;
  1238. VAR i, pt: ADDRESS;
  1239. pml4e, pdpe, pde, pte: ADDRESS;
  1240. BEGIN
  1241. virtAdr := virtAdr DIV PS;
  1242. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1243. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1244. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1245. pml4e := virtAdr MOD PTEs;
  1246. pt := MapTable (kernelPML4, pml4e);
  1247. IF pt = NilAdr THEN RETURN FALSE END;
  1248. pt := MapTable (pt, pdpe);
  1249. IF pt = NilAdr THEN RETURN FALSE END;
  1250. pt := MapTable (pt, pde);
  1251. IF pt = NilAdr THEN RETURN FALSE END;
  1252. SYSTEM.PUT(pt + pte * AddressSize, phys);
  1253. RETURN TRUE;
  1254. END MapPage;
  1255. (* Return mapped page address for a given virtual address (ODD if mapped) *)
  1256. PROCEDURE MappedPage(virtAdr: ADDRESS): ADDRESS;
  1257. VAR pt: ADDRESS;
  1258. pml4e, pdpe, pde, pte: ADDRESS;
  1259. BEGIN
  1260. virtAdr := virtAdr DIV PS;
  1261. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1262. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1263. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1264. pml4e := virtAdr MOD PTEs;
  1265. SYSTEM.GET(kernelPML4 + pml4e * AddressSize, pt);
  1266. IF ~ODD(pt) THEN RETURN 0 END;
  1267. DEC (pt, pt MOD 1000H);
  1268. SYSTEM.GET(pt + pdpe * AddressSize, pt);
  1269. IF ~ODD(pt) THEN RETURN 0 END;
  1270. DEC (pt, pt MOD 1000H);
  1271. SYSTEM.GET(pt + pde * AddressSize, pt);
  1272. IF ~ODD(pt) THEN RETURN 0 END;
  1273. DEC (pt, pt MOD 1000H);
  1274. SYSTEM.GET (pt + pte * AddressSize, pt);
  1275. RETURN pt;
  1276. END MappedPage;
  1277. (* Unmap a page and return the previous mapping, like MappedPage (). Caller must flush TLB. *)
  1278. PROCEDURE UnmapPage(virtAdr: ADDRESS): ADDRESS;
  1279. VAR t, pt: ADDRESS;
  1280. pml4e, pdpe, pde, pte: ADDRESS;
  1281. BEGIN
  1282. virtAdr := virtAdr DIV PS;
  1283. pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1284. pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1285. pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs;
  1286. pml4e := virtAdr MOD PTEs;
  1287. SYSTEM.GET(kernelPML4 + pml4e * AddressSize, pt);
  1288. IF ~ODD(pt) THEN RETURN 0 END;
  1289. DEC (pt, pt MOD 1000H);
  1290. SYSTEM.GET(pt + pdpe * AddressSize, pt);
  1291. IF ~ODD(pt) THEN RETURN 0 END;
  1292. DEC (pt, pt MOD 1000H);
  1293. SYSTEM.GET(pt + pde * AddressSize, pt);
  1294. IF ~ODD(pt) THEN RETURN 0 END;
  1295. DEC (pt, pt MOD 1000H);
  1296. SYSTEM.GET(pt + pte * AddressSize, t);
  1297. SYSTEM.PUT(pt + pte * AddressSize, NIL);
  1298. INVLPG (t);
  1299. RETURN t;
  1300. END UnmapPage;
  1301. (* Map area [virtAdr..virtAdr+size) directly to area [Adr(phys)..Adr(phys)+size). Returns TRUE iff successful. *)
  1302. PROCEDURE MapDirect(virtAdr: ADDRESS; size: SIZE; phys: ADDRESS): BOOLEAN;
  1303. BEGIN
  1304. (*
  1305. Trace.String("MapDirect "); Trace.Address (virtAdr); Trace.Char(' '); Trace.Address (phys); Trace.Char (' '); Trace.Int (size, 0);
  1306. Trace.Int(size DIV PS, 8); Trace.Ln;
  1307. *)
  1308. ASSERT((virtAdr MOD PS = 0) & (size MOD PS = 0));
  1309. WHILE size # 0 DO
  1310. IF ~ODD(MappedPage(virtAdr)) THEN
  1311. IF ~MapPage(virtAdr, phys) THEN RETURN FALSE END
  1312. END;
  1313. INC(virtAdr, PS); INC(phys, PS); DEC(size, PS)
  1314. END;
  1315. RETURN TRUE
  1316. END MapDirect;
  1317. (* Policy decision for heap expansion. NewBlock for the same block has failed try times. *)
  1318. PROCEDURE ExpandNow(try: LONGINT): BOOLEAN;
  1319. VAR size: SIZE;
  1320. BEGIN
  1321. size := LSH(memBlockTail.endBlockAdr - memBlockHead.beginBlockAdr, -10); (* heap size in KB *)
  1322. RETURN (~ODD(try) OR (size < heapMinKB)) & (size < heapMaxKB)
  1323. END ExpandNow;
  1324. (* Try to expand the heap by at least "size" bytes *)
  1325. PROCEDURE ExpandHeap*(try: LONGINT; size: SIZE; VAR memBlock: MemoryBlock; VAR beginBlockAdr, endBlockAdr: ADDRESS);
  1326. BEGIN
  1327. IF ExpandNow(try) THEN
  1328. IF size < expandMin THEN size := expandMin END;
  1329. beginBlockAdr := memBlockHead.endBlockAdr;
  1330. endBlockAdr := beginBlockAdr;
  1331. INC(endBlockAdr, size);
  1332. SetHeapEndAdr(endBlockAdr); (* in/out parameter *)
  1333. memBlock := memBlockHead;
  1334. (* endBlockAdr of memory block is set by caller after free block has been set in memory block - this process is part of lock-free heap expansion *)
  1335. ELSE
  1336. beginBlockAdr := memBlockHead.endBlockAdr;
  1337. endBlockAdr := memBlockHead.endBlockAdr;
  1338. memBlock := NIL
  1339. END
  1340. END ExpandHeap;
  1341. (* Set memory block end address *)
  1342. PROCEDURE SetMemoryBlockEndAddress*(memBlock: MemoryBlock; endBlockAdr: ADDRESS);
  1343. BEGIN
  1344. ASSERT(endBlockAdr >= memBlock.beginBlockAdr);
  1345. memBlock.endBlockAdr := endBlockAdr
  1346. END SetMemoryBlockEndAddress;
  1347. (* Free unused memory block *)
  1348. PROCEDURE FreeMemBlock*(memBlock: MemoryBlock);
  1349. BEGIN
  1350. HALT(515) (* impossible to free heap in I386 native A2 version *)
  1351. END FreeMemBlock;
  1352. (** Attempt to set the heap end address to the specified address. The returned value is the actual new end address (never smaller than previous value). *)
  1353. PROCEDURE SetHeapEndAdr(VAR endAdr: ADDRESS);
  1354. VAR n, m: SIZE;
  1355. BEGIN
  1356. Acquire(Memory);
  1357. n := LSH(endAdr+(PS-1), -PSlog2) - LSH(heapEndAdr, -PSlog2); (* pages requested *)
  1358. m := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2) - ReservedPages; (* max pages *)
  1359. IF n > m THEN n := m END;
  1360. IF n > 0 THEN INC(heapEndAdr, n*PS); DEC(freeHighPages, n) END;
  1361. endAdr := heapEndAdr;
  1362. Release(Memory)
  1363. END SetHeapEndAdr;
  1364. (** Map a physical memory area (physAdr..physAdr+size-1) into the virtual address space. Parameter virtAdr returns the virtual address of mapped region, or NilAdr on failure. *)
  1365. PROCEDURE MapPhysical*(physAdr: ADDRESS; size: SIZE; VAR virtAdr: ADDRESS);
  1366. VAR ofs: ADDRESS;
  1367. BEGIN
  1368. IF (LSH(physAdr, -PSlog2) <= topPageNum) &
  1369. (LSH(physAdr+size-1, -PSlog2) <= topPageNum) &
  1370. (LSH(physAdr, -PSlog2) >= LSH(LowAdr, -PSlog2)) THEN
  1371. virtAdr := physAdr (* directly mapped *)
  1372. ELSE
  1373. ofs := physAdr MOD PS;
  1374. DEC(physAdr, ofs); INC(size, ofs); (* align start to page boundary *)
  1375. INC(size, (-size) MOD PS); (* align end to page boundary *)
  1376. Acquire(Memory);
  1377. NewVirtual(virtAdr, size);
  1378. IF virtAdr # NilAdr THEN
  1379. IF ~MapDirect(virtAdr, size, physAdr + UserPage) THEN
  1380. DisposeVirtual(virtAdr, size);
  1381. virtAdr := NilAdr
  1382. END
  1383. END;
  1384. Release(Memory);
  1385. IF TraceVerbose THEN
  1386. Acquire (TraceOutput);
  1387. Trace.String("Mapping ");
  1388. Trace.IntSuffix(SHORT(size), 1, "B"); Trace.String(" at ");
  1389. Trace.Address (physAdr); Trace.String (" - "); Trace.Address (physAdr+size-1);
  1390. IF virtAdr = NilAdr THEN
  1391. Trace.String(" failed")
  1392. ELSE
  1393. Trace.String (" to "); Trace.Address (virtAdr);
  1394. IF ofs # 0 THEN Trace.String (", offset "); Trace.Int(SHORT(ofs), 0) END
  1395. END;
  1396. Trace.Ln;
  1397. Release (TraceOutput);
  1398. END;
  1399. IF virtAdr # NilAdr THEN INC(virtAdr, ofs) END (* adapt virtual address to correct offset *)
  1400. END
  1401. END MapPhysical;
  1402. (** Unmap an area previously mapped with MapPhysical. *)
  1403. PROCEDURE UnmapPhysical*(virtAdr: ADDRESS; size: SIZE);
  1404. (* to do *)
  1405. END UnmapPhysical;
  1406. (** Return the physical address of the specified range of memory, or NilAdr if the range is not contiguous. It is the caller's responsibility to assure the range remains allocated during the time it is in use. *)
  1407. PROCEDURE PhysicalAdr*(adr: ADDRESS; size: SIZE): ADDRESS;
  1408. VAR physAdr, mapped, expected: ADDRESS;
  1409. BEGIN
  1410. IF (LSH(adr, -PSlog2) <= topPageNum) & (LSH(adr+size-1, -PSlog2) <= topPageNum) THEN
  1411. RETURN adr (* directly mapped *)
  1412. ELSE
  1413. Acquire(Memory);
  1414. mapped := MappedPage(adr);
  1415. Release(Memory);
  1416. IF ODD(mapped) & (size > 0) THEN (* mapped, and range not empty or too big *)
  1417. physAdr := mapped - mapped MOD PS + adr MOD PS; (* strip paging bits and add page offset *)
  1418. (* now check if whole range is physically contiguous *)
  1419. DEC(size, PS - adr MOD PS); (* subtract distance to current page end *)
  1420. IF size > 0 THEN (* range crosses current page end *)
  1421. expected := LSH(mapped, -PSlog2)+1; (* expected physical page *)
  1422. LOOP
  1423. INC(adr, PS); (* step to next page *)
  1424. Acquire(Memory);
  1425. mapped := MappedPage(adr);
  1426. Release(Memory);
  1427. IF ~ODD(mapped) OR (LSH(mapped, -PSlog2) # expected) THEN
  1428. physAdr := NilAdr; EXIT
  1429. END;
  1430. DEC(size, PS);
  1431. IF size <= 0 THEN EXIT END; (* ok *)
  1432. INC(expected)
  1433. END
  1434. ELSE
  1435. (* ok, skip *)
  1436. END
  1437. ELSE
  1438. physAdr := NilAdr
  1439. END;
  1440. RETURN physAdr
  1441. END
  1442. END PhysicalAdr;
  1443. (** Translate a virtual address range to num ranges of physical address. num returns 0 on error. *)
  1444. PROCEDURE TranslateVirtual*(virtAdr: ADDRESS; size: SIZE; VAR num: LONGINT; VAR physAdr: ARRAY OF Range);
  1445. VAR ofs, phys1: ADDRESS; size1: SIZE;
  1446. BEGIN
  1447. Acquire(Memory);
  1448. num := 0;
  1449. LOOP
  1450. IF size = 0 THEN EXIT END;
  1451. IF num = LEN(physAdr) THEN num := 0; EXIT END; (* index check *)
  1452. ofs := virtAdr MOD PS; (* offset in page *)
  1453. size1 := PS - ofs; (* distance to next page boundary *)
  1454. IF size1 > size THEN size1 := size END;
  1455. phys1 := MappedPage(virtAdr);
  1456. IF ~ODD(phys1) THEN num := 0; EXIT END; (* page not present *)
  1457. physAdr[num].adr := phys1 - phys1 MOD PS + ofs;
  1458. physAdr[num].size := size1; INC(num);
  1459. INC(virtAdr, size1); DEC(size, size1)
  1460. END;
  1461. IF num = 0 THEN physAdr[0].adr := NilAdr; physAdr[0].size := 0 END;
  1462. Release(Memory)
  1463. END TranslateVirtual;
  1464. (** Return information on free memory in Kbytes. *)
  1465. PROCEDURE GetFreeK*(VAR total, lowFree, highFree: SIZE);
  1466. CONST KperPage = PS DIV 1024;
  1467. BEGIN
  1468. Acquire(Memory);
  1469. total := totalPages * KperPage;
  1470. lowFree := freeLowPages * KperPage;
  1471. highFree := freeHighPages * KperPage;
  1472. Release(Memory)
  1473. END GetFreeK;
  1474. (** -- Stack -- *)
  1475. (** Extend the stack to include the specified address, if possible. Returns TRUE iff ok. *)
  1476. PROCEDURE ExtendStack*(VAR s: Stack; virtAdr: ADDRESS): BOOLEAN;
  1477. VAR phys: ADDRESS; ok: BOOLEAN;
  1478. BEGIN
  1479. Acquire(Memory);
  1480. ok := FALSE;
  1481. IF (virtAdr < s.high) & (virtAdr >= s.low) THEN
  1482. DEC(virtAdr, virtAdr MOD PS); (* round down to page boundary *)
  1483. IF Stats & (virtAdr < s.adr-PS) THEN INC(Nbigskips) END;
  1484. IF ODD(MappedPage(virtAdr)) THEN (* already mapped *)
  1485. ok := TRUE
  1486. ELSE
  1487. NewPage(phys);
  1488. IF phys # NilAdr THEN
  1489. IF MapPage(virtAdr, phys + UserPage) THEN
  1490. IF virtAdr < s.adr THEN
  1491. s.adr := virtAdr
  1492. ELSE
  1493. IF Stats THEN INC(Nfilled) END
  1494. END;
  1495. ok := TRUE
  1496. ELSE
  1497. DisposePage(phys)
  1498. END
  1499. END
  1500. END
  1501. END;
  1502. Release(Memory);
  1503. RETURN ok
  1504. END ExtendStack;
  1505. (** Allocate a stack. Parameter initSP returns initial stack pointer value. *)
  1506. PROCEDURE NewStack*(VAR s: Stack; process: ANY; VAR initSP: ADDRESS);
  1507. VAR adr, phys: ADDRESS; old: HUGEINT; free: SET;
  1508. BEGIN
  1509. ASSERT(InitUserStackSize = PS); (* for now *)
  1510. Acquire(Memory);
  1511. IF Stats THEN INC(NnewStacks) END;
  1512. old := freeStackIndex;
  1513. LOOP
  1514. IF Stats THEN INC(NnewStackLoops) END;
  1515. free := freeStack[freeStackIndex];
  1516. IF free # {} THEN
  1517. adr := 0; WHILE ~(adr IN free) DO INC(adr) END; (* BTW: BSF instruction is not faster *)
  1518. IF Stats THEN INC(NnewStackInnerLoops, adr+1) END;
  1519. EXCL(freeStack[freeStackIndex], adr);
  1520. adr := 10000000H + (freeStackIndex*SetSize + adr)*MaxUserStackSize; (*StackAreaAdr *)
  1521. EXIT
  1522. END;
  1523. INC(freeStackIndex);
  1524. IF freeStackIndex = LEN(freeStack) THEN freeStackIndex := 0 END;
  1525. IF freeStackIndex = old THEN HALT(1503) END (* out of stack space *)
  1526. END;
  1527. NewPage(phys); ASSERT(phys # NilAdr); (* allocate one physical page at first *)
  1528. s.high := adr + MaxUserStackSize; s.low := adr + UserStackGuardSize;
  1529. s.adr := s.high - InitUserStackSize; (* at the top of the virtual area *)
  1530. initSP := s.high-AddressSize;
  1531. IF ~MapPage(s.adr, phys + UserPage) THEN HALT(99) END;
  1532. SYSTEM.PUT (initSP, process);
  1533. Release(Memory)
  1534. END NewStack;
  1535. (** Return the process pointer set when the current user stack was created (must be running on user stack). *)
  1536. PROCEDURE -GetProcessPtr* (): ANY;
  1537. CODE {SYSTEM.AMD64}
  1538. MOV RAX, -MaxUserStackSize
  1539. AND RAX, RSP
  1540. MOV RAX, [RAX + MaxUserStackSize - 8]
  1541. POP RBX; pointer return passed via stack
  1542. MOV [RBX], RAX
  1543. END GetProcessPtr;
  1544. (** True iff current process works on a kernel stack *)
  1545. PROCEDURE WorkingOnKernelStack* (): BOOLEAN;
  1546. VAR id: LONGINT; sp: ADDRESS;
  1547. BEGIN
  1548. ASSERT(KernelStackSize # MaxUserStackSize - UserStackGuardSize); (* detection does only work with this assumption *)
  1549. sp := CurrentSP ();
  1550. id := ID ();
  1551. RETURN (sp >= procm[id].stack.low) & (sp <= procm[id].stack.high)
  1552. END WorkingOnKernelStack;
  1553. (** Deallocate a stack. Current thread should not dispose its own stack. Uses privileged instructions. *)
  1554. PROCEDURE DisposeStack*(CONST s: Stack);
  1555. VAR adr, phys: ADDRESS;
  1556. BEGIN
  1557. (* First make sure there are no references to virtual addresses of the old stack in the TLBs. This is required because we are freeing the pages, and they could be remapped later at different virtual addresses. DisposeStack will only be called from the thread finalizer, which ensures that the user will no longer be referencing this memory. Therefore we can make this upcall from outside the locked region, avoiding potential deadlock. *)
  1558. GlobalFlushTLB; (* finalizers are only called after Processors has initialized this upcall *)
  1559. Acquire(Memory);
  1560. IF Stats THEN INC(NdisposeStacks) END;
  1561. adr := s.adr; (* unmap and deallocate all pages of stack *)
  1562. REPEAT
  1563. phys := UnmapPage(adr); (* TLB was flushed and no intermediate references possible to unreachable stack *)
  1564. IF ODD(phys) THEN DisposePage(phys - phys MOD PS) END;
  1565. INC(adr, PS)
  1566. UNTIL adr = s.high;
  1567. adr := (adr - MaxUserStackSize - StackAreaAdr) DIV MaxUserStackSize;
  1568. INCL(freeStack[adr DIV 32], adr MOD 32);
  1569. Release(Memory)
  1570. END DisposeStack;
  1571. (** Check if the specified stack is valid. *)
  1572. PROCEDURE ValidStack*(CONST s: Stack; sp: ADDRESS): BOOLEAN;
  1573. VAR valid: BOOLEAN;
  1574. BEGIN
  1575. Acquire(Memory);
  1576. valid := (sp MOD 4 = 0) & (sp >= s.adr) & (sp <= s.high);
  1577. WHILE valid & (sp < s.high) DO
  1578. valid := ODD(MappedPage(sp));
  1579. INC(sp, PS)
  1580. END;
  1581. Release(Memory);
  1582. RETURN valid
  1583. END ValidStack;
  1584. (** Update the stack snapshot of the current processor. (for Processors) *)
  1585. PROCEDURE UpdateState*;
  1586. VAR id: LONGINT;
  1587. BEGIN
  1588. ASSERT(CS () MOD 4 = 0); (* to get kernel stack pointer *)
  1589. id := ID ();
  1590. ASSERT(procm[id].stack.high # 0); (* current processor stack has been assigned *)
  1591. procm[id].sp := CurrentBP () (* instead of ESP, just fetch EBP of current procedure (does not contain pointers) *)
  1592. END UpdateState;
  1593. (** Get kernel stack regions for garbage collection. (for Heaps) *)
  1594. PROCEDURE GetKernelStacks*(VAR stack: ARRAY OF Stack);
  1595. VAR i: LONGINT;
  1596. BEGIN (* {UpdateState has been called by each processor} *)
  1597. FOR i := 0 TO MaxCPU-1 DO
  1598. stack[i].adr := procm[i].sp;
  1599. stack[i].high := procm[i].stack.high
  1600. END
  1601. END GetKernelStacks;
  1602. (* Init page tables (paging still disabled until EnableMM is called). *)
  1603. PROCEDURE InitPages;
  1604. VAR i, j: HUGEINT; phys, lTop, mTop: ADDRESS;
  1605. BEGIN
  1606. (* get top of high and low memory *)
  1607. mTop := memTop;
  1608. DEC(mTop, mTop MOD PS); (* mTop MOD PS = 0 *)
  1609. topPageNum := LSH(mTop-1, -PSlog2);
  1610. lTop := lowTop;
  1611. DEC(lTop, lTop MOD PS); (* lTop MOD PS = 0 *)
  1612. (* initialize NewDirectPage and SetHeapEndAdr (get kernel range) *)
  1613. SYSTEM.GET (LinkAdr + EndBlockOfs, heapEndAdr);
  1614. (* ug *) (*
  1615. SYSTEM.PUT (heapEndAdr, NIL); (* set tag to NIL *)
  1616. INC(heapEndAdr, AddressSize); (* space for NIL *)
  1617. *)
  1618. (* ug: not needed, extension of heap done in GetStaticHeap anyway
  1619. INC(heapEndAdr, K); (* space for free heap block descriptor of type Heaps.HeapBlockDesc at heapEndAdr, initialization is done in Heaps *)
  1620. INC(heapEndAdr, (-heapEndAdr) MOD PS); (* round up to page size *)
  1621. *)
  1622. pageHeapAdr := mTop;
  1623. freeHighPages := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2);
  1624. IF TraceVerbose THEN
  1625. Trace.String("Kernel: "); Trace.Address (LinkAdr); Trace.String(" .. ");
  1626. Trace.Address (heapEndAdr-1); Trace.Ln;
  1627. Trace.String ("High: "); Trace.Address (heapEndAdr); Trace.String(" .. ");
  1628. Trace.Address (pageHeapAdr-1); Trace.String(" = "); Trace.Int (SHORT(freeHighPages),0);
  1629. Trace.StringLn (" free pages")
  1630. END;
  1631. (* initialize empty free page stack *)
  1632. NewDirectPage(pageStackAdr); ASSERT(pageStackAdr # NilAdr);
  1633. SYSTEM.PUT (pageStackAdr+NodeSP, SYSTEM.VAL (ADDRESS, MinSP));
  1634. SYSTEM.PUT (pageStackAdr+NodeNext, SYSTEM.VAL (ADDRESS, NilAdr));
  1635. SYSTEM.PUT (pageStackAdr+NodePrev, SYSTEM.VAL (ADDRESS, NilAdr));
  1636. (* free low pages *)
  1637. freeLowPage := NilAdr; freeLowPages := 0;
  1638. i := lTop DIV PS; j := LowAdr DIV PS;
  1639. IF TraceVerbose THEN
  1640. Trace.String("Low: "); Trace.Address (j*PS); Trace.String (".."); Trace.Address (i*PS-1)
  1641. END;
  1642. REPEAT
  1643. DEC(i); phys := i*PS;
  1644. SYSTEM.PUT (phys, freeLowPage); (* phys.next := freeLowPage *)
  1645. freeLowPage := phys; INC(freeLowPages)
  1646. UNTIL i = j;
  1647. IF TraceVerbose THEN
  1648. Trace.String(" = "); Trace.Int(SHORT(freeLowPages), 1); Trace.StringLn (" free pages")
  1649. END;
  1650. totalPages := LSH(memTop - M + lowTop + dmaSize + PS, -PSlog2); (* what BIOS gave us *)
  1651. (* stacks *)
  1652. ASSERT((StackAreaAdr MOD MaxUserStackSize = 0) & (StackAreaSize MOD MaxUserStackSize = 0));
  1653. FOR i := 0 TO LEN(freeStack)-1 DO freeStack[i] := {0..SetSize-1} END;
  1654. FOR i := MaxUserStacks TO LEN(freeStack)*SetSize-1 DO EXCL(freeStack[i DIV SetSize], i MOD SetSize) END;
  1655. freeStackIndex := 0;
  1656. (* mappings *)
  1657. mapTop := MapAreaAdr;
  1658. (* create the address space *)
  1659. NewPage(kernelPML4); ASSERT(kernelPML4 # NilAdr);
  1660. Fill32(kernelPML4, TPS, PageNotPresent);
  1661. IF ~MapDirect(LowAdr, memTop-LowAdr, LowAdr + UserPage) THEN HALT(99) END (* map heap direct *)
  1662. END InitPages;
  1663. (* Generate a memory segment descriptor. type IN {0..7} & dpl IN {0..3}.
  1664. type
  1665. 0 data, expand-up, read-only
  1666. 1 data, expand-up, read-write
  1667. 2 data, expand-down, read-only
  1668. 3 data, expand-down, read-write
  1669. 4 code, non-conforming, execute-only
  1670. 5 code, non-conforming, execute-read
  1671. 6 code, conforming, execute-only
  1672. 7 code, conforming, execute-read
  1673. *)
  1674. PROCEDURE GenCodeSegDesc (dpl, base, limit: LONGINT; conforming, longmode: BOOLEAN; VAR sd: SegDesc);
  1675. VAR s: SET;
  1676. BEGIN
  1677. sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H;
  1678. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1679. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1680. s := s + {9, 11, 12, 15, 23}; (* present=1, D = 0*)
  1681. IF conforming THEN INCL(s, 10) END;
  1682. IF longmode THEN INCL(s, 21) ELSE INCL (s, 22) END; (* long mode flag or default 32-bit operand *)
  1683. sd.high := SYSTEM.VAL(LONGINT, s)
  1684. END GenCodeSegDesc;
  1685. PROCEDURE GenDataSegDesc (dpl, base, limit: LONGINT; VAR sd: SegDesc);
  1686. VAR s: SET;
  1687. BEGIN
  1688. sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H;
  1689. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1690. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1691. s := s + {9, 12, 15, 22, 23}; (* present=1 *)
  1692. sd.high := SYSTEM.VAL(LONGINT, s)
  1693. END GenDataSegDesc;
  1694. (* Generate a 64-bit TSS descriptor (16bytes). *)
  1695. PROCEDURE GenTSSDesc(base: ADDRESS; limit, dpl: LONGINT; VAR sdl, sdh: SegDesc);
  1696. VAR s: SET;
  1697. BEGIN
  1698. sdl.low := SYSTEM.VAL(LONGINT, ASH(base MOD 10000H, 16) + limit MOD 10000H);
  1699. s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) +
  1700. ASH(dpl, 13) + ASH(base, -16) MOD 100H);
  1701. s := s + {8, 11, 15}; (* type=non-busy TSS, present=1, AVL=0, 32-bit=0 *)
  1702. sdl.high := SYSTEM.VAL(LONGINT, s);
  1703. sdh.low := SYSTEM.VAL(LONGINT, base DIV 10000000H);
  1704. sdh.high := 0;
  1705. END GenTSSDesc;
  1706. (* Initialize segmentation. *)
  1707. PROCEDURE InitSegments;
  1708. VAR i: LONGINT;
  1709. BEGIN
  1710. (* limits and bases are ignored in 64-bit mode *)
  1711. (* GDT 0: Null segment *)
  1712. gdt[0].low := 0; gdt[0].high := 0;
  1713. (* GDT 1: 32-bit Kernel code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1714. GenCodeSegDesc(0, 0, M-1, FALSE, FALSE, gdt[1]);
  1715. (* GDT 2: 64-bit Kernel code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1716. GenCodeSegDesc(0, 0, M-1, FALSE, TRUE, gdt[2]);
  1717. (* GDT 3: 32-bit User code: non-conforming, execute-read, base 0, limit 4G, PL 0 *)
  1718. GenCodeSegDesc(0, 0, M-1, TRUE, FALSE, gdt[3]);
  1719. (* GDT 4: 64-bit User code: conforming, execute-read, base 0, limit 4G, PL 0 *)
  1720. GenCodeSegDesc(0, 0, M-1, TRUE, TRUE, gdt[4]);
  1721. (* GDT 5: Kernel stack: read-write, base 0, limit 4G, PL 0 *)
  1722. GenDataSegDesc(0, 0, M-1, gdt[5]);
  1723. (* GDT 6: User stack: read-write, base 0, limit 4G, PL 3 *)
  1724. GenDataSegDesc(3, 0, M-1, gdt[6]);
  1725. (* GDT 7: User/Kernel data: expand-up, read-write, base 0, limit 4G, PL 3 *)
  1726. GenDataSegDesc(3, 0, M-1, gdt[7]);
  1727. FOR i := 0 TO MaxCPU-1 DO
  1728. GenTSSDesc(ADDRESSOF(procm[i].tss), SIZEOF(TSSDesc)-1, 0, gdt[TSSOfs+i*2], gdt[TSSOfs+i*2 + 1]);
  1729. procm[i].sp := 0; procm[i].stack.high := 0
  1730. END
  1731. END InitSegments;
  1732. (* Enable segmentation on the current processor. *)
  1733. PROCEDURE EnableSegments;
  1734. BEGIN
  1735. LoadGDT(ADDRESSOF(gdt[0]), SIZEOF(GDT)-1);
  1736. LoadSegRegs(DataSel)
  1737. END EnableSegments;
  1738. (* Allocate a kernel stack. *)
  1739. PROCEDURE NewKernelStack(VAR stack: Stack);
  1740. VAR phys, virt: ADDRESS; size: SIZE;
  1741. BEGIN
  1742. size := KernelStackSize;
  1743. NewVirtual(virt, size + PS); (* add one page for overflow protection *)
  1744. ASSERT(virt # NilAdr, 1502);
  1745. INC(virt, PS); (* leave page open at bottom *)
  1746. stack.low := virt;
  1747. stack.adr := virt; (* return stack *)
  1748. REPEAT
  1749. NewPage(phys); ASSERT(phys # NilAdr);
  1750. IF ~MapPage(virt, phys + KernelPage) THEN HALT(99) END;
  1751. DEC(size, PS); INC(virt, PS)
  1752. UNTIL size = 0;
  1753. stack.high := virt
  1754. END NewKernelStack;
  1755. (* Set task register *)
  1756. PROCEDURE -SetTR(tr: ADDRESS);
  1757. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1758. POP RAX
  1759. LTR AX
  1760. END SetTR;
  1761. (* Enable memory management and switch to new stack in virtual space.
  1762. Stack layout:
  1763. caller1 return
  1764. caller1 RBP <-- caller0 RBP
  1765. [caller0 locals]
  1766. 04 caller0 return
  1767. 00 caller0 RBP <-- RBP
  1768. locals <-- RSP
  1769. *)
  1770. PROCEDURE -EnableMM(pml4Base, rsp: ADDRESS);
  1771. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1772. POP RBX
  1773. POP RAX
  1774. MOV RCX, [RBP + 8] ; caller0 return
  1775. MOV RDX, [RBP] ; caller0 RBP
  1776. MOV RDX, [RDX + 8] ; caller 1 return
  1777. MOV CR3, RAX ; pml4 page translation base address
  1778. XOR RAX, RAX
  1779. MOV [RBX - 8], RAX ; not UserStackSel (cf. GetUserStack)
  1780. MOV [RBX - 16], RDX ; caller1 return on new stack
  1781. MOV [RBX - 24], RAX ; caller1 RBP on new stack
  1782. LEA RBP, [RBX - 24] ; new stack top
  1783. MOV RSP, RBP
  1784. JMP RCX
  1785. END EnableMM;
  1786. (** -- Initialization -- *)
  1787. (** Initialize memory management.
  1788. o every processor calls this once during initialization
  1789. o mutual exclusion with other processors must be guaranteed by the caller
  1790. o interrupts must be off
  1791. o segmentation and paging is enabled
  1792. o return is on the new stack => caller must have no local variables
  1793. *)
  1794. PROCEDURE InitMemory*;
  1795. VAR id: LONGINT;
  1796. BEGIN
  1797. EnableSegments;
  1798. (* allocate stack *)
  1799. id := ID ();
  1800. NewKernelStack(procm[id].stack);
  1801. procm[id].sp := 0;
  1802. (* initialize TSS *)
  1803. Fill32(ADDRESSOF(procm[id].tss), SIZEOF(TSSDesc), 0);
  1804. procm[id].tss.RSP0 := procm[id].stack.high; (* kernel stack org *)
  1805. procm[id].tss.IOMapBaseAddress := -1; (* no bitmap *)
  1806. (* enable paging and switch stack *)
  1807. SetTR(KernelTR + id*16);
  1808. EnableMM(kernelPML4, procm[id].tss.RSP0)
  1809. END InitMemory;
  1810. (** Initialize a boot page for MP booting. Parameter physAdr returns the physical address of a low page. *)
  1811. PROCEDURE InitBootPage*(start: Startup; VAR physAdr: ADDRESS);
  1812. CONST BootOfs = 800H;
  1813. VAR adr, a: ADDRESS;
  1814. BEGIN
  1815. Acquire(Memory);
  1816. NewLowPage(physAdr);
  1817. Release(Memory);
  1818. ASSERT((physAdr # NilAdr) & (physAdr >= 0) & (physAdr < M) & (physAdr MOD PS = 0));
  1819. adr := physAdr + BootOfs;
  1820. a := adr;
  1821. (* put binary code copy of SMP.Bin to address a (cf. BinToCode.Mod ) *)
  1822. SYSTEM.PUT32(a, 0002F10EBH); INC (a, 4);
  1823. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1824. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1825. SYSTEM.PUT32(a, 000000000H); INC (a, 4);
  1826. SYSTEM.PUT32(a, 031660000H); INC (a, 4);
  1827. SYSTEM.PUT32(a, 066C88CC0H); INC (a, 4);
  1828. SYSTEM.PUT32(a, 02E04E0C1H); INC (a, 4);
  1829. SYSTEM.PUT32(a, 04A060966H); INC (a, 4);
  1830. SYSTEM.PUT32(a, 0010F2E08H); INC (a, 4);
  1831. SYSTEM.PUT32(a, 02E08081EH); INC (a, 4);
  1832. SYSTEM.PUT32(a, 00216010FH); INC (a, 4);
  1833. SYSTEM.PUT32(a, 0C4896608H); INC (a, 4);
  1834. SYSTEM.PUT32(a, 000C48166H); INC (a, 4);
  1835. SYSTEM.PUT32(a, 00F000008H); INC (a, 4);
  1836. SYSTEM.PUT32(a, 00F66C020H); INC (a, 4);
  1837. SYSTEM.PUT32(a, 00F00E8BAH); INC (a, 4);
  1838. SYSTEM.PUT32(a, 0662EC022H); INC (a, 4);
  1839. SYSTEM.PUT32(a, 0080E1E8BH); INC (a, 4);
  1840. SYSTEM.PUT32(a, 00850EA66H); INC (a, 4);
  1841. SYSTEM.PUT32(a, 000080000H); INC (a, 4);
  1842. SYSTEM.PUT32(a, 00FE0200FH); INC (a, 4);
  1843. SYSTEM.PUT32(a, 00F05E8BAH); INC (a, 4);
  1844. SYSTEM.PUT32(a, 0220FE022H); INC (a, 4);
  1845. SYSTEM.PUT32(a, 00080B9DBH); INC (a, 4);
  1846. SYSTEM.PUT32(a, 0320FC000H); INC (a, 4);
  1847. SYSTEM.PUT32(a, 008E8BA0FH); INC (a, 4);
  1848. SYSTEM.PUT32(a, 0200F300FH); INC (a, 4);
  1849. SYSTEM.PUT32(a, 0E8BA0FC0H); INC (a, 4);
  1850. SYSTEM.PUT32(a, 0C0220F1FH); INC (a, 4);
  1851. SYSTEM.PUT32(a, 0000000EAH); INC (a, 4);
  1852. SYSTEM.PUT16(a, 01000H); INC (a, 2);
  1853. SYSTEM.PUT8(a, 000H); INC (a);
  1854. (* the following offsets must be patched and can be reported
  1855. by the assembler when assembling SMP.S with: PCAAMD64.Assemble SMP.S l~ *)
  1856. SYSTEM.PUT32 (adr+14, SYSTEM.VAL (LONGINT, kernelPML4)); (* cf. label PML4BASE *)
  1857. SYSTEM.PUT32 (adr+117, SYSTEM.VAL (LONGINT, start)); (* not a method *) (* cf. label KENTRY *)
  1858. SYSTEM.PUT32 (adr+4, SYSTEM.VAL (LONGINT, ADDRESSOF(gdt[0]))); (* cf. label GDT *)
  1859. (* jump at start *)
  1860. SYSTEM.PUT8(physAdr, 0EAX); (* jmp far *)
  1861. SYSTEM.PUT32(physAdr + 1, ASH(physAdr, 16-4) + BootOfs) (* seg:ofs *)
  1862. END InitBootPage;
  1863. (** The BP in a MP system calls this to map the APIC physical address directly. *)
  1864. PROCEDURE InitAPICArea*(adr: ADDRESS; size: SIZE);
  1865. BEGIN
  1866. (* ASSERT((size = PS) & (adr >= IntelAreaAdr) & (adr+size-1 < IntelAreaAdr+IntelAreaSize)); *)
  1867. IF ~MapDirect(adr, size, adr + UserPage) THEN HALT(99) END
  1868. END InitAPICArea;
  1869. (* Set machine-dependent parameters gcThreshold, expandMin, heapMinKB and heapMaxKB *)
  1870. PROCEDURE SetGCParams*;
  1871. VAR size, t: SIZE;
  1872. BEGIN
  1873. GetFreeK(size, t, t); (* size is total memory size in KB *)
  1874. heapMinKB := size * HeapMin DIV 100;
  1875. heapMaxKB := size * HeapMax DIV 100;
  1876. expandMin := size * ExpandRate DIV 100 * 1024;
  1877. IF expandMin < 0 THEN expandMin := MAX(LONGINT) END;
  1878. gcThreshold := size * Threshold DIV 100 * 1024;
  1879. IF gcThreshold < 0 THEN gcThreshold := MAX(LONGINT) END
  1880. END SetGCParams;
  1881. (** Get first memory block and first free address, heap area in first memory block is automatically expanded to account for the first
  1882. few calls to NEW *)
  1883. PROCEDURE GetStaticHeap*(VAR beginBlockAdr, endBlockAdr, freeBlockAdr: ADDRESS);
  1884. BEGIN
  1885. beginBlockAdr := initialMemBlock.beginBlockAdr;
  1886. endBlockAdr := initialMemBlock.endBlockAdr;
  1887. freeBlockAdr := beginBlockAdr;
  1888. END GetStaticHeap;
  1889. (* returns if an address is a currently allocated heap address *)
  1890. PROCEDURE ValidHeapAddress*(p: ADDRESS): BOOLEAN;
  1891. BEGIN
  1892. RETURN (p >= memBlockHead.beginBlockAdr) & (p <= memBlockTail.endBlockAdr)
  1893. OR (p>=401000H) & (p<=500000H) (*! guess until kernel size known *)
  1894. END ValidHeapAddress;
  1895. (** Jump from kernel to user mode. Every processor calls this during initialization. *)
  1896. PROCEDURE JumpToUserLevel*(userRBP: ADDRESS);
  1897. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  1898. PUSH UserStackSel ; SS3
  1899. PUSH QWORD [RBP + userRBP] ; RSP3
  1900. PUSHFQ ; RFLAGS3
  1901. PUSH User64CodeSel ; CS3
  1902. CALL DWORD L1 ; PUSH L1 (RIP3)
  1903. L1:
  1904. ADD QWORD [RSP], BYTE 7 ; adjust RIP3 to L2 (L2-L1 should be 7)
  1905. IRETQ ; switch to level 3 and continue at following instruction
  1906. L2:
  1907. POP RBP ; from level 3 stack (refer to AosActive.NewProcess)
  1908. RET ; jump to body of first active object; cf. Objects.NewProcess
  1909. END JumpToUserLevel;
  1910. (* should ensure that a given address can be represented in the legacy 4GB address space
  1911. replacement for unsafe: x := SYSTEM.VAL (LONGINT, y) with y of type ADDRESS
  1912. -> better rewrite client code! this procedure should be redundant and removable in the end! *)
  1913. PROCEDURE Ensure32BitAddress*(adr: ADDRESS): Address32;
  1914. BEGIN
  1915. (* TODO *)
  1916. ASSERT (Is32BitAddress (adr), 9876);
  1917. RETURN SYSTEM.VAL (Address32, adr)
  1918. END Ensure32BitAddress;
  1919. PROCEDURE Is32BitAddress*(adr: ADDRESS): BOOLEAN;
  1920. BEGIN RETURN SYSTEM.VAL (Address32, adr) = adr;
  1921. END Is32BitAddress;
  1922. (**
  1923. * Flush Data Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1924. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1925. * left empty on Intel architecture.
  1926. *)
  1927. PROCEDURE FlushDCacheRange * (adr: ADDRESS; len: LONGINT);
  1928. END FlushDCacheRange;
  1929. (**
  1930. * Invalidate Data Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1931. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1932. * left empty on Intel architecture.
  1933. *)
  1934. PROCEDURE InvalidateDCacheRange * (adr: ADDRESS; len: LONGINT);
  1935. END InvalidateDCacheRange;
  1936. (**
  1937. * Invalidate Instruction Cache for the specified virtual address range. If len is negative, flushes the whole cache.
  1938. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be
  1939. * left empty on Intel architecture.
  1940. *)
  1941. PROCEDURE InvalidateICacheRange * (adr: ADDRESS; len: LONGINT);
  1942. END InvalidateICacheRange;
  1943. (* Unexpected - Default interrupt handler *)
  1944. PROCEDURE Unexpected(VAR state: State);
  1945. VAR int: HUGEINT; isr, irr: CHAR;
  1946. BEGIN
  1947. int := state.INT;
  1948. IF HandleSpurious & ((int >= IRQ0) & (int <= MaxIRQ) OR (int = MPSPU)) THEN (* unexpected IRQ, get more info *)
  1949. IF (int >= IRQ8) & (int <= IRQ15) THEN
  1950. Portout8 (IntB0, 0BX); Portin8(IntB0, isr);
  1951. Portout8 (IntB0, 0AX); Portin8(IntB0, irr)
  1952. ELSIF (int >= IRQ0) & (int <= IRQ7) THEN
  1953. Portout8 (IntA0, 0BX); Portin8(IntA0, isr);
  1954. Portout8 (IntA0, 0AX); Portin8(IntA0, irr)
  1955. ELSE
  1956. isr := 0X; irr := 0X
  1957. END;
  1958. IF TraceSpurious THEN
  1959. Acquire (TraceOutput);
  1960. Trace.String("INT"); Trace.Int(SHORT(int), 1);
  1961. Trace.Hex(ORD(isr), -3); Trace.Hex(ORD(irr), -2); Trace.Ln;
  1962. Release (TraceOutput);
  1963. END
  1964. ELSE
  1965. Acquire (TraceOutput);
  1966. Trace.StringLn ("Unexpected interrupt");
  1967. Trace.Memory(ADDRESSOF(state), SIZEOF(State)-4*8); (* exclude last 4 fields *)
  1968. IF int = 3 THEN (* was a HALT or ASSERT *)
  1969. (* It seems that no trap handler is installed (Traps not linked), so wait endlessly, while holding trace lock. This should quiten down the system, although other processors may possibly still run processes. *)
  1970. LOOP END
  1971. ELSE
  1972. Release (TraceOutput);
  1973. SetRAX(int);
  1974. HALT(1801) (* unexpected interrupt *)
  1975. END
  1976. END
  1977. END Unexpected;
  1978. (* InEnableIRQ - Enable a hardware interrupt (caller must hold module lock). *)
  1979. PROCEDURE -InEnableIRQ (int: HUGEINT);
  1980. CODE {SYSTEM.AMD64}
  1981. POP RBX
  1982. CMP RBX, IRQ7
  1983. JG cont2
  1984. IN AL, IntA1
  1985. SUB RBX, IRQ0
  1986. BTR RAX, RBX
  1987. OUT IntA1, AL
  1988. JMP end
  1989. cont2:
  1990. IN AL, IntB1
  1991. SUB RBX, IRQ8
  1992. BTR RAX, RBX
  1993. OUT IntB1, AL
  1994. end:
  1995. END InEnableIRQ;
  1996. (* InDisableIRQ - Disable a hardware interrupt (caller must hold module lock). *)
  1997. PROCEDURE -InDisableIRQ (int: HUGEINT);
  1998. CODE {SYSTEM.AMD64}
  1999. POP RBX
  2000. CMP RBX, IRQ7
  2001. JG cont2
  2002. IN AL, IntA1
  2003. SUB RBX, IRQ0
  2004. BTS RAX, RBX
  2005. OUT IntA1, AL
  2006. JMP end
  2007. cont2:
  2008. IN AL, IntB1
  2009. SUB RBX, IRQ8
  2010. BTS RAX, RBX
  2011. OUT IntB1, AL
  2012. end:
  2013. END InDisableIRQ;
  2014. (** EnableIRQ - Enable a hardware interrupt (also done automatically by InstallHandler). *)
  2015. PROCEDURE EnableIRQ* (int: HUGEINT);
  2016. BEGIN
  2017. (* ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2)); *)
  2018. Acquire(Interrupts); (* protect interrupt mask register *)
  2019. InEnableIRQ(int);
  2020. Release(Interrupts)
  2021. END EnableIRQ;
  2022. (** DisableIRQ - Disable a hardware interrupt. *)
  2023. PROCEDURE DisableIRQ* (int: HUGEINT);
  2024. BEGIN
  2025. ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2));
  2026. Acquire(Interrupts); (* protect interrupt mask register *)
  2027. InDisableIRQ(int);
  2028. Release(Interrupts)
  2029. END DisableIRQ;
  2030. (** InstallHandler - Install interrupt handler & enable IRQ if necessary.
  2031. On entry to h interrupts are disabled and may be enabled with Sti. After handling the interrupt
  2032. the state of interrupts are restored. The acknowledgement of a hardware interrupt is done automatically.
  2033. IRQs are mapped from IRQ0 to MaxIRQ. *)
  2034. PROCEDURE InstallHandler* (h: Handler; int: LONGINT);
  2035. VAR (* n: HandlerList; *) i: LONGINT; unexpected: Handler;
  2036. BEGIN
  2037. ASSERT(default.valid); (* initialized *)
  2038. ASSERT(int # IRQ2); (* IRQ2 is used for cascading and remapped to IRQ9 *)
  2039. Acquire(Interrupts);
  2040. (* FieldInterrupt may traverse list while it is being modified *)
  2041. i := 0;
  2042. unexpected := Unexpected;
  2043. IF intHandler[int, 0].handler # unexpected THEN
  2044. WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO
  2045. INC(i)
  2046. END;
  2047. IF i < MaxNumHandlers - 1 THEN
  2048. intHandler[int, i].valid := TRUE;
  2049. intHandler[int, i].handler := h;
  2050. ELSE
  2051. Acquire(TraceOutput);
  2052. Trace.String("Machine.InstallHandler: handler could not be installed for interrupt "); Trace.Int(int, 0);
  2053. Trace.String(" - too many handlers per interrupt number"); Trace.Ln;
  2054. Release(TraceOutput)
  2055. END
  2056. ELSE
  2057. intHandler[int, 0].handler := h;
  2058. IF (int >= IRQ0) & (int <= IRQ15) THEN InEnableIRQ(int) END
  2059. END;
  2060. Release(Interrupts)
  2061. END InstallHandler;
  2062. (** RemoveHandler - Uninstall interrupt handler & disable IRQ if necessary *)
  2063. PROCEDURE RemoveHandler* (h: Handler; int: LONGINT);
  2064. VAR (* p, c: HandlerList; *) i, j, foundIndex: LONGINT;
  2065. BEGIN
  2066. ASSERT(default.valid); (* initialized *)
  2067. Acquire(Interrupts);
  2068. (* find h *)
  2069. i := 0;
  2070. foundIndex := -1;
  2071. WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO
  2072. IF intHandler[int, i].handler = h THEN foundIndex := i END;
  2073. INC(i)
  2074. END;
  2075. IF foundIndex # -1 THEN
  2076. (* h found -> copy interrupt handlers higher than foundIndex *)
  2077. FOR j := foundIndex TO i - 2 DO
  2078. intHandler[int, j] := intHandler[int, j + 1]
  2079. END
  2080. END;
  2081. IF ~intHandler[int, 0].valid THEN
  2082. (* handler h was the only interrupt handler for interrupt int -> install the default handler *)
  2083. intHandler[int, 0] := default;
  2084. IF (int >= IRQ0) & (int <= IRQ15) THEN DisableIRQ(int) END
  2085. END;
  2086. Release(Interrupts)
  2087. END RemoveHandler;
  2088. (* Get control registers. *)
  2089. PROCEDURE GetCR0to4(VAR cr: ARRAY OF HUGEINT);
  2090. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2091. MOV RDI, [RBP + cr]
  2092. MOV RAX, CR0
  2093. XOR RBX, RBX ; CR1 is not documented
  2094. MOV RCX, CR2
  2095. MOV RDX, CR3
  2096. MOV [RDI + 0], RAX
  2097. MOV [RDI + 8], RBX
  2098. MOV [RDI + 16], RCX
  2099. MOV [RDI + 24], RDX
  2100. MOV RAX, CR4 ; Pentium only
  2101. MOV [RDI + 32], RAX
  2102. END GetCR0to4;
  2103. (* GetDR0to7 - Get debug registers. *)
  2104. PROCEDURE GetDR0to7(VAR dr: ARRAY OF HUGEINT);
  2105. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2106. MOV RDI, [RBP + dr]
  2107. MOV RAX, DR0
  2108. MOV RBX, DR1
  2109. MOV RCX, DR2
  2110. MOV RDX, DR3
  2111. MOV [RDI + 0], RAX
  2112. MOV [RDI + 8], RBX
  2113. MOV [RDI + 16], RCX
  2114. MOV [RDI + 24], RDX
  2115. XOR RAX, RAX ; DR4 is not documented
  2116. XOR RBX, RBX ; DR5 is not documented
  2117. MOV RCX, DR6
  2118. MOV RDX, DR7
  2119. MOV [RDI + 32], RAX
  2120. MOV [RDI + 40], RBX
  2121. MOV [RDI + 48], RCX
  2122. MOV [RDI + 56], RDX
  2123. END GetDR0to7;
  2124. (* CLTS - Clear task-switched flag. *)
  2125. PROCEDURE -CLTS;
  2126. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2127. CLTS
  2128. END CLTS;
  2129. (* GetFPU - Store floating-point environment (28 bytes) and mask all floating-point exceptions. *)
  2130. PROCEDURE -GetFPU(adr: ADDRESS);
  2131. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2132. POP RBX
  2133. FNSTENV [RBX] ; also masks all exceptions
  2134. FWAIT
  2135. END GetFPU;
  2136. (* CR2 - Get page fault address. *)
  2137. PROCEDURE -CR2* (): ADDRESS;
  2138. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2139. MOV RAX, CR2
  2140. END CR2;
  2141. (** GetExceptionState - Get exception state from interrupt state (and switch on interrupts). *)
  2142. PROCEDURE GetExceptionState* (VAR int: State; VAR exc: ExceptionState);
  2143. VAR id: LONGINT; level0: BOOLEAN;
  2144. BEGIN
  2145. (* save all state information while interrupts are still disabled *)
  2146. exc.halt := -int.INT; id := ID ();
  2147. IF int.INT = PF THEN exc.pf := CR2 () ELSE exc.pf := 0 END;
  2148. GetCR0to4(exc.CR);
  2149. GetDR0to7(exc.DR);
  2150. CLTS; (* ignore task switch flag *)
  2151. IF int.INT = MF THEN
  2152. GetFPU(ADDRESSOF(exc.FPU[0]));
  2153. int.PC := SYSTEM.VAL (ADDRESS, exc.FPU[3]); (* modify PC according to FPU info *)
  2154. (* set halt code according to FPU info *)
  2155. IF 2 IN exc.FPU[1] THEN exc.halt := -32 (* division by 0 *)
  2156. ELSIF 3 IN exc.FPU[1] THEN exc.halt := -33 (* overflow *)
  2157. ELSIF 0 IN exc.FPU[1] THEN exc.halt := -34 (* operation invalid *)
  2158. ELSIF 6 IN exc.FPU[1] THEN exc.halt := -35 (* stack fault *)
  2159. ELSIF 1 IN exc.FPU[1] THEN exc.halt := -36 (* denormalized *)
  2160. ELSIF 4 IN exc.FPU[1] THEN exc.halt := -37 (* underflow *)
  2161. ELSIF 5 IN exc.FPU[1] THEN exc.halt := -38 (* precision loss *)
  2162. ELSE (* {exc.halt = -16} *)
  2163. END
  2164. ELSE
  2165. Fill32(ADDRESSOF(exc.FPU[0]), LEN(exc.FPU)*SIZEOF(SET), 0)
  2166. END;
  2167. SetupFPU;
  2168. level0 := (int.CS MOD 4 = KernelLevel);
  2169. IF int.INT = BP THEN (* breakpoint (HALT) *)
  2170. IF level0 THEN
  2171. exc.halt := int.SP (* get halt code *)
  2172. (* if HALT(MAX(INTEGER)), leave halt code on stack when returning, but not serious problem.*)
  2173. ELSE
  2174. SYSTEM.GET (int.SP, exc.halt); (* get halt code from outer stack *)
  2175. IF exc.halt >= MAX(INTEGER) THEN INC (int.SP, AddressSize) END (* pop halt code from outer stack *)
  2176. END;
  2177. IF exc.halt < MAX(INTEGER) THEN DEC (int.PC) END; (* point to the INT 3 instruction (assume 0CCX, not 0CDX 3X) *)
  2178. ELSIF int.INT = OVF THEN (* overflow *)
  2179. DEC (int.PC) (* point to the INTO instruction (assume 0CEX, not 0CDX 4X) *)
  2180. ELSIF int.INT = PF THEN (* page fault *)
  2181. IF int.PC = 0 THEN (* reset PC to return address of indirect CALL to 0 *)
  2182. IF level0 THEN int.PC := int.SP (* ret adr *) ELSE SYSTEM.GET (int.SP, int.PC) END
  2183. END
  2184. END;
  2185. (* get segment registers *)
  2186. IF level0 THEN (* from same level, no ESP, SS etc. on stack *)
  2187. exc.SP := ADDRESSOF(int.SP) (* stack was here when interrupt happened *)
  2188. ELSE (* from outer level *)
  2189. exc.SP := int.SP
  2190. END
  2191. END GetExceptionState;
  2192. (* FieldInterrupt and FieldIRQ *)
  2193. (*
  2194. At entry to a Handler procedure the stack is as follows:
  2195. -- if (VMBit IN .RFLAGS) --
  2196. 176 -- .SS
  2197. 168 -- .RSP ; or haltcode
  2198. -- (VMBit IN .RFLAGS) OR (CS MOD 4 < .CS MOD 4) --
  2199. 160 -- .RFLAGS
  2200. 152 -- .CS
  2201. 144 -- .RIP ; rest popped by IRETD
  2202. 136 -- .ERR/RBP ; pushed by processor or glue code, popped by POP RBP
  2203. 128 -- .INT <-- .RSP0 ; pushed by glue code, popped by POP RBP
  2204. 120 -- .RAX
  2205. 112 -- .RCX
  2206. 104 -- .RDX
  2207. 96 -- .RBX
  2208. 88 -- .RSP0
  2209. 80 -- .RBP/ERR ; exchanged by glue code
  2210. 72 -- .RSI
  2211. 64 -- .RDI
  2212. 56 -- .R8
  2213. 48 -- .R9
  2214. 40 -- .R10
  2215. 32 -- .R11
  2216. 24 -- .R12
  2217. 16 -- .R13
  2218. 08 -- .R14
  2219. 00 48 .R15 <--- state: State
  2220. -- 40 ptr
  2221. -- 32 object pointer for DELEGATE
  2222. -- 24 TAG(state)
  2223. -- 16 ADR(state)
  2224. -- 08 RIP' (RET to FieldInterrupt)
  2225. -- 00 RBP' <-- RBP
  2226. -- -- locals <-- RSP
  2227. *)
  2228. PROCEDURE {NOPAF} FieldInterrupt;
  2229. CONST SizeOfHandlerRec = SIZEOF(HandlerRec);
  2230. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2231. entry:
  2232. ; fake PUSHAD (not available in 64-bit mode)
  2233. PUSH RAX
  2234. PUSH RCX
  2235. PUSH RDX
  2236. PUSH RBX ; (error code)
  2237. LEA RAX, [RSP - 4 * 8] ; (RSP minus the four pushed 64-bit registers)
  2238. PUSH RAX ; original value of RSP
  2239. PUSH RBP
  2240. PUSH RSI
  2241. PUSH RDI
  2242. PUSH R8
  2243. PUSH R9
  2244. PUSH R10
  2245. PUSH R11
  2246. PUSH R12
  2247. PUSH R13
  2248. PUSH R14
  2249. PUSH R15
  2250. LEA RBP, [RSP + 136]
  2251. MOV RBX, [RSP + 128] ; RBX = int number
  2252. IMUL RBX, RBX, MaxNumHandlers
  2253. IMUL RBX, RBX, SizeOfHandlerRec
  2254. ; todo: replace LEA by MOV when compiler supports this
  2255. LEA RAX, intHandler
  2256. ADD RAX, RBX ; address of intHandler[int, 0]
  2257. ; todo: replace LEA by MOV when compiler supports this
  2258. LEA RDX, stateTag
  2259. loop: ; call all handlers for the interrupt
  2260. MOV RCX, RSP
  2261. PUSH RAX ; save ptr for table
  2262. PUSH QWORD [RAX + 12] ; delegate
  2263. PUSH RDX ; TAG(state)
  2264. PUSH RCX ; ADR(state)
  2265. CALL QWORD [RAX+4] ; call handler
  2266. ADD RSP, 24
  2267. CLI ; handler may have re-enabled interrupts
  2268. POP RAX
  2269. ADD RAX, SizeOfHandlerRec
  2270. MOV RBX, [RAX]
  2271. CMP RBX, 0
  2272. JNE loop
  2273. ; fake POPAD (not available in 64-bit mode)
  2274. POP R15
  2275. POP R14
  2276. POP R13
  2277. POP R12
  2278. POP R11
  2279. POP R10
  2280. POP R9
  2281. POP R8
  2282. POP RDI
  2283. POP RSI
  2284. POP RBP
  2285. ADD RSP, 8 ;POP RSP
  2286. POP RBX
  2287. POP RDX
  2288. POP RCX
  2289. POP RAX ; now EBP = error code
  2290. POP RBP ; now EBP = INT
  2291. POP RBP ; now EBP = caller RBP
  2292. IRETQ
  2293. END FieldInterrupt;
  2294. PROCEDURE {NOPAF} FieldIRQ;
  2295. CONST SizeOfHandlerRec = SIZEOF(HandlerRec);
  2296. CODE {SYSTEM.AMD64}
  2297. entry:
  2298. ; fake PUSHAD (not available in 64-bit mode)
  2299. PUSH RAX
  2300. PUSH RCX
  2301. PUSH RDX
  2302. PUSH RBX ; (error code)
  2303. LEA RAX, [RSP - 4 * 8] ; (RSP minus the four pushed 64-bit registers)
  2304. PUSH RAX ; original value of RSP
  2305. PUSH RBP
  2306. PUSH RSI
  2307. PUSH RDI
  2308. PUSH R8
  2309. PUSH R9
  2310. PUSH R10
  2311. PUSH R11
  2312. PUSH R12
  2313. PUSH R13
  2314. PUSH R14
  2315. PUSH R15
  2316. LEA RBP, [RSP + 136]
  2317. ;; PUSH 32[ESP] ; int number
  2318. ;; CALL traceInterruptIn
  2319. MOV RBX, [RSP + 128] ; RBX = int number
  2320. IMUL RBX, RBX, MaxNumHandlers
  2321. IMUL RBX, RBX, SizeOfHandlerRec
  2322. ; todo: replace LEA by MOV when compiler supports this
  2323. LEA RAX, intHandler
  2324. ADD RAX, RBX ; address of intHandler[int, 0]
  2325. ; todo: replace LEA by MOV when compiler supports this
  2326. LEA RDX, stateTag
  2327. loop: ; call all handlers for the interrupt
  2328. MOV RCX, RSP
  2329. PUSH RAX ; save ptr for linked list
  2330. PUSH QWORD [RAX + 12] ; delegate
  2331. PUSH RDX ; TAG(state)
  2332. PUSH RCX ; ADR(state)
  2333. CALL QWORD [RAX + 4] ; call handler
  2334. ADD RSP, 24
  2335. CLI ; handler may have re-enabled interrupts
  2336. POP RAX
  2337. ADD RAX, SizeOfHandlerRec
  2338. MOV RBX, [RAX]
  2339. CMP RBX, 0
  2340. JNE loop
  2341. ;; PUSH 32[ESP] ; int number
  2342. ;; CALL traceInterruptOut
  2343. ; ack interrupt
  2344. MOV AL, 20H ; undoc PC ed. 2 p. 1018
  2345. CMP BYTE [RSP + 128], IRQ8
  2346. JB irq0
  2347. OUT IntB0, AL ; 2nd controller
  2348. irq0:
  2349. OUT IntA0, AL ; 1st controller
  2350. ; fake POPAD (not available in 64-bit mode)
  2351. POP R15
  2352. POP R14
  2353. POP R13
  2354. POP R12
  2355. POP R11
  2356. POP R10
  2357. POP R9
  2358. POP R8
  2359. POP RDI
  2360. POP RSI
  2361. POP RBP
  2362. ADD RSP, 8 ;POP RSP
  2363. POP RBX
  2364. POP RDX
  2365. POP RCX
  2366. POP RAX ; now RBP = error code
  2367. POP RBP ; now RBP = INT
  2368. POP RBP ; now RBP = caller RBP
  2369. IRETQ
  2370. END FieldIRQ;
  2371. (* LoadIDT - Load interrupt descriptor table *)
  2372. PROCEDURE LoadIDT(base: ADDRESS; size: SIZE);
  2373. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2374. ; LIDT needs 10 bytes: 2 for the 16-bit limit and 8 for the 64-bit base address
  2375. ; Assumption: size in front of base -> promote size value to upper 48 bits of size
  2376. SHL QWORD [RBP + size], 64-16
  2377. LIDT [RBP + size + (64-16) / 8]
  2378. END LoadIDT;
  2379. (** Init - Initialize interrupt handling. Called once during initialization. Uses NEW. *)
  2380. (*
  2381. The glue code is:
  2382. entry0: ; entry point for interrupts without error code
  2383. PUSH 0 ; fake error code
  2384. entry1: ; entry point for interrupts with error code
  2385. XCHG [ESP], EBP ; exchange error code and caller EBP
  2386. PUSH int ; interrupt number
  2387. JMP FieldInterrupt:entry
  2388. *)
  2389. PROCEDURE InitInterrupts*;
  2390. VAR a: ADDRESS; o, i: LONGINT; p: PROCEDURE; mask: SET;
  2391. BEGIN
  2392. stateTag := SYSTEM.TYPECODE(State);
  2393. (* initialise 8259 interrupt controller chips *)
  2394. Portout8 (IntA0, 11X); Portout8 (IntA1, CHR(IRQ0));
  2395. Portout8 (IntA1, 4X); Portout8 (IntA1, 1X); Portout8 (IntA1, 0FFX);
  2396. Portout8 (IntB0, 11X); Portout8 (IntB1, CHR(IRQ8));
  2397. Portout8 (IntB1, 2X); Portout8 (IntB1, 1X); Portout8 (IntB1, 0FFX);
  2398. (* enable interrupts from second interrupt controller, chained to line 2 of controller 1 *)
  2399. Portin8(IntA1, SYSTEM.VAL (CHAR, mask));
  2400. EXCL(mask, IRQ2-IRQ0);
  2401. Portout8 (IntA1, SYSTEM.VAL (CHAR, mask));
  2402. (*
  2403. NEW(default); default.next := NIL; default.handler := Unexpected;
  2404. *)
  2405. (*
  2406. newrec (SYSTEM.VAL (ANY, default), SYSTEM.TYPECODE (HandlerList));
  2407. *)
  2408. (* default.next := NIL; default.handler := Unexpected; *)
  2409. default.valid := TRUE; default.handler := Unexpected;
  2410. FOR i := 0 TO IDTSize-1 DO (* set up glue code *)
  2411. intHandler[i, 0] := default; o := 0;
  2412. (* PUSH error code, int num & regs *)
  2413. glue[i][o] := 6AX; INC (o); glue[i][o] := 0X; INC (o); (* PUSH 0 ; {o = 2} *)
  2414. glue[i][o] := 48X; INC(o); glue[i][o] := 87X; INC(o); glue[i][o] := 2CX; INC(o); glue[i][o] := 24X; INC(o); (* XCHG [RSP], RBP *)
  2415. glue[i][o] := 6AX; INC (o); glue[i][o] := CHR(i); INC (o); (* PUSH i *)
  2416. IF (i >= IRQ0) & (i <= IRQ15) THEN p := FieldIRQ ELSE p := FieldInterrupt END;
  2417. a := SYSTEM.VAL(ADDRESS, p) - (ADDRESSOF(glue[i][o])+5);
  2418. (* a must be a 32-bit offset to be used with the followingjump instruction, ensured since
  2419. both the glue code array and the interrupt functions are inside this module *)
  2420. glue[i][o] := 0E9X; INC (o); (* JMP FieldInterrupt.entry *)
  2421. SYSTEM.PUT32 (ADDRESSOF(glue[i][o]), a);
  2422. (* set up IDT entry *)
  2423. IF (i > 31) OR ~(i IN {8, 10..14, 17}) THEN a := ADDRESSOF(glue[i][0]) (* include PUSH 0 *)
  2424. ELSE a := ADDRESSOF(glue[i][2]) (* skip PUSH 0, processor supplies error code *)
  2425. END;
  2426. idt[i].offsetBits0to15 := SHORT (SHORT(a MOD 10000H));
  2427. (* IRQ0 must be at level 0 because time slicing in Objects needs to set interrupted process' ESP *)
  2428. (* all irq's are handled at level 0, because of priority experiment in Objects.FieldIRQ *)
  2429. IF TRUE (* (i < IRQ0) OR (i > IRQ15) OR (i = IRQ0) OR (i = IRQ0 + 1)*) THEN
  2430. idt[i].selector := Kernel64CodeSel; (* gdt[1] -> non-conformant segment => level 0 *)
  2431. idt[i].gateType := SYSTEM.VAL(INTEGER, 0EE00H) (* present, DPL 3, system, 64-bit interrupt gate *)
  2432. ELSE (* {IRQ0..IRQ15} - {IRQ0 + 1} *)
  2433. idt[i].selector := User64CodeSel; (* gdt[3] -> conformant segment => level 0 or 3 *)
  2434. idt[i].gateType := SYSTEM.VAL(INTEGER, 08E00H) (* present, DPL 0, system, 64-bit interrupt gate *)
  2435. END;
  2436. idt[i].offsetBits16to31 := SHORT (SHORT(a DIV 10000H));
  2437. idt[i].offsetBits32to63 := SHORT(a DIV 100000000H);
  2438. idt[i].reserved := 0;
  2439. END
  2440. END InitInterrupts;
  2441. (** Start - Start handling interrupts. Every processor calls this once during initialization. *)
  2442. PROCEDURE Start*;
  2443. BEGIN
  2444. ASSERT(default.valid); (* initialized *)
  2445. LoadIDT(ADDRESSOF(idt[0]), SIZEOF(IDT)-1);
  2446. Sti
  2447. END Start;
  2448. (* Return current instruction pointer *)
  2449. PROCEDURE CurrentPC* (): ADDRESS;
  2450. CODE {SYSTEM.AMD64}
  2451. MOV RAX, [RBP + 8]
  2452. END CurrentPC;
  2453. (* Return current frame pointer *)
  2454. PROCEDURE -CurrentBP* (): ADDRESS;
  2455. CODE {SYSTEM.AMD64}
  2456. MOV RAX, RBP
  2457. END CurrentBP;
  2458. (* Set current frame pointer *)
  2459. PROCEDURE -SetBP* (bp: ADDRESS);
  2460. CODE {SYSTEM.AMD64}
  2461. POP RBP
  2462. END SetBP;
  2463. (* Return current stack pointer *)
  2464. PROCEDURE -CurrentSP* (): ADDRESS;
  2465. CODE {SYSTEM.AMD64}
  2466. MOV RAX, RSP
  2467. END CurrentSP;
  2468. (* Set current stack pointer *)
  2469. PROCEDURE -SetSP* (sp: ADDRESS);
  2470. CODE {SYSTEM.AMD64}
  2471. POP RSP
  2472. END SetSP;
  2473. PROCEDURE -GetRAX*(): HUGEINT;
  2474. CODE{SYSTEM.AMD64}
  2475. END GetRAX;
  2476. PROCEDURE -GetRCX*(): HUGEINT;
  2477. CODE{SYSTEM.AMD64}
  2478. MOV RAX,RCX
  2479. END GetRCX;
  2480. PROCEDURE -GetRSI*(): HUGEINT;
  2481. CODE{SYSTEM.AMD64}
  2482. MOV RAX,RSI
  2483. END GetRSI;
  2484. PROCEDURE -GetRDI*(): HUGEINT;
  2485. CODE{SYSTEM.AMD64}
  2486. MOV RAX,RDI
  2487. END GetRDI;
  2488. PROCEDURE -SetRAX*(n: HUGEINT);
  2489. CODE{SYSTEM.AMD64}
  2490. NOP
  2491. POP RAX
  2492. END SetRAX;
  2493. PROCEDURE -SetRBX*(n: HUGEINT);
  2494. CODE{SYSTEM.AMD64}
  2495. NOP
  2496. POP RBX
  2497. END SetRBX;
  2498. PROCEDURE -SetRCX*(n: HUGEINT);
  2499. CODE{SYSTEM.AMD64}
  2500. POP RCX
  2501. END SetRCX;
  2502. PROCEDURE -SetRDX*(n: HUGEINT);
  2503. CODE{SYSTEM.AMD64}
  2504. POP RDX
  2505. END SetRDX;
  2506. PROCEDURE -SetRSI*(n: HUGEINT);
  2507. CODE{SYSTEM.AMD64}
  2508. POP RSI
  2509. END SetRSI;
  2510. PROCEDURE -SetRDI*(n: HUGEINT);
  2511. CODE{SYSTEM.AMD64}
  2512. POP RDI
  2513. END SetRDI;
  2514. PROCEDURE Portin8*(port: LONGINT; VAR val: CHAR);
  2515. CODE{SYSTEM.AMD64}
  2516. MOV EDX,[RBP+port]
  2517. IN AL, DX
  2518. MOV RCX, [RBP+val]
  2519. MOV [RCX], AL
  2520. END Portin8;
  2521. PROCEDURE Portin16*(port: LONGINT; VAR val: INTEGER);
  2522. CODE{SYSTEM.AMD64}
  2523. MOV EDX,[RBP+port]
  2524. IN AX, DX
  2525. MOV RCX, [RBP+val]
  2526. MOV [RCX], AX
  2527. END Portin16;
  2528. PROCEDURE Portin32*(port: LONGINT; VAR val: LONGINT);
  2529. CODE{SYSTEM.AMD64}
  2530. MOV EDX,[RBP+port]
  2531. IN EAX, DX
  2532. MOV RCX, [RBP+val]
  2533. MOV [RCX], EAX
  2534. END Portin32;
  2535. PROCEDURE Portout8*(port: LONGINT; val: CHAR);
  2536. CODE{SYSTEM.AMD64}
  2537. MOV AL,[RBP+val]
  2538. MOV EDX,[RBP+port]
  2539. OUT DX,AL
  2540. END Portout8;
  2541. PROCEDURE Portout16*(port: LONGINT; val: INTEGER);
  2542. CODE{SYSTEM.AMD64}
  2543. MOV AX,[RBP+val]
  2544. MOV EDX,[RBP+port]
  2545. OUT DX,AX
  2546. END Portout16;
  2547. PROCEDURE Portout32*(port: LONGINT; val: LONGINT);
  2548. CODE{SYSTEM.AMD64}
  2549. MOV EAX,[RBP+val]
  2550. MOV EDX,[RBP+port]
  2551. OUT DX,EAX
  2552. END Portout32;
  2553. PROCEDURE -Cli*;
  2554. CODE{SYSTEM.AMD64}
  2555. CLI
  2556. END Cli;
  2557. PROCEDURE -Sti*;
  2558. CODE{SYSTEM.AMD64}
  2559. STI
  2560. END Sti;
  2561. (* Save minimal FPU state (for synchronous process switches). *)
  2562. (* saving FPU state takes 108 bytes memory space, no alignment required *)
  2563. PROCEDURE -FPUSaveMin* (VAR state: SSEState);
  2564. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2565. POP RAX
  2566. FNSTCW [RAX] ; control word is at state[0]
  2567. FWAIT
  2568. END FPUSaveMin;
  2569. (* Restore minimal FPU state. *)
  2570. PROCEDURE -FPURestoreMin* (VAR state: SSEState);
  2571. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2572. POP RAX
  2573. FLDCW [RAX] ; control word is at state[0]
  2574. END FPURestoreMin;
  2575. (* Save full FPU state (for asynchronous process switches). *)
  2576. PROCEDURE -FPUSaveFull* (VAR state: SSEState);
  2577. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2578. POP RAX
  2579. FSAVE [RAX]
  2580. END FPUSaveFull;
  2581. (* Restore full FPU state. *)
  2582. PROCEDURE -FPURestoreFull* (VAR state: SSEState);
  2583. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2584. POP RAX
  2585. FRSTOR [RAX]
  2586. END FPURestoreFull;
  2587. (* stateAdr must be the address of a 16-byte aligned memory area of at least 512 bytes *)
  2588. PROCEDURE -SSESaveFull* (stateAdr: ADDRESS);
  2589. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2590. POP RAX
  2591. FXSAVE [RAX]
  2592. FWAIT
  2593. FNINIT
  2594. END SSESaveFull;
  2595. PROCEDURE -SSERestoreFull* (stateAdr: ADDRESS);
  2596. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2597. POP RAX
  2598. FXRSTOR [RAX]
  2599. END SSERestoreFull;
  2600. PROCEDURE -SSESaveMin* (stateAdr: ADDRESS);
  2601. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2602. POP RAX
  2603. FNSTCW [RAX]
  2604. FWAIT
  2605. STMXCSR [RAX + 24]
  2606. END SSESaveMin;
  2607. PROCEDURE -SSERestoreMin* (stateAdr: ADDRESS);
  2608. CODE {SYSTEM.AMD64, SYSTEM.FPU}
  2609. POP RAX
  2610. FLDCW [RAX]
  2611. LDMXCSR [RAX + 24]
  2612. END SSERestoreMin;
  2613. (* Helper functions for SwitchTo. *)
  2614. PROCEDURE -PushState* (CONST state: State);
  2615. CODE {SYSTEM.AMD64}
  2616. POP RAX ; ADR (state)
  2617. POP RBX ; TYPECODE (state), ignored
  2618. PUSH QWORD [RAX + 176] ; SS
  2619. PUSH QWORD [RAX + 168] ; SP
  2620. PUSH QWORD [RAX + 160] ; FLAGS
  2621. PUSH QWORD [RAX + 152] ; CS
  2622. PUSH QWORD [RAX + 144] ; PC
  2623. PUSH QWORD [RAX + 120] ; RAX
  2624. PUSH QWORD [RAX + 112] ; RCX
  2625. PUSH QWORD [RAX + 104] ; RDX
  2626. PUSH QWORD [RAX + 96] ; RBX
  2627. PUSH DWORD 0; ignored
  2628. PUSH QWORD [RAX + 136] ; RBP
  2629. PUSH QWORD [RAX + 72] ; RSI
  2630. PUSH QWORD [RAX + 64] ; RDI
  2631. PUSH QWORD [RAX + 56] ; R8
  2632. PUSH QWORD [RAX + 48] ; R9
  2633. PUSH QWORD [RAX + 40] ; R10
  2634. PUSH QWORD [RAX + 32] ; R11
  2635. PUSH QWORD [RAX + 24] ; R12
  2636. PUSH QWORD [RAX + 16] ; R13
  2637. PUSH QWORD [RAX + 8] ; R14
  2638. PUSH QWORD [RAX + 0] ; R15
  2639. END PushState;
  2640. PROCEDURE -JumpState*;
  2641. CODE {SYSTEM.AMD64}
  2642. POP R15
  2643. POP R14
  2644. POP R13
  2645. POP R12
  2646. POP R11
  2647. POP R10
  2648. POP R9
  2649. POP R8
  2650. POP RDI
  2651. POP RSI
  2652. POP RBP
  2653. POP RBX; ignored
  2654. POP RBX
  2655. POP RDX
  2656. POP RCX
  2657. POP RAX
  2658. IRETQ
  2659. END JumpState;
  2660. PROCEDURE -CallLocalIPC*;
  2661. CODE {SYSTEM.AMD64}
  2662. INT MPIPCLocal
  2663. END CallLocalIPC;
  2664. PROCEDURE -HLT*;
  2665. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2666. STI ; (* required according to ACPI 2.0 spec section 8.2.2 *)
  2667. HLT
  2668. END HLT;
  2669. (* Kernel mode upcall to perform global processor halt. *)
  2670. PROCEDURE KernelCallHLT*;
  2671. CODE {SYSTEM.AMD64}
  2672. MOV EAX, 2
  2673. INT MPKC
  2674. END KernelCallHLT;
  2675. (* Parse processor entry in MP config table. *)
  2676. PROCEDURE CPUID1*(): LONGINT;
  2677. CODE {SYSTEM.AMD64}
  2678. MOV EAX, 1
  2679. CPUID
  2680. MOV EAX, EBX
  2681. END CPUID1;
  2682. (** -- Atomic operations -- *)
  2683. (** Atomic INC(x). *)
  2684. PROCEDURE -AtomicInc*(VAR x: LONGINT);
  2685. CODE {SYSTEM.AMD64}
  2686. POP RAX
  2687. LOCK
  2688. INC DWORD [RAX]
  2689. END AtomicInc;
  2690. (** Atomic DEC(x). *)
  2691. PROCEDURE -AtomicDec*(VAR x: LONGINT);
  2692. CODE {SYSTEM.AMD64}
  2693. POP RAX
  2694. LOCK
  2695. DEC DWORD [RAX]
  2696. END AtomicDec;
  2697. (** Atomic EXCL. *)
  2698. PROCEDURE AtomicExcl* (VAR s: SET; bit: LONGINT);
  2699. CODE {SYSTEM.AMD64}
  2700. MOV EAX, [RBP + bit]
  2701. MOV RBX, [RBP + s]
  2702. LOCK
  2703. BTR [RBX], EAX
  2704. END AtomicExcl;
  2705. (** Atomic INC(x, y). *)
  2706. PROCEDURE -AtomicAdd*(VAR x: LONGINT; y: LONGINT);
  2707. CODE {SYSTEM.AMD64}
  2708. POP EBX
  2709. POP RAX
  2710. LOCK
  2711. ADD DWORD [RAX], EBX
  2712. END AtomicAdd;
  2713. (** Atomic test-and-set. Set x = TRUE and return old value of x. *)
  2714. PROCEDURE -AtomicTestSet*(VAR x: BOOLEAN): BOOLEAN;
  2715. CODE {SYSTEM.AMD64}
  2716. POP RBX
  2717. MOV AL, 1
  2718. XCHG [RBX], AL
  2719. END AtomicTestSet;
  2720. (* Atomic compare-and-swap. Set x = new if x = old and return old value of x *)
  2721. PROCEDURE -AtomicCAS* (VAR x: LONGINT; old, new: LONGINT): LONGINT;
  2722. CODE {SYSTEM.AMD64}
  2723. POP EBX ; new
  2724. POP EAX ; old
  2725. POP RCX ; address of x
  2726. LOCK CMPXCHG [RCX], EBX ; atomicly compare x with old and set it to new if equal
  2727. END AtomicCAS;
  2728. PROCEDURE CopyState* (CONST from: State; VAR to: State);
  2729. BEGIN
  2730. to.R15 := from.R15;
  2731. to.R14 := from.R14;
  2732. to.R13 := from.R13;
  2733. to.R12 := from.R12;
  2734. to.R11 := from.R11;
  2735. to.R10 := from.R10;
  2736. to.R9 := from.R9;
  2737. to.R8 := from.R8;
  2738. to.RDI := from.RDI;
  2739. to.RSI := from.RSI;
  2740. to.RBX := from.RBX;
  2741. to.RDX := from.RDX;
  2742. to.RCX := from.RCX;
  2743. to.RAX := from.RAX;
  2744. to.BP := from.BP;
  2745. to.PC := from.PC;
  2746. to.CS := from.CS;
  2747. to.SP := from.SP;
  2748. to.SS := from.SS;
  2749. to.FLAGS := from.FLAGS;
  2750. END CopyState;
  2751. (* function returning the number of processors that are available to Aos *)
  2752. PROCEDURE NumberOfProcessors*( ): LONGINT;
  2753. BEGIN
  2754. RETURN numberOfProcessors
  2755. END NumberOfProcessors;
  2756. (*! non portable code, for native Aos only *)
  2757. PROCEDURE SetNumberOfProcessors*(num: LONGINT);
  2758. BEGIN
  2759. numberOfProcessors := num;
  2760. END SetNumberOfProcessors;
  2761. (* function for changing byte order *)
  2762. PROCEDURE ChangeByteOrder* (n: LONGINT): LONGINT;
  2763. CODE {SYSTEM.AMD64}
  2764. MOV EAX, [RBP + n] ; load n in eax
  2765. BSWAP EAX ; swap byte order
  2766. END ChangeByteOrder;
  2767. (* Write a value to the APIC. *)
  2768. PROCEDURE ApicPut(ofs: SIZE; val: SET);
  2769. BEGIN
  2770. IF TraceApic THEN
  2771. Acquire(TraceOutput);
  2772. Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" := "); Trace.Hex(SYSTEM.VAL (LONGINT, val), 9); Trace.Ln;
  2773. Release(TraceOutput);
  2774. END;
  2775. SYSTEM.PUT(localAPIC+ofs, SYSTEM.VAL (LONGINT, val))
  2776. END ApicPut;
  2777. (* Read a value from the APIC. *)
  2778. PROCEDURE ApicGet(ofs: SIZE): SET;
  2779. VAR val: SET;
  2780. BEGIN
  2781. SYSTEM.GET(localAPIC+ofs, SYSTEM.VAL (LONGINT, val));
  2782. IF TraceApic THEN
  2783. Acquire(TraceOutput);
  2784. Trace.String(" ("); Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" = ");
  2785. Trace.Hex(SYSTEM.VAL(LONGINT, val), 9); Trace.StringLn (")");
  2786. Release(TraceOutput);
  2787. END;
  2788. RETURN val
  2789. END ApicGet;
  2790. (* Handle interprocessor interrupt. During upcall interrupts are off and processor is at kernel level. *)
  2791. PROCEDURE HandleIPC(VAR state: State);
  2792. VAR id: LONGINT;
  2793. BEGIN
  2794. id := ID();
  2795. IF ~TraceProcessor OR (id IN allProcessors) THEN
  2796. IF FrontBarrier IN ipcFlags THEN
  2797. AtomicExcl(ipcFrontBarrier, id);
  2798. WHILE ipcFrontBarrier # {} DO SpinHint END (* wait for all *)
  2799. END;
  2800. ipcHandler(id, state, ipcMessage); (* interrupts off and at kernel level *)
  2801. IF BackBarrier IN ipcFlags THEN
  2802. AtomicExcl(ipcBackBarrier, id);
  2803. WHILE ipcBackBarrier # {} DO SpinHint END (* wait for all *)
  2804. END;
  2805. AtomicExcl(ipcBusy, id) (* ack - after this point we do not access shared variables for this broadcast *)
  2806. END;
  2807. IF state.INT = MPIPC THEN
  2808. ApicPut(0B0H, {}) (* EOI (not needed for NMI or local call, see 7.4.10.6) *)
  2809. END
  2810. END HandleIPC;
  2811. (* Handle MP error interrupt. *)
  2812. PROCEDURE HandleError(VAR state: State);
  2813. VAR esr: SET; (* int: LONGINT; *)
  2814. BEGIN
  2815. (* int := state.INT; *) esr := ApicGet(280H);
  2816. ApicPut(0B0H, {}); (* EOI *)
  2817. HALT(2302) (* SMP error *)
  2818. END HandleError;
  2819. (* Interprocessor broadcasting. Lock level SMP. *)
  2820. PROCEDURE LocalBroadcast(h: BroadcastHandler; msg: Message; flags: SET);
  2821. BEGIN
  2822. IF Self IN flags THEN ipcBusy := allProcessors
  2823. ELSE ipcBusy := allProcessors - {ID()}
  2824. END;
  2825. ipcFrontBarrier := ipcBusy; ipcBackBarrier := ipcBusy;
  2826. ipcHandler := h; ipcMessage := msg; ipcFlags := flags;
  2827. IF numProcessors > 1 THEN (* ICR: Fixed, Physical, Edge, All Excl. Self, INT IPC *)
  2828. ApicPut(300H, {18..19} + SYSTEM.VAL (SET, MPIPC));
  2829. (*REPEAT UNTIL ~(12 IN ApicGet(300H))*) (* wait for send to finish *)
  2830. END;
  2831. IF Self IN flags THEN CallLocalIPC END; (* "send" to self also *)
  2832. WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack before we release locks *)
  2833. ipcHandler := NIL; ipcMessage := NIL (* no race, because we have IPC lock *)
  2834. END LocalBroadcast;
  2835. (** Broadcast an operation to all processors. *)
  2836. PROCEDURE Broadcast* (h: BroadcastHandler; msg: Message; flags: SET);
  2837. BEGIN
  2838. Acquire(Processors);
  2839. LocalBroadcast(h, msg, flags);
  2840. Release(Processors)
  2841. END Broadcast;
  2842. (* Start all halted processors. *) (* Lock level Processors. *)
  2843. PROCEDURE StartAll*;
  2844. BEGIN
  2845. Acquire(Processors); (* wait for any pending Stops to finish, and disallow further Stops *)
  2846. ASSERT(stopped & (ipcBusy = {}));
  2847. ipcBusy := allProcessors - {ID()};
  2848. stopped := FALSE;
  2849. WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack *)
  2850. Release(Processors)
  2851. END StartAll;
  2852. PROCEDURE HandleFlushTLB(id: LONGINT; CONST state: State; msg: Message);
  2853. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2854. MOV EAX, CR3
  2855. MOV CR3, EAX
  2856. END HandleFlushTLB;
  2857. (** Flush the TLBs on all processors (multiprocessor-safe). *)
  2858. PROCEDURE GlobalFlushTLB;
  2859. BEGIN
  2860. Acquire(Processors);
  2861. LocalBroadcast(HandleFlushTLB, NIL, {Self, FrontBarrier, BackBarrier});
  2862. Release(Processors)
  2863. END GlobalFlushTLB;
  2864. PROCEDURE HandleFlushCache(id: LONGINT; CONST state: State; msg: Message);
  2865. CODE {SYSTEM.AMD64, SYSTEM.Privileged}
  2866. WBINVD ; write back and invalidate internal cache and initiate write back and invalidation of external caches
  2867. END HandleFlushCache;
  2868. (** Flush the caches on all processors (multiprocessor-safe). *)
  2869. PROCEDURE GlobalFlushCache;
  2870. BEGIN
  2871. Acquire(Processors);
  2872. LocalBroadcast(HandleFlushCache, NIL, {Self, FrontBarrier, BackBarrier});
  2873. Release(Processors)
  2874. END GlobalFlushCache;
  2875. (* Activate the garbage collector in single-processor mode. Lock level ALL. *)
  2876. PROCEDURE HandleKernelCall(VAR state: State);
  2877. BEGIN (* level 0 *)
  2878. IF IFBit IN state.FLAGS THEN
  2879. Sti (* re-enable interrupts *)
  2880. END;
  2881. CASE state.RAX OF (* see KernelCall* *)
  2882. |2: (* HLT *)
  2883. IF IFBit IN state.FLAGS THEN
  2884. HLT
  2885. END
  2886. END
  2887. END HandleKernelCall;
  2888. (*
  2889. (** Activate the garbage collector immediately (multiprocessor-safe). *)
  2890. PROCEDURE GlobalGC*;
  2891. BEGIN
  2892. Acquire(Processors);
  2893. gcBarrier := allProcessors;
  2894. LocalBroadcast(HandleGC, NIL, {Self, BackBarrier});
  2895. Release(Processors);
  2896. END GlobalGC;
  2897. *)
  2898. PROCEDURE HandleGetTimestamp(id: LONGINT; CONST state: State; msg: Message);
  2899. BEGIN
  2900. time[id] := GetTimer()
  2901. END HandleGetTimestamp;
  2902. (** Get timestamp on all processors (for testing). *)
  2903. PROCEDURE GlobalGetTimestamp;
  2904. VAR t: TimeArray; i: LONGINT; mean, var, n: HUGEINT;
  2905. BEGIN
  2906. Acquire(Processors);
  2907. LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier});
  2908. LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier});
  2909. t := time;
  2910. Release(Processors);
  2911. Acquire (TraceOutput);
  2912. FOR i := 0 TO numProcessors-1 DO Trace.HIntHex(t[i], 17) END;
  2913. IF numProcessors > 1 THEN
  2914. mean := 0;
  2915. n := numProcessors;
  2916. FOR i := 0 TO numProcessors-1 DO
  2917. INC (mean, t[i])
  2918. END;
  2919. mean := mean DIV n;
  2920. var := 0;
  2921. FOR i := 0 TO numProcessors-1 DO
  2922. n := t[i] - mean;
  2923. INC (var, n * n)
  2924. END;
  2925. var := var DIV (numProcessors - 1);
  2926. Trace.String(" mean="); Trace.HIntHex(mean, 16);
  2927. Trace.String(" var="); Trace.HIntHex(var, 16);
  2928. Trace.String(" var="); Trace.Int(SHORT (var), 1);
  2929. Trace.String(" diff:");
  2930. FOR i := 0 TO numProcessors-1 DO
  2931. Trace.Int(SHORT (t[i] - mean), 1); Trace.Char(" ")
  2932. END
  2933. END;
  2934. Release (TraceOutput);
  2935. END GlobalGetTimestamp;
  2936. PROCEDURE ParseProcessor(adr: ADDRESS);
  2937. VAR id, idx, signature, family, feat, ver, log: LONGINT; flags: SET; string : ARRAY 8 OF CHAR;
  2938. BEGIN
  2939. SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, flags));
  2940. id := ASH(SYSTEM.VAL (LONGINT, flags * {8..15}), -8);
  2941. ver := ASH(SYSTEM.VAL (LONGINT, flags * {16..23}), -16);
  2942. SYSTEM.GET (adr+4, signature);
  2943. family := ASH(signature, -8) MOD 10H;
  2944. SYSTEM.GET (adr+8, feat);
  2945. idx := -1;
  2946. IF (family # 0) & (signature MOD 1000H # 0FFFH) & (24 IN flags) & (id < LEN(idMap)) & (idMap[id] = -1) THEN
  2947. IF 25 IN flags THEN idx := 0 (* boot processor *)
  2948. ELSIF numProcessors < maxProcessors THEN idx := numProcessors; INC(numProcessors)
  2949. ELSE (* skip *)
  2950. END
  2951. END;
  2952. IF idx # -1 THEN apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx)) END;
  2953. Trace.String(" Processor "); Trace.Int(id, 1);
  2954. Trace.String(", APIC"); Trace.Hex(ver, -3);
  2955. Trace.String(", ver "); Trace.Int(family, 1);
  2956. Trace.Char("."); Trace.Int(ASH(signature, -4) MOD 10H, 1);
  2957. Trace.Char("."); Trace.Int(signature MOD 10H, 1);
  2958. Trace.String(", features "); Trace.Hex(feat, 9);
  2959. Trace.String(", ID "); Trace.Int(idx, 1);
  2960. IF (threadsPerCore > 1) THEN Trace.String(" ("); Trace.Int(threadsPerCore, 0); Trace.String(" threads)"); END;
  2961. Trace.Ln;
  2962. IF (threadsPerCore > 1) THEN
  2963. GetConfig("DisableHyperthreading", string);
  2964. IF (string = "1") THEN
  2965. Trace.String("Machine: Hyperthreading disabled."); Trace.Ln;
  2966. RETURN;
  2967. END;
  2968. log := (LSH(CPUID1(), -16) MOD 256);
  2969. WHILE log > 1 DO
  2970. INC(id); DEC(log);
  2971. IF numProcessors < maxProcessors THEN
  2972. idx := numProcessors; INC(numProcessors);
  2973. apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx))
  2974. END
  2975. END
  2976. END
  2977. END ParseProcessor;
  2978. (* Parse MP configuration table. *)
  2979. PROCEDURE ParseMPConfig;
  2980. VAR adr, x: ADDRESS; i: LONGINT; entries: INTEGER; ch: CHAR; s: SET; str: ARRAY 8 OF CHAR;
  2981. BEGIN
  2982. localAPIC := 0; numProcessors := 1; allProcessors := {0};
  2983. FOR i := 0 TO LEN(idMap)-1 DO idMap[i] := -1 END; (* all unassigned *)
  2984. FOR i := 0 TO MaxCPU-1 DO started[i] := FALSE END;
  2985. adr := configMP;
  2986. GetConfig("MaxProcs", str);
  2987. i := 0; maxProcessors := StrToInt(i, str);
  2988. IF maxProcessors = 0 THEN maxProcessors := MaxCPU END;
  2989. IF (maxProcessors > 0) & (adr # NilAdr) THEN (* MP config table present, possible multi-processor *)
  2990. Trace.String("Machine: Intel MP Spec "); Trace.Int(ORD(revMP) DIV 10H + 1, 1);
  2991. Trace.Char("."); Trace.Int(ORD(revMP) MOD 10H, 1); Trace.Ln;
  2992. IF TraceVerbose THEN
  2993. IF ODD(ASH(ORD(featureMP[1]), -7)) THEN
  2994. Trace.StringLn (" PIC mode");
  2995. (* to do: enable SymIO *)
  2996. ELSE
  2997. Trace.StringLn (" Virtual wire mode");
  2998. END
  2999. END;
  3000. IF featureMP[0] # 0X THEN (* pre-defined configuration *)
  3001. Trace.String(" Default config "); Trace.Int(ORD(featureMP[0]), 1); Trace.Ln;
  3002. localAPIC := (0FEE00000H);
  3003. apicVer[0] := 0; apicVer[1] := 0
  3004. ELSE (* configuration defined in table *)
  3005. MapPhysical(adr, 68*1024, adr); (* 64K + 4K header *)
  3006. SYSTEM.GET (adr, i); ASSERT(i = 504D4350H); (* check signature *)
  3007. SYSTEM.GET (adr+4, i); (* length *)
  3008. ASSERT(ChecksumMP(adr, i MOD 10000H) = 0);
  3009. IF TraceVerbose THEN
  3010. Trace.String(" ID: ");
  3011. FOR x := adr+8 TO adr+27 DO
  3012. SYSTEM.GET (x, ch); Trace.Char(ch);
  3013. IF x = adr+15 THEN Trace.Char(" ") END
  3014. END;
  3015. Trace.Ln
  3016. END;
  3017. localAPIC := 0; SYSTEM.GET(adr+36, SYSTEM.VAL (LONGINT, localAPIC));
  3018. IF TraceVerbose THEN Trace.String(" Local APIC:"); Trace.Address (localAPIC); Trace.Ln END;
  3019. SYSTEM.GET (adr+34, entries);
  3020. INC(adr, 44); (* skip header *)
  3021. WHILE entries > 0 DO
  3022. SYSTEM.GET (adr, ch); (* type *)
  3023. CASE ORD(ch) OF
  3024. 0: (* processor *)
  3025. ParseProcessor(adr);
  3026. INC(adr, 20)
  3027. |1: (* bus *)
  3028. IF TraceVerbose THEN
  3029. SYSTEM.GET (adr+1, ch);
  3030. Trace.String(" Bus "); Trace.Int(ORD(ch), 1); Trace.String(": ");
  3031. FOR x := adr+2 TO adr+7 DO SYSTEM.GET (x, ch); Trace.Char(ch) END;
  3032. Trace.Ln
  3033. END;
  3034. INC(adr, 8)
  3035. |2: (* IO APIC *)
  3036. IF TraceVerbose THEN
  3037. SYSTEM.GET (adr+1, ch); Trace.String(" IO APIC ID:"); Trace.Hex(ORD(ch), -3);
  3038. SYSTEM.GET (adr+2, ch); Trace.String(", version "); Trace.Int(ORD(ch), 1);
  3039. SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, s)); IF ~(24 IN s) THEN Trace.String(" (disabled)") END;
  3040. Trace.Ln
  3041. END;
  3042. INC(adr, 8)
  3043. |3: (* IO interrupt assignment *)
  3044. INC(adr, 8)
  3045. |4: (* Local interrupt assignment *)
  3046. INC(adr, 8)
  3047. END; (* CASE *)
  3048. DEC(entries)
  3049. END
  3050. END
  3051. END;
  3052. IF localAPIC = 0 THEN (* single processor *)
  3053. Trace.StringLn ("Machine: Single-processor");
  3054. apicVer[0] := 0
  3055. END;
  3056. started[0] := TRUE;
  3057. FOR i := 0 TO MaxCPU-1 DO revIDmap[i] := -1 END;
  3058. FOR i := 0 TO LEN(idMap)-1 DO
  3059. x := idMap[i];
  3060. IF x # -1 THEN
  3061. ASSERT(revIDmap[x] = -1); (* no duplicate APIC ids *)
  3062. revIDmap[x] := SHORT(SHORT(i))
  3063. END
  3064. END;
  3065. (* timer configuration *)
  3066. GetConfig("TimerRate", str);
  3067. i := 0; timerRate := StrToInt(i, str);
  3068. IF timerRate = 0 THEN timerRate := 1000 END;
  3069. IF TraceProcessor THEN
  3070. GetConfig("TraceProc", str);
  3071. i := 0; traceProcessor := StrToInt(i, str) # 0
  3072. END
  3073. END ParseMPConfig;
  3074. (* Return the current average measured bus clock speed in Hz. *)
  3075. PROCEDURE GetBusClockRate(): LONGINT;
  3076. VAR timer: LONGINT; t: LONGINT;
  3077. BEGIN
  3078. t := ticks;
  3079. REPEAT UNTIL ticks # t; (* wait for edge *)
  3080. timer := ticks + ClockRateDelay;
  3081. ApicPut(380H, SYSTEM.VAL (SET, MAX(LONGINT))); (* initial count *)
  3082. REPEAT UNTIL timer - ticks <= 0;
  3083. t := MAX(LONGINT) - SYSTEM.VAL (LONGINT, ApicGet(390H)); (* current count *)
  3084. IF t <= MAX(LONGINT) DIV 1000 THEN
  3085. RETURN 1000 * t DIV ClockRateDelay
  3086. ELSE
  3087. RETURN t DIV ClockRateDelay * 1000
  3088. END
  3089. END GetBusClockRate;
  3090. (* Initialize APIC timer for timeslicing. *)
  3091. PROCEDURE InitMPTimer;
  3092. VAR rate: LONGINT;
  3093. BEGIN
  3094. IF timerRate > 0 THEN
  3095. ApicPut(3E0H, {0,1,3}); (* divide by 1 *)
  3096. ApicPut(320H, {16} + SYSTEM.VAL (SET, MPTMR)); (* masked, one-shot *)
  3097. rate := GetBusClockRate();
  3098. busHz0[ID()] := rate;
  3099. rate := (rate+500000) DIV 1000000 * 1000000; (* round to nearest MHz *)
  3100. busHz1[ID()] := rate;
  3101. ApicPut(320H, {17} + SYSTEM.VAL (SET, MPTMR)); (* unmasked, periodic *)
  3102. ApicPut(380H, SYSTEM.VAL (SET, rate DIV timerRate)) (* initial count *)
  3103. END
  3104. END InitMPTimer;
  3105. (* Handle multiprocessor timer interrupt. *)
  3106. PROCEDURE HandleMPTimer(VAR state: State);
  3107. BEGIN (* {interrupts off} *)
  3108. timer(ID(), state);
  3109. ApicPut(0B0H, {}); (* EOI *)
  3110. Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *)
  3111. Timeslice(state) (* fixme: check recursive interrupt *)
  3112. END HandleMPTimer;
  3113. (* Handle uniprocessor timer interrupt. *)
  3114. PROCEDURE HandleUPTimer(VAR state: State);
  3115. BEGIN (* {interrupts off} *)
  3116. timer(0, state);
  3117. Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *)
  3118. Timeslice(state)
  3119. END HandleUPTimer;
  3120. PROCEDURE DummyEvent(id: LONGINT; CONST state: State);
  3121. END DummyEvent;
  3122. (** Install a processor timer event handler. *)
  3123. PROCEDURE InstallEventHandler* (h: EventHandler);
  3124. BEGIN
  3125. IF h # NIL THEN timer := h ELSE timer := DummyEvent END
  3126. END InstallEventHandler;
  3127. (* Initialize APIC for current processor. *)
  3128. PROCEDURE InitAPIC;
  3129. BEGIN
  3130. (* enable APIC, set focus checking & set spurious interrupt handler *)
  3131. ASSERT(MPSPU MOD 16 = 15); (* low 4 bits set, p. 7-29 *)
  3132. ApicPut(0F0H, {8} + SYSTEM.VAL (SET, MPSPU));
  3133. (* set error interrupt handler *)
  3134. ApicPut(370H, SYSTEM.VAL (SET, MPERR));
  3135. InitMPTimer
  3136. END InitAPIC;
  3137. (* Start processor activity. *)
  3138. PROCEDURE StartMP;
  3139. VAR id: LONGINT; state: State;
  3140. BEGIN (* running at kernel level with interrupts on *)
  3141. InitAPIC;
  3142. id := ID(); (* timeslicing is disabled, as we are running at kernel level *)
  3143. Acquire (TraceOutput);
  3144. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" running");
  3145. Release (TraceOutput);
  3146. IF TraceProcessor & traceProcessor & (id = numProcessors-1) THEN
  3147. DEC(numProcessors) (* exclude from rest of activity *)
  3148. ELSE
  3149. INCL(allProcessors, id)
  3150. END;
  3151. (* synchronize with boot processor - end of mutual exclusion *)
  3152. started[id] := TRUE;
  3153. IF TraceProcessor & ~(id IN allProcessors) THEN
  3154. Acquire (TraceOutput);
  3155. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" tracing");
  3156. Release (TraceOutput);
  3157. LOOP
  3158. IF traceProcessorProc # NIL THEN traceProcessorProc(id, state) END;
  3159. SpinHint
  3160. END
  3161. END;
  3162. (* wait until woken up *)
  3163. WHILE stopped DO SpinHint END;
  3164. (* now fully functional, including storage allocation *)
  3165. AtomicExcl(ipcBusy, id); (* ack *)
  3166. Acquire (TraceOutput);
  3167. Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn(" scheduling");
  3168. Release (TraceOutput);
  3169. ASSERT(id = ID()); (* still running on same processor *)
  3170. start;
  3171. END StartMP;
  3172. (* Subsequent processors start executing here. *)
  3173. PROCEDURE EnterMP;
  3174. (* no local variables allowed, because stack is switched. *)
  3175. BEGIN (* running at kernel level with interrupts off *)
  3176. InitProcessor;
  3177. InitMemory; (* switch stack *)
  3178. Start;
  3179. StartMP
  3180. END EnterMP;
  3181. (* Start another processor. *)
  3182. PROCEDURE StartProcessor(phys: ADDRESS; apicid: LONGINT; startup: BOOLEAN);
  3183. VAR j, k: LONGINT; s: SET; timer: LONGINT;
  3184. BEGIN
  3185. (* clear APIC errors *)
  3186. ApicPut(280H, {}); s := ApicGet(280H);
  3187. (* assert INIT *)
  3188. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3189. ApicPut(300H, {8, 10, 14, 15}); (* set Dest, INIT, Phys, Assert, Level *)
  3190. timer := ticks + 5; (* > 200us *)
  3191. REPEAT UNTIL timer - ticks <= 0;
  3192. (* deassert INIT *)
  3193. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3194. ApicPut(300H, {8, 10, 15}); (* set Dest, INIT, Deassert, Phys, Level *)
  3195. IF startup THEN (* send STARTUP if required *)
  3196. j := 0; k := 2;
  3197. WHILE j # k DO
  3198. ApicPut(280H, {});
  3199. ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *)
  3200. (* set Dest, Startup, Deassert, Phys, Edge *)
  3201. ApicPut(300H, {9, 10} + SYSTEM.VAL (SET, phys DIV 4096 MOD 256));
  3202. timer := ticks + 10; (* ~10ms *)
  3203. REPEAT UNTIL timer - ticks <= 0;
  3204. IF ~(12 IN ApicGet(300H)) THEN (* idle *)
  3205. IF ApicGet(280H) * {0..3, 5..7} = {} THEN k := j (* ESR success, exit *)
  3206. ELSE INC(j) (* retry *)
  3207. END
  3208. ELSE INC(j) (* retry *)
  3209. END
  3210. END
  3211. END
  3212. END StartProcessor;
  3213. (* Boot other processors, one at a time. *)
  3214. PROCEDURE BootMP;
  3215. VAR phys, page0Adr: ADDRESS; i: LONGINT; timer: LONGINT;
  3216. BEGIN
  3217. stopped := TRUE; ipcBusy := {}; (* other processors can be woken with StartAll *)
  3218. InitBootPage(EnterMP, phys);
  3219. MapPhysical(0, 4096, page0Adr); (* map in BIOS data area *)
  3220. Acquire(TraceOutput); Trace.String("Machine: Booting processors... "); Trace.Ln; Release(TraceOutput);
  3221. FOR i := 1 TO numProcessors-1 DO
  3222. (* set up booting for old processor types that reset on INIT & don't understand STARTUP *)
  3223. SYSTEM.PUT (page0Adr + 467H, ASH(phys, 16-4));
  3224. PutNVByte(15, 0AX); (* shutdown status byte *)
  3225. (* attempt to start another processor *)
  3226. Acquire(TraceOutput); Trace.String(" P0 starting P"); Trace.Int(i, 1); Trace.Ln; Release(TraceOutput);
  3227. StartProcessor(phys, revIDmap[i], apicVer[i] >= 10H); (* try booting processor i *)
  3228. (* wait for CPU to become active *)
  3229. timer := ticks + 5000; (* ~5s timeout *)
  3230. REPEAT SpinHint UNTIL started[i] OR (timer - ticks <= 0);
  3231. (* end of mutual exclusion *)
  3232. Acquire(TraceOutput);
  3233. IF started[i] THEN
  3234. Trace.String(" P0 recognized P"); Trace.Int(i, 1);
  3235. ELSE
  3236. Trace.String(" P0 timeout on P"); Trace.Int(i, 1);
  3237. END;
  3238. Trace.Ln;
  3239. Release(TraceOutput);
  3240. END;
  3241. SYSTEM.PUT (page0Adr + 467H, SYSTEM.VAL (LONGINT, 0));
  3242. UnmapPhysical(page0Adr, 4096);
  3243. PutNVByte(15, 0X) (* restore shutdown status *)
  3244. END BootMP;
  3245. (* Timer interrupt handler. *)
  3246. PROCEDURE TimerInterruptHandler(VAR state: State);
  3247. BEGIN
  3248. INC(ticks);
  3249. DEC(eventCount);
  3250. IF eventCount = 0 THEN
  3251. eventCount := eventMax; event(state)
  3252. END
  3253. END TimerInterruptHandler;
  3254. PROCEDURE Dummy(VAR state: State);
  3255. END Dummy;
  3256. PROCEDURE InitTicks;
  3257. CONST Div = (2*TimerClock + Second) DIV (2*Second); (* timer clock divisor *)
  3258. BEGIN
  3259. eventCount := 0; eventMax := 0; event := Dummy;
  3260. (* initialize timer hardware *)
  3261. ASSERT(Div <= 65535);
  3262. Portout8(43H, 34X); Wait; (* mode 2, rate generator *)
  3263. Portout8(40H, CHR(Div MOD 100H)); Wait;
  3264. Portout8(40H, CHR(ASH(Div, -8)));
  3265. InstallHandler(TimerInterruptHandler, IRQ0)
  3266. END InitTicks;
  3267. (* Set timer upcall. The handler procedure will be called at a rate of Second/divisor Hz. *)
  3268. PROCEDURE InstallTickHandler(handler: Handler; divisor: LONGINT);
  3269. BEGIN
  3270. eventMax := divisor; event := handler;
  3271. eventCount := eventMax
  3272. END InstallTickHandler;
  3273. (* Initialize processors *)
  3274. PROCEDURE InitProcessors*;
  3275. BEGIN
  3276. traceProcessor := FALSE; traceProcessorProc := NIL;
  3277. ASSERT(Second = 1000); (* use of Machine.ticks *)
  3278. InitTicks;
  3279. timer := DummyEvent;
  3280. ParseMPConfig;
  3281. InstallHandler(HandleIPC, MPIPCLocal);
  3282. IF localAPIC # 0 THEN (* APIC present *)
  3283. InitAPICArea(localAPIC, 4096);
  3284. InitAPICIDAdr(localAPIC+20H, idMap);
  3285. ASSERT(MPSPU MOD 16 = 15); (* use default handler (see 7.4.11.1) *)
  3286. InstallHandler(HandleError, MPERR);
  3287. InstallHandler(HandleMPTimer, MPTMR);
  3288. InstallHandler(HandleIPC, MPIPC);
  3289. InitAPIC;
  3290. IF numProcessors > 1 THEN BootMP END
  3291. ELSE
  3292. IF timerRate > 0 THEN
  3293. InstallTickHandler(HandleUPTimer, Second DIV timerRate)
  3294. END
  3295. END;
  3296. InstallHandler(HandleKernelCall, MPKC);
  3297. END InitProcessors;
  3298. (* Send and print character *)
  3299. PROCEDURE TraceChar (c: CHAR);
  3300. VAR status: SHORTINT;
  3301. (* Scroll the screen by one line. *)
  3302. PROCEDURE Scroll;
  3303. VAR adr: ADDRESS; off: SIZE;
  3304. BEGIN
  3305. adr := traceBase + TraceLen;
  3306. SYSTEM.MOVE (adr, adr - TraceLen, TraceSize - TraceLen);
  3307. adr := traceBase + TraceSize - TraceLen;
  3308. FOR off := 0 TO TraceLen - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (adr + off, 100H * 7H + 32) END
  3309. END Scroll;
  3310. BEGIN
  3311. IF TraceV24 IN traceMode THEN
  3312. REPEAT (* wait until port is ready to accept a character *)
  3313. Portin8 (tracePort + 5, SYSTEM.VAL(CHAR,status))
  3314. UNTIL ODD (status DIV 20H); (* THR empty *)
  3315. Portout8 (tracePort, c);
  3316. END;
  3317. IF TraceScreen IN traceMode THEN
  3318. IF c = 9X THEN c := 20X END;
  3319. IF c = 0DX THEN (* CR *)
  3320. DEC (tracePos, tracePos MOD TraceLen)
  3321. ELSIF c = 0AX THEN (* LF *)
  3322. IF tracePos < TraceSize THEN
  3323. INC (tracePos, TraceLen) (* down to next line *)
  3324. ELSE
  3325. Scroll
  3326. END
  3327. ELSE
  3328. IF tracePos >= TraceSize THEN
  3329. Scroll;
  3330. DEC (tracePos, TraceLen)
  3331. END;
  3332. SYSTEM.PUT16 (traceBase + tracePos, 100H * traceColor + ORD (c));
  3333. INC (tracePos, SIZEOF(INTEGER))
  3334. END
  3335. END
  3336. END TraceChar;
  3337. (* Change color *)
  3338. PROCEDURE TraceColor (c: SHORTINT);
  3339. BEGIN traceColor := c;
  3340. END TraceColor;
  3341. (* Initialise tracing. *)
  3342. PROCEDURE InitTrace;
  3343. CONST MaxPorts = 8;
  3344. VAR i, p, bps: LONGINT; off: SIZE; s, name: ARRAY 32 OF CHAR;
  3345. baselist: ARRAY MaxPorts OF LONGINT;
  3346. BEGIN
  3347. GetConfig ("TraceMode", s);
  3348. p := 0; traceMode := SYSTEM.VAL (SET, StrToInt (p, s));
  3349. IF TraceScreen IN traceMode THEN
  3350. GetConfig ("TraceMem", s);
  3351. p := 0; traceBase := SYSTEM.VAL (ADDRESS, StrToInt (p, s));
  3352. IF traceBase = 0 THEN traceBase := 0B8000H END; (* default screen buffer *)
  3353. FOR off := 0 TO TraceSize - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (traceBase + off, 100H * 7H + 32) END;
  3354. tracePos := 0;
  3355. Portout8(3D4H, 0EX);
  3356. Portout8(3D5H, CHR((TraceWidth*TraceHeight) DIV 100H));
  3357. Portout8(3D4H, 0FX);
  3358. Portout8(3D5H, CHR((TraceWidth*TraceHeight) MOD 100H))
  3359. END;
  3360. IF TraceV24 IN traceMode THEN
  3361. FOR i := 0 TO MaxPorts - 1 DO
  3362. COPY ("COMx", name); name[3] := CHR (ORD ("1") + i);
  3363. GetConfig (name, s); p := 0; baselist[i] := StrToInt (p, s);
  3364. END;
  3365. IF baselist[0] = 0 THEN baselist[0] := 3F8H END; (* COM1 port default values *)
  3366. IF baselist[1] = 0 THEN baselist[1] := 2F8H END; (* COM2 port default values *)
  3367. GetConfig("TracePort", s); p := 0; p := StrToInt(p, s); DEC(p);
  3368. IF (p >= 0) & (p < MaxPorts) THEN tracePort := baselist[p] ELSE tracePort := baselist[0] END;
  3369. ASSERT(tracePort > 0);
  3370. GetConfig("TraceBPS", s); p := 0; bps := StrToInt(p, s);
  3371. IF bps <= 0 THEN bps := 38400 END;
  3372. Portout8 (tracePort + 3, 80X); (* Set the Divisor Latch Bit - DLAB = 1 *)
  3373. bps := 115200 DIV bps; (* compiler DIV/PORTOUT bug workaround *)
  3374. Portout8 (tracePort + 1, CHR (bps DIV 100H)); (* Set the Divisor Latch MSB *)
  3375. Portout8 (tracePort, CHR (bps MOD 100H)); (* Set the Divisor Latch LSB *)
  3376. Portout8 (tracePort + 3, 3X); (* 8N1 *)
  3377. Portout8 (tracePort + 4, 3X); (* Set DTR, RTS on in the MCR *)
  3378. Portout8 (tracePort + 1, 0X); (* Disable receive interrupts *)
  3379. END;
  3380. traceColor := 7; Trace.Char := TraceChar; Trace.Color := TraceColor;
  3381. END InitTrace;
  3382. (* The following procedure is linked as the first block in the bootfile *)
  3383. PROCEDURE {NOPAF, FIXED(0100000H)} FirstAddress;
  3384. CODE{SYSTEM.AMD64}
  3385. ; relocate the bootfile from 0x1000 to target address 0x100000
  3386. PUSH RAX
  3387. PUSH RSI
  3388. PUSH RDI
  3389. MOV RSI,1000H
  3390. MOV RDI,100000H
  3391. MOV RCX, LastAddress
  3392. SUB RCX, RDI
  3393. CLD
  3394. REP MOVSB
  3395. POP RDI
  3396. POP RSI
  3397. POP RAX
  3398. ; continue in relocated bootfile
  3399. JMP DWORD 100000H - 1000H + Skip
  3400. Skip:
  3401. ; save arguments passed by bootloader
  3402. MOV bootFlag, RAX
  3403. MOV initRegs0,RSI
  3404. MOV initRegs1, RDI
  3405. END FirstAddress;
  3406. (* empty section allocated at end of bootfile *)
  3407. PROCEDURE {NOPAF} LastAddress;
  3408. CODE {SYSTEM.AMD64}
  3409. END LastAddress;
  3410. (* Init code called from OBL. EAX = boot table offset. ESI, EDI=initRegs. 2k stack is available. No trap handling. *)
  3411. BEGIN
  3412. initRegs[0] := initRegs0;
  3413. initRegs[1] := initRegs1;
  3414. (* registers 6 and 7 get converted to 32 bit, cf. PCB.Assigne
  3415. SYSTEM.GETREG(6, initRegs[0]); SYSTEM.GETREG(7, initRegs[1]); (* initRegs0 & initRegs1 *)
  3416. *)
  3417. SYSTEM.PUT16(0472H, 01234H); (* soft boot flag, for when we reboot *)
  3418. ReadBootTable(bootFlag);
  3419. InitTrace;
  3420. Trace.String("Machine: "); Trace.Blue;Trace.StringLn (Version); Trace.Default;
  3421. CheckMemory;
  3422. SearchMP;
  3423. AllocateDMA; (* must be called after SearchMP, as lowTop is modified *)
  3424. version := Version;
  3425. InitBoot;
  3426. InitProcessor;
  3427. InitLocks;
  3428. NmaxUserStacks := MaxUserStacks;
  3429. ASSERT(ASH(1, PSlog2) = PS);
  3430. Trace.String("Machine: Enabling MMU... ");
  3431. InitSegments; (* enable flat segments *)
  3432. InitPages; (* create page tables *)
  3433. InitMemory; (* switch on segmentation, paging and switch stack *)
  3434. Trace.Green; Trace.StringLn("Ok"); Trace.Default;
  3435. (* allocate empty memory block with enough space for at least one free block *)
  3436. memBlockHead := SYSTEM.VAL (MemoryBlock, ADDRESSOF (initialMemBlock));
  3437. memBlockTail := memBlockHead;
  3438. initialMemBlock.beginBlockAdr := SYSTEM.VAL (ADDRESS, LastAddress);
  3439. initialMemBlock.endBlockAdr := initialMemBlock.beginBlockAdr + StaticBlockSize;
  3440. initialMemBlock.size := initialMemBlock.endBlockAdr - initialMemBlock.beginBlockAdr;
  3441. FOR i := 0 TO IDTSize - 1 DO
  3442. FOR j := 0 TO MaxNumHandlers - 1 DO
  3443. intHandler[i, j].valid := FALSE;
  3444. intHandler[i, j].handler := NIL
  3445. END
  3446. END;
  3447. default.valid := FALSE; (* initialized later *)
  3448. END Machine.
  3449. (*
  3450. 03.03.1998 pjm First version
  3451. 30.06.1999 pjm ProcessorID moved to AosProcessor
  3452. *)
  3453. (**
  3454. Notes
  3455. This module defines an interface to the boot environment of the system. The facilities provided here are only intended for the lowest levels of the system, and should never be directly imported by user modules (exceptions are noted below). They are highly specific to the system hardware and firmware architecture.
  3456. Typically a machine has some type of firmware that performs initial testing and setup of the system. The firmware initiates the operating system bootstrap loader, which loads the boot file. This module is the first module in the statically linked boot file that gets control.
  3457. There are two more-or-less general procedures in this module: GetConfig and StrToInt. GetConfig is used to query low-level system settings, e.g., the location of the boot file system. StrToInt is a utility procedure that parses numeric strings.
  3458. Config strings:
  3459. ExtMemSize Specifies size of extended memory (above 1MB) in MB. This value is not checked for validity. Setting it false may cause the system to fail, possible after running for some time. The memory size is usually detected automatically, but if the detection does not work for some reason, or if you want to limit the amount of memory detected, this string can be set. For example, if the machine has 64MB of memory, this value can be set as ExtMemSize="63".
  3460. *)