
A2 Programming Quickstart Guide

Felix Friedrich, Ulrike Glavitsch, Florian Negele, Sven Stauber

August 18, 2010

This is a brief introduction to the programming language Active Oberon and the operating
system A2. This introduction does neither replace a language report nor is it an introduction
to programming. It rather should provide quick access to the A2 system by ways of comments
and examples. It has been prepared for the Operating System Course, Spring Semester 2009, at
ETH Zurich as accompanying material to the practical exercises.

Contents

1 The A2 Operating System 2

1.1 Modules and Commands . 3

1.2 Loading and Unloading Modules . 3

2 The Language Active Oberon 4

2.1 Module Structure . 4

2.1.1 Import Section . 4

2.1.2 Constant Declaration Section . 4

2.1.3 Type Declaration Section . 5

2.1.4 Variable Declaration Section . 6

2.1.5 Procedure Declaration Section . 7

2.1.6 Body . 8

2.2 Basic Types . 8

2.2.1 Numeric types . 8

2.2.2 BOOLEAN . 9

2.2.3 SET . 9

2.2.4 CHAR . 9

2.3 Composite Types . 10

1

1 THE A2 OPERATING SYSTEM 2

2.3.1 Arrays . 10

2.3.2 Records . 11

2.3.3 Objects . 11

2.3.4 Inheritance . 12

2.4 Concurrency Support . 13

2.4.1 Active Objects . 13

2.4.2 Protection . 13

2.4.3 Synchronization . 14

2.4.4 Examples . 15

3 Application Programming Interfaces 16

3.1 Streams . 16

3.2 Commands . 19

3.3 Files . 20

3.4 Strings . 23

A Appendix 23

A.1 Built-in Functions . 23

A.2 The Module SYSTEM . 24

A.2.1 BIT Manipulation . 24

A.2.2 SYSTEM Types . 26

A.2.3 Addresses, Sizes and Unsafe Typecasts . 26

A.2.4 Direct Memory Access Functions . 26

A.2.5 IA-32 Specific Functions . 27

A.3 Active Oberon EBNF . 27

1 The A2 Operating System

A2 is a modern, multi-processor operating system in the tradition of the ETH operating systems
Medos, Oberon and Aos. It is written in Active Oberon with only very few exceptions: little
parts of the kernel and some low-level optimized routines are implemented in assembler. A2 is
composed of light-weight processes that are supported by Active Objects in the language Active
Oberon. Active Oberon is a highly readable, abstract programming language with built-in
concurrency support. Its abstraction protects programmers from artificial technical complexities
while system-near programming is still possible by ways of a special module named ‘SYSTEM’.

1 THE A2 OPERATING SYSTEM 3

1.1 Modules and Commands

Active Oberon is a modular programming language that is supported by a dynamic loading
concept in the operating system A2. The role of programs and applications is played by modules.
Instead of loading and executing a ‘program’, modules are loaded and commands are executed.
Once a module is loaded, it stays loaded until it is explicitly unloaded or until the system goes
down. Before we give more details on modules and commands, we show an example of a very
simple module.

MODULE Hello;

IMPORT Commands, KernelLog;

(∗ a command taking a context parameter ∗)
PROCEDURE World∗(context: Commands.Context);
BEGIN

context.out.String("Hello World");
context.out.Ln

END World;

(∗ a command without parameters ∗)
PROCEDURE InnerWorld∗;
BEGIN

KernelLog.String("Hello Kernel World");
KernelLog.Ln;

END InnerWorld;

END Hello.

Fig. 1: A Simple Oberon Module

Commands are executed by activating a command string of the form ModuleName.CommandName

within any text displayed on the screen. In the simple example above, this would be the strings
Hello.World and Hello.InnerWorld. A command is usually activated by a middle-mouse
click or by selecting the command string and using the key-combination Ctrl+Return. When
a command is activated, the module with name ModuleName is dynamically loaded on demand
and the procedure named CommandName in module ModuleName is executed.

Note that a module name has nothing to do with the name of the file that contains the source
code of the module. It is pure convention that source code files are usually denominated as
ModuleName.Mod.

1.2 Loading and Unloading Modules

When a module is compiled, an object file is generated and is made persistent in a file. It is not im-
mediately loaded. Basically, a module M is loaded when a command of the form M.CommandName

is activated. A module X is also automatically loaded when any module importing X is loaded
(cf. Paragraph 2.1.1).

2 THE LANGUAGE ACTIVE OBERON 4

A module stays loaded until it is unloaded explicitly. Modules can be unloaded with the com-
mand

SystemTools.Free ModuleName1 ModuleName2 ... ~

where the tilde ‘~’ indicates the end of the list. Note that a module A can only be unloaded if
no other currently loaded module imports A.

2 The Language Active Oberon

2.1 Module Structure

A module consists of an import list, constant declarations, type declarations, variable decla-
rations, procedure declarations and a body, all optional. In this Section, we describe these
parts.

2.1.1 Import Section

The exported symbols of a module can be made available to other modules. To make the symbols
of module A available in module B, module A has to be imported in module B. A module import
graph is a directed graph where cycles are forbidden.1

Symbols in one module that are to be used in any other module must be exported. A symbol is
exported by suffixing the name with an asterisk ‘*’. It is exported read only by suffixing with a
minus symbol ‘-’. We provide a little example of a module A being imported by a module B.

MODULE A;
CONST ExportedConst∗=100;

END A.

MODULE B;
IMPORT A;
VAR c−: LONGINT;

BEGIN
c := A.ExportedConst;

END B.

Fig. 2: B imports A

2.1.2 Constant Declaration Section

Although static values can be used in expressions, it is possible to associate an identifier with
a constant expression, in other words: to declare a constant. Only values of basic type and

1Cycles in the import graph are detected by the compiler.

2 THE LANGUAGE ACTIVE OBERON 5

strings2 can be declared as constants3. The following module contains some examples.

MODULE Random;

CONST
(∗ −−−−−− global constants −−−−−−−− ∗)
Max = 2147483647;
Allbits = 7FFFFFFFH; (∗ hex number ∗)

VAR
(∗ −−−−−− global variable −−−−−−−−− ∗)
z: LONGINT;

PROCEDURE Rand∗(): LONGINT;
(∗ constants can also be declared in procedure scope: ∗)
CONST A = 16807; Q = 127773; R = 2836;
VAR t: LONGINT;
BEGIN

t := A ∗ (z MOD Q) − R ∗ (z DIV Q);
IF t > 0 THEN z := t ELSE z := t + Max END;
RETURN z;

END Rand;
BEGIN

z := Allbits;
END Random.

Fig. 3: Declaration and Usage of Constants

2.1.3 Type Declaration Section

Type declarations bind an identifier to a type that can be used in variable declarations to name
the type of the variables (see section 2.1.4). Type declarations are used to provide synonyms for
user-defined composite types or existing types such as all predeclared basic types (see sections
2.3 and 2.2 respectively). The following example uses a type declaration to assign a new name
to a composite record type.

MODULE TypeDeclarations;

TYPE
NumberType = REAL;
ComplexNumber = RECORD re,im: NumberType END;

VAR
res,a,b: ComplexNumber;

2In Active Oberon, strings are array of characters, cf. Section 2.3.1
3There are exceptions: special mathematical arrays can also be declared as constants but this goes beyond the

scope of this short reference.

2 THE LANGUAGE ACTIVE OBERON 6

PROCEDURE Multiply(VAR res: ComplexNumber; x,y: ComplexNumber);
BEGIN

res.re := x.re∗y.re − x.im∗y.im;
res.im := x.re∗y.im + x.im∗y.re;

END Multiply;

BEGIN
(∗ ... ∗)
Multiply(res,a,b);
(∗ ... ∗)

END TypeDeclarations.

Fig. 4: Using Type Declarations

Note that the call of procedure Multiply with variables res, a and b requires that the variables
are assignment compatible to the respective parameters. This is guaranteed by using the name
of a type declaration which by definition always refers to the same type.

2.1.4 Variable Declaration Section

Variables have to be declared before use in a variable declaration section. A variable declaration
consists of an identifier and a type. Variables can be declared globally, in a procedure scope, in
an object or in a record scope.

MODULE Variables;
TYPE

(∗ variables in a record ∗)
Pair = RECORD x,y: REAL END;
PairPointer = POINTER TO Pair;
ExampleObject = OBJECT

(∗ object variables ∗)
VAR x,y: REAL;
END ExampleObject;

VAR (∗ global variables ∗)
a: LONGINT;
b: Pair;
c: PairPointer;

PROCEDURE Example;
(∗ local variables ∗)
VAR a,b: REAL;
BEGIN
END Example;

END Variables.

Fig. 5: Variables and Parameters

2 THE LANGUAGE ACTIVE OBERON 7

2.1.5 Procedure Declaration Section

Procedures contain the executable code of a module. They can be declared in a module scope,
within procedure scopes (‘nested procedures’) or in object scopes (‘methods’). Parameters are
special variables that refer to expressions that have been passed to the procedure from its caller.
Parameters are declared in the head of the procedure declaration.

Parameters can be value parameters4, in which case they represent the actual value of an ex-
pression being passed to the respective procedure. Or parameters can be variable parameters5,
in which case they stand for the reference of a designator that has been passed to the procedure.
The modification of a value parameter within a procedure does only have a temporary effect
within the procedure while the modification of a variable parameter implies the modification of
the passed variable.

MODULE Procedures;

TYPE
O = OBJECT

PROCEDURE Method;
PROCEDURE NestedProcedure;
BEGIN
END NestedProcedure;

BEGIN
END Method;

END O;

PROCEDURE GlobalProcedure;
PROCEDURE NestedProcedure;
BEGIN END NestedProcedure;

END GlobalProcedure;

PROCEDURE Square(x: REAL): REAL;
BEGIN x := x∗x; RETURN x
END Square;

PROCEDURE Inc(VAR i: INTEGER);
BEGIN i := i+1
END Inc;

PROCEDURE Test∗;
VAR x,sq: REAL; i: INTEGER;
BEGIN

x := 10; i := 0;
sq := Square(x);
Inc(i);

4Value parameters are passed over the stack.
5Variable parameters are references being passed over the stack.

2 THE LANGUAGE ACTIVE OBERON 8

END Test;

END Procedures.

Fig. 6: Procedures

2.1.6 Body

A module can provide a body. The body will be executed once after the module has been loaded
but prior to any of its commands. Consider the following example:

MODULE Hello;

IMPORT KernelLog;

PROCEDURE World∗;
BEGIN KernelLog.String("Hello World"); KernelLog.Ln;
END World;

BEGIN
(∗ this is a special ‘procedure’: the module body
it is executed if and only if a module has been freshly loaded ∗)
KernelLog.String("Hello has been loaded"); KernelLog.Ln;

END Hello.

Fig. 7: A simple Oberon Module

A first call of Hello.World results in the output Hello has been loaded and Hello World
in the kernel log. Each subsequent call will result in an output of Hello World, but no further
execution of the body. Only if the module has been unloaded, the body is executed again. Note
that, consequently, in order to see the effects of a modification and re-compilation of a module
it has to be unloaded. (cf. Section 1.2).

2.2 Basic Types

There are nine predeclared basic types in Active Oberon. Their names and valid values are
shown in table 1.

2.2.1 Numeric types

The numeric types are comprised of the integer and real types and form a set hierarchy

LONGREAL ⊃ REAL ⊃ HUGEINT ⊃ LONGINT ⊃ INTEGER ⊃ SHORTINT

The range of the larger type includes the ranges of the smaller types. The smaller type is said
to be compatible with the larger one in the sense that it can without danger of loss of leading
digits be converted. In assignments and in expansions the conversion of internal representations
is automatic.

2 THE LANGUAGE ACTIVE OBERON 9

Type name Size Valid values

BOOLEAN 1 byte TRUE or FALSE

CHAR 1 byte characters of the extended ASCII set (0X . . . 0FFX)

SHORTINT 1 byte integers between −27 and 27 − 1
INTEGER 2 bytes integers between −215 and 215 − 1
LONGINT 4 bytes integers between −231 and 231 − 1
HUGEINT 8 bytes integers between −263 and 263 − 1

REAL 4 bytes floating point value between −3.402838 and +3.402838

LONGREAL 8 bytes floating point value between −1.7976308 and +1.7976308

SET 4 bytes any set combination of the integer values between 0 and 31

Table 1: Predeclared Basic Types

2.2.2 BOOLEAN

A Boolean value is one of the logical truth values which are represented in Active Oberon by the
standard identifiers TRUE and FALSE.

2.2.3 SET

The values which belong to the type SET are elements of the power set of {0, 1, . . . , N} where
N is equal to MAX(SET), a constant defined by the implementation. It is typically the word
length of the computer (or a small multiple of it). In fact, sets are efficiently implemented as
bit operations.

Examples of set constants are:

MODULE SetConstants;

CONST
EmptySet = {};
SomeElements = {1, 6, 10};
SomeOthers = {0, 2..4, 8};

END SetConstants.

Fig. 8: Using set constants

where {} denotes the empty set and the expression 2..4 refers to the elements 2, 3 and 4.

2.2.4 CHAR

A major portion of the input and output of computers is in the form of character strings that
contain values of type CHAR. The value range of the type CHAR consists of the characters
of the roman alphabet and a small set of special symbols used frequently in commerce and
mathematics.

2 THE LANGUAGE ACTIVE OBERON 10

The set representing the type CHAR is ordered and each character has a fixed position or ordinal
number. This is reflected in the notation for character constants which may be written as ”a”
or 61X for the letter a. The first representation denotes the value of the variable of type CHAR,
the second its (hexadecimal) ordinal number.

2.3 Composite Types

In Active Oberon, there are basically three composite types available: Arrays, Records and
Objects.

2.3.1 Arrays

Arrays can be declared static, open or dynamic. Static arrays are declared as ARRAY number
OF BaseType, where number must be constant. The BaseType can be an array, which allows
the declaration of multi-dimensional arrays. Arrays can be declared open only in a parameter
section. Dynamic arrays are basically references pointing to an array with lengths that may be
provided during runtime.

MODULE Arrays;
VAR
a: ARRAY 32 OF ARRAY 20 OF INTEGER; (∗ static, two−dimensional ∗)
b: POINTER TO ARRAY OF INTEGER; (∗ dynamic, one−dimensional ∗)

PROCEDURE Print(x: ARRAY OF INTEGER); (∗ open ∗)
VAR i: INTEGER;
BEGIN

i := 0;
WHILE i<LEN(x) DO

(∗ Printout x[i] ∗)
INC(i);

END;
END Print;

PROCEDURE Example;
BEGIN

NEW(b,100); (∗ allocate array ∗)
(∗ ... ∗)
Print(bˆ);

END Example;

END Arrays.

Fig. 9: Using arrays

2 THE LANGUAGE ACTIVE OBERON 11

2.3.2 Records

Records are containers of data. Records are value types and are declared as RECORD (variables)
END. Records can also be declared as reference types using POINTER TO. Record fields are
referred to via recordName.variableName.

MODULE Records;
VAR

a: RECORD x,y: LONGINT END;
p: POINTER TO RECORD a,b: REAL END;

BEGIN
NEW(p);
p.b := a.x;

END Records.

Fig. 10: Using records

2.3.3 Objects

Objects are basically reference records that can additionally be equipped with procedures. Pro-
cedures in an object are methods: they reside in the object scope and have access to the object’s
variables. An object can be explicitly referred to in its method using the SELF identifier. A
method prefixed by an ampersand character & is an object initializer. This method is automat-
ically called when an instance of the object is created and processed before the object becomes
publicly available. An object may have at most one initializer. If absent, the initializer of the
base type is inherited. Initializers can be called like methods.

MODULE Objects;
TYPE
MyObject = OBJECT (∗ class ∗)

VAR x,y: REAL;

PROCEDURE Equals(o: MyObject): BOOLEAN;
BEGIN

IF o = SELF THEN RETURN TRUE
ELSE RETURN (o.x = x) & (o.y = y)
END;

END Equals;

PROCEDURE &Init(x, y : REAL); (∗ initializer ∗)
BEGIN

SELF.x := x; SELF.y := y;
END Init;

END MyObject;

VAR p,q: MyObject; (∗ objects / instances ∗)

2 THE LANGUAGE ACTIVE OBERON 12

BEGIN
(∗ instantiate object p with x and y parameters for initializer ∗)
NEW(p, 1.0, 9.99);
(∗ ... ∗)
IF p.Equals(q) THEN (∗ ... ∗)
END;

END Objects.

Fig. 11: Usage of Objects

2.3.4 Inheritance

Active Oberon is an object oriented language. Inheritance is supported for records and objects.
It is possible to extend records and objects and to use type checks, type guards and overriding
of methods. Record and object extension is explicated as in the following example:

MODULE Extensions;

TYPE
Rectangle = RECORD

x,y,w,h: INTEGER
END;

FilledRectangle = RECORD(Rectangle)
color: INTEGER

END;

Window = OBJECT
VAR x,y,w,h: INTEGER;

PROCEDURE Print;
BEGIN

(∗ draw frame ∗)
END Print;

END Window;

FilledWindow = OBJECT (Window)
VAR color: INTEGER;

PROCEDURE Print; (∗ overrides Window.Print ∗)
BEGIN

Printˆ; (∗ supercall ∗)
(∗ fill ∗)

END Print;
END FilledWindow;

END Extensions.

Fig. 12: Type extension of records and objects

2 THE LANGUAGE ACTIVE OBERON 13

2.4 Concurrency Support

Active Oberon provides built-in concurrency support. Threads are represented as Active Objects
and language constructs for ensuring mutual exclusion and thread synchronization are provided.

2.4.1 Active Objects

The declaration of an object type may include an object body. The body is the object’s activity,
to be executed whenever an object instance is allocated after the initializer (if any) completed
execution. The object body is annotated with the ACTIVE modifier. At allocation, a new
process is allocated to execute the body concurrently. If the ACTIVE modifier is not present,
the body is executed synchronously, i.e. NEW returns only after the body has terminated
execution. The active object activity terminates whenever the body execution terminates. As
long as the body executes, the object is kept alive (in particular it cannot be garbage collected).

MODULE Example;
TYPE

ActiveObject = OBJECT
BEGIN {ACTIVE}

(∗ do some useful work ∗)
END ActiveObject;

VAR
o : ActiveObject;

BEGIN
(∗ instantiate active object o ∗)
NEW(o);

END Example.

Fig. 13: Example of an active object

2.4.2 Protection

Like a (procedure-, module- or object-) body, a Statement Block is a sequence of statements
delimited by BEGIN and END. It can be used anywhere like a simple statement. An EXCLU-
SIVE modifier turns a statement block (or body) into a critical region to protect the statements
against concurrent execution. Our protection model is an instance-based monitor: Every object
instance is protected and the protection granularity is any statement block inside the object’s
method, ranging from a single statement to a whole method.

Upon entering an exclusive block, an activity is preempted as long as another activity stands
in an exclusive block of the same object instance. An activity cannot take an object’s lock
more than once (re-entrance is not allowed). Modules are considered singleton objects, thus
procedures in a module can also be protected. In this case the scope of protection is the whole
module.

2 THE LANGUAGE ACTIVE OBERON 14

MODULE Demo;

TYPE
SomeObject = OBJECT

PROCEDURE O1;
BEGIN {EXCLUSIVE}

(∗ critical section o1 ∗)
END O1;

PROCEDURE O2;
BEGIN

(∗ non−critical section ∗)
BEGIN {EXCLUSIVE} (∗ critical section o2 ∗) END;
(∗ non−critical section ∗)

END O2;

END SomeObject;

PROCEDURE P1;
BEGIN {EXCLUSIVE}

(∗ critical section p1 ∗)
END P1;

PROCEDURE P2;
BEGIN

(∗ non−critical section ∗)
BEGIN {EXCLUSIVE} (∗ critical section p2 ∗) END;
(∗ non−critical section ∗)

END P2;

END Demo.

Fig. 14: Usage of exclusive blocks

In this example, at most one thread can be in one of the critical sections of the module p1 or p2
at any time. For each instance of SomeObject, at most one thread can be in o1 or o2 at any
time. Note that there is no relation of p1, p2 and o1, o2 in different object instances since the
protection is based on instance-based monitors.

2.4.3 Synchronization

The built-in procedure AWAIT is used to synchronize an activity with a state of the system.
AWAIT can take any boolean condition. The activity is allowed to continue execution only when
the condition is true. While the condition is not established, the activity remains suspended.
The lock on the protected object is released, as long as the activity remains suspended6. The

6Releasing the lock upon waiting allows other activities to change the state of the object and thus establish
the condition

2 THE LANGUAGE ACTIVE OBERON 15

activity is resumed if and only if the lock can be taken. The system is responsible for evaluating
the conditions and for restarting suspended activities. The conditions inside an object instance
are re-evaluated whenever some activity leaves a protected block inside the same object instance.
This implies that changing the state of an object outside a protected block does not imply a
re-evaluation of its conditions. When several activities compete for the same object lock, the
activities whose conditions are true are scheduled before those that only want to enter a protected
region.

MODULE Example;

TYPE
Synchronizer = OBJECT
VAR awake : BOOLEAN;

PROCEDURE &Init;
BEGIN

awake := FALSE;
END Init;

PROCEDURE Wait;
BEGIN {EXCLUSIVE}

AWAIT(awake); (∗ suspend caller until awake = TRUE ∗)
awake := FALSE;

END Wait;

PROCEDURE Wakeup;
BEGIN {EXCLUSIVE}

awake := TRUE;
END Wakeup;

END Synchronizer;

END Example.

Fig. 15: Example of object synchronization

2.4.4 Examples

The following example shows the implementation of a bounded-buffer.

MODULE Example;

TYPE
Item∗ = OBJECT END Item;

Buffer∗ = OBJECT
VAR head, num: LONGINT; buffer: POINTER TO ARRAY OF Item;

PROCEDURE Append∗(x: Item);

3 APPLICATION PROGRAMMING INTERFACES 16

BEGIN {EXCLUSIVE}
AWAIT(num # LEN(buffer));
buffer[(head+num) MOD LEN(buffer)] := x;
INC(num)

END Append;

PROCEDURE Remove∗(): Item;
VAR x: Item;
BEGIN {EXCLUSIVE}
AWAIT(num # 0);
x := buffer[head];
head := (head+1) MOD LEN(buffer);
DEC(num);
RETURN x

END Remove;

PROCEDURE &Init∗(n: LONGINT);
BEGIN
head := 0; num := 0; NEW(buffer, n)

END Init;
END Buffer;

END Example.

Fig. 16: Bounded-buffer

3 Application Programming Interfaces

This section comprises a brief overview of often used application programming interfaces.

3.1 Streams

Streams provide an abstraction for easily accessing various resources that can be accessed byte-
wise. Streams can be opened on files, network connections, serial port connections, strings,
memory and many other resources. Streams are unidirectional, i.e. it is possible to either read
from a resource (Readers) or write to a resource (Writers). Readers maintain an input buffer and
writers maintain an output buffer that has to be flushed explicitly by the programmer. Streams
maintain an internal position that is updated automatically whenever a read or write operation
is performed. Streams may support random access, depending on the underlying resource.

MODULE Streams;

(∗∗ A reader buffers input received from a Receiver.
Must not be shared between processes. ∗)

Reader∗ = OBJECT

3 APPLICATION PROGRAMMING INTERFACES 17

(∗∗ result of last input operation ∗)
res∗: LONGINT;

(∗∗ Current position. ∗)
PROCEDURE Pos∗(): LONGINT;

(∗∗ Returns TRUE if this stream supports random access ∗)
PROCEDURE CanSetPos∗(): BOOLEAN;

(∗∗ Set position to <pos> (only if resource supports random access) ∗)
PROCEDURE SetPos∗(pos: LONGINT);

(∗∗ Return number of bytes currently available in input buffer. ∗)
PROCEDURE Available∗(): LONGINT;

(∗∗ Read one byte. ∗)
PROCEDURE Char∗(VAR x: CHAR);

(∗∗ Read one byte but leave the byte in the input buffer. ∗)
PROCEDURE Peek∗(): CHAR;

(∗∗ Read size bytes into x, starting at ofs.
The len parameter returns the number of bytes that were actually

read. ∗)
PROCEDURE Bytes∗(VAR x: ARRAY OF CHAR; ofs, size: LONGINT; VAR len:

LONGINT);

(∗∗ Skip n bytes on the reader. ∗)
PROCEDURE SkipBytes∗(n: LONGINT);

(∗∗ −− Read formatted data (uses Peek for one character lookahead) −−
∗)

(∗∗ Read an integer value in decimal or hexadecimal.
If hex = TRUE, recognize the "H" postfix for hexadecimal numbers. ∗)

PROCEDURE Int∗(VAR x: LONGINT; hex: BOOLEAN);

(∗∗ Read all characters until the end of the line (inclusive).
If the input string is larger than x, read the full string and
assign the truncated 0X−terminated value to x. ∗)

PROCEDURE Ln∗(VAR x: ARRAY OF CHAR);

(∗∗ Skip over all characters until the end of the line (inclusive). ∗)
PROCEDURE SkipLn∗;

(∗∗ Skip over space, TAB and EOLN characters. ∗)
PROCEDURE SkipWhitespace∗;

(∗∗ Read an optionally "" or ’’ enquoted string.

3 APPLICATION PROGRAMMING INTERFACES 18

Will not read past the end of a line. ∗)
PROCEDURE String∗(VAR string: ARRAY OF CHAR);

(∗∗ First skip whitespace, then read string. Returns TRUE on success. ∗)
PROCEDURE GetString∗(VAR string : ARRAY OF CHAR) : BOOLEAN;

(∗∗ First skip whitespace, then read integer.
If hex = TRUE, recognize the "H" postfix for hexadecimal numbers.
Returns TRUE on success. ∗)

PROCEDURE GetInteger∗(VAR integer : LONGINT; hex : BOOLEAN) : BOOLEAN;

END Reader;

Writer∗ = OBJECT

(∗∗ result of last output operation ∗)
res∗: LONGINT;

(∗∗ Current position. ∗)
PROCEDURE Pos∗(): LONGINT;

(∗∗ Returns TRUE if this stream supports random access ∗)
PROCEDURE CanSetPos∗(): BOOLEAN;

(∗∗ Set position to <pos> (only if resource supports random access) ∗)
PROCEDURE SetPos∗(pos: LONGINT);

(∗∗ Flush output buffer ∗)
PROCEDURE Update∗;

(∗∗ Write one byte. ∗)
PROCEDURE Char∗(x: CHAR);

(∗∗ Write len bytes from x, starting at ofs. ∗)
PROCEDURE Bytes∗(CONST x: ARRAY OF CHAR; ofs, len: LONGINT);

(∗∗ −− Write formatted data −− ∗)

(∗∗ Write an ASCII end−of−line (CR/LF). ∗)
PROCEDURE Ln∗;

(∗∗ Write a 0X−terminated string, excluding the 0X terminator. ∗)
PROCEDURE String∗(CONST x: ARRAY OF CHAR);

(∗∗ Write an integer in decimal
right−justified in a field of at least w characters. ∗)

PROCEDURE Int∗(x, w: LONGINT);

(∗∗ Write an integer in hexadecimal

3 APPLICATION PROGRAMMING INTERFACES 19

right−justified in a field of at least ABS(w) characters. ∗)
PROCEDURE Hex∗(x: HUGEINT; w: LONGINT);

END Writer;

END Streams;

Fig. 17: Simplified Reader and Writer Interface

3.2 Commands

Commands are procedures that can be invoked directly by the command interpreter. As has
already been indicated in Section 1.1, a procedure can act as a command if and only if it is
exported, if it is declared in the module scope and if it has a command signature:

(∗∗ Command with no arguments ∗)
PROCEDURE ProcedureName∗;

(∗∗ Command with arguments and output stream ∗)
PROCEDURE ProcedureName∗(context : Commands.Context);

Fig. 18: Command Signatures

An excerpt of the Commands module interface reads as follows:

MODULE Commands;
TYPE

Context∗ = OBJECT
VAR

in−, arg− : Streams.Reader;
out−, error− : Streams.Writer;
caller− : OBJECT;

END Context;
END Command;

Fig. 19: Command Context

Command line arguments can be accessed using the arg stream. The stream in is the command
input stream. For output, the streams out and error are used. The caller field optionally contains
a reference to an object that is responsible for the command invocation. Note that both output
stream buffers (out and error) are flushed automatically by the command interpreter.

MODULE Example;
IMPORT Commands;

PROCEDURE Add∗(context : Commands.Context);
VAR a, b : LONGINT;
BEGIN
IF context.arg.GetInteger(a, FALSE) &

context.arg.GetInteger(b, FALSE)

3 APPLICATION PROGRAMMING INTERFACES 20

THEN
context.out.Int(a, 0); context.out.String(" + ");
context.out.Int(b, 0);
context.out.String(" = "); context.out.Int(a + b, 0);
context.out.Ln;

ELSE
context.error.String("Expected two integer arguments");
context.error.Ln;

END;
END Add;

END Example.

Fig. 20: Command Example

After compilation of module Example, the command interpreter is able to process the command
Example.Add 3 5 ~. Note that the tilde character indicates the end of the command line
arguments.

3.3 Files

Module Files provides both the interface to be implemented by file system drivers and A2 file
API.

The most useful operations are

MODULE Files;
TYPE
File∗ = OBJECT;

(∗∗ Open file <filename>. Returns NIL if file cannot be opened ∗)
Old∗(filename : ARRAY OF CHAR) : File;

(∗∗ Create file <filename>. Returns NIL if file cannot be created ∗)
New∗(filename : ARRAY OF CHAR) : File;

(∗∗ Register a new file (create entry in file system directory) ∗)
Register∗(f : File);

END Files;

Fig. 21: Basic Files API

The actual access to files is achieved by using the low-level file riders or by using streams on a
file. We describe both methods in the subsequent sections.

File Interface The low-level file interface uses so-called riders as context for accessing files.
Multiple riders can be positioned independently on a given file. Essentially, riders are used for
tracking the position in a file and store the result of the last operation on the file. As for streams,
read and write operations automatically update the current position.

3 APPLICATION PROGRAMMING INTERFACES 21

(∗∗ A rider points to some location in a file,
where reading and writing will be done. ∗)

Rider∗ = RECORD (∗∗ not shareable between multiple processes ∗)
(∗∗ has end of file been passed ∗)
eof∗: BOOLEAN;

(∗∗ leftover byte count for ReadBytes/WriteBytes ∗)
res∗: LONGINT;

END;

File∗ = OBJECT (∗∗ sharable ∗)
(∗ ... ∗)

(∗∗ Position a Rider at a certain position in a file.
Multiple Riders can be positioned at different locations in a file.
A Rider cannot be positioned beyond the end of a file. ∗)

PROCEDURE Set∗(VAR r: Rider; pos: LONGINT);

(∗∗ Return the offset of a Rider positioned on a file. ∗)
PROCEDURE Pos∗(VAR r: Rider): LONGINT;

(∗∗ Read a byte from a file, advancing the Rider one byte further.
R.eof indicates if the end of the file has been passed. ∗)

PROCEDURE Read∗(VAR r: Rider; VAR x: CHAR);

(∗∗ Read a sequence of len bytes into the buffer x at offset ofs,
advancing the Rider. Less bytes will be read when reading over the
end of the file. r.res indicates the number of unread bytes. ∗)

PROCEDURE ReadBytes∗(VAR r: Rider; VAR x: ARRAY OF CHAR; ofs, len:
LONGINT);

(∗∗ Write a byte into the file at the Rider position,
advancing the Rider by one. ∗)

PROCEDURE Write∗(VAR r: Rider; x: CHAR);

(∗∗ Write the buffer x containing len bytes (starting at offset ofs)
into a file at the Rider position. ∗)

PROCEDURE WriteBytes∗(VAR r: Rider; CONST x: ARRAY OF CHAR; ofs, len:
LONGINT);

(∗∗ Return the current length of a file. ∗)
PROCEDURE Length∗(): LONGINT;

(∗∗ Flush the changes made to a file from its buffers. ∗)
PROCEDURE Update∗;

END File;

Fig. 22: Low-level Files API

3 APPLICATION PROGRAMMING INTERFACES 22

Using Streams On Files First we display a part of the Files interface:

MODULE Files;

TYPE
File∗ = OBJECT; (∗ as described in last section ∗)
Reader∗ = OBJECT (Streams.Reader);
Writer∗ = OBJECT (Streams.Writer);

OpenReader∗(VAR r: Reader; f : File; position : LONGINT);
OpenWriter∗(VAR w : Writer; f : File; position : LONGINT);

END Files.

Fig. 23: Using Streams On Files

Next we provide an example of how to use streams on files.

MODULE Example;
IMPORT Commands, Files;

PROCEDURE CreateFile∗(context : Commands.Context);
VAR
filename : Files.FileName;
file : Files.File; writer : Files.Writer;
ch : CHAR;

BEGIN
IF context.arg.GetString(filename) THEN
file := Files.New(filename);
IF (file # NIL) THEN
Files.OpenWriter(writer, file, 0);
context.arg.Char(ch); (∗ skip argument delimiter character ∗)
REPEAT
context.arg.Char(ch);
writer.Char(ch);

UNTIL (ch = 0X);
writer.Update;
Files.Register(file);

ELSE
context.error.String("Could not create file"); context.error.Ln;

END;
ELSE
context.error.String("Expected filename argument"); context.error.Ln;

END;
END CreateFile;

END Example.

Fig. 24: Example: Create A New File

In this example, executing the command Example.CreateFile HelloWorld.txt Hello World ~

would create (or overwrite) the file ”HelloWorld.txt” and write the 0X-terminated string “Hello
World ” into it.

A APPENDIX 23

3.4 Strings

The module Strings provides procedures for ASCII string manipulation.

MODULE Strings;

(∗∗ returns the length of a string ∗)
PROCEDURE Length∗ (CONST string: ARRAY OF CHAR): LONGINT;

(∗∗ appends appendix to s: s := s || appendix ∗)
PROCEDURE Append∗ (VAR s: ARRAY OF CHAR; CONST appendix: ARRAY OF CHAR);

(∗∗ concatenates s1 and s2: s := s1 || s2 ∗)
PROCEDURE Concat∗ (CONST s1, s2: ARRAY OF CHAR; VAR s: ARRAY OF CHAR);

(∗∗ converts an integer value to a string ∗)
PROCEDURE IntToStr∗(i: LONGINT; VAR s: ARRAY OF CHAR);

(∗∗ Simple pattern matching with support for "∗" and "?" wildcards
returns TRUE if name matches mask. ∗)

PROCEDURE Match∗(CONST mask, name: ARRAY OF CHAR): BOOLEAN;

END Strings.

Fig. 25: Strings

A Appendix

A.1 Built-in Functions

There are some built-in procedures and functions in Active Oberon. We give a short overview
in the following table. Note that Integer stands for SHORTINT, INTEGER, LONGINT and
HUGEINT and Number stands for integers plus REAL and LONGREAL.

Function Argument Types Result
Type

Description

INC(x) x: Integer increment x by 1
DEC(x) x: Integer decrement x by 1
INC(x,n) x: Integer; n: Integer increment x by n
DEC(x,n) x: Integer; n: Integer decrement x by n
ASSERT(x) x: BOOLEAN assert trap, if x not true
COPY(x,y) x,y: ARRAY OF CHAR 0X-terminated copy of x to y
INCL(s,e) s: SET, e: Integer include element e in set s
EXCL(s,e) s: SET, e: Integer exclude element e from set s
HALT(n) n: Integer generate a trap with number n
NEW(x,...) x: Object or Pointer allocate x

A APPENDIX 24

Function Argument Types Result
Type

Description

ABS(x) x: Number Number return absolute value of x
ASH(x,y) x,y: Integer Integer return arithmetic shift of x by y bits
CAP(x) x: CHAR CHAR return capital letter of x
CHR(x) x: Integer CHAR return character with ascii-number

x
ENTIER(x) x: REAL or LONGREAL LONGINT return largest integer not greater

than x
LEN(x) x: ARRAY OF CHAR LONGINT return length of x
MAX(t) t: Number or SET Number return maximal number of basic

type t
MIN(t) t: Number or SET Number return minimal number of basic

type t
ODD(x) x: Integer BOOLEAN return if x is odd
ORD(x) x: CHAR LONGINT return ascii-number of x
SHORT(x) x: Number Number number conversion down
LONG(x) x: Number Number number conversion up

The number conversion routines SHORT and LONG operate with respect to the relations

LONGREAL ⊃ REAL,HUGEINT ⊃ LONGINT ⊃ INTEGER ⊃ SHORTINT.

A.2 The Module SYSTEM

The (pseudo-)module SYSTEM contains definitions that are necessary to directly refer to re-
sources particular to a given computer and/or implementation. These include facilities for
accessing devices that are controlled by the computer, and facilities to override the data type
compatibility rules otherwise imposed by the language definition. The functions and procedures
exported by this module should be used with care! It is recommended to restrict their use
to specific low-level modules. Such modules are inherently non-portable and easily recognized
due to the identifier SYSTEM appearing in their import list. The subsequent definitions are
applicable to the A2 operating system.

A.2.1 BIT Manipulation

Function Argument Types Result
Type

Description

BIT(adr,n) adr: ADDRESS;
n: LONGINT

BOOLEAN Returns TRUE if bit n at adr is set,
FALSE otherwise

LSH(x,n) x: Integer;
n: LONGINT

Integer Returns value x logically shifted left
n bits (shifts right for n < 0)

A APPENDIX 25

Function Argument Types Result
Type

Description

ROT(x,n) x: Integer;
n: LONGINT

Integer Returns value x rotated left by n
bits (rotates right for n < 0)

A APPENDIX 26

A.2.2 SYSTEM Types

Type Description

ADDRESS Representation of memory addresses. Currently, this is an alias to either
LONGINT or HUGEINT

SIZE Representation of results of arithmetic operations on memory addresses.

BYTE Representation of a single byte.

A.2.3 Addresses, Sizes and Unsafe Typecasts

Function Argument Types Result
Type

Description

ADR(v) v: ANY ADDRESS Returns the address of v

SIZEOF(v) v: ANY SIZE Returns the size of type v

VAL(T,x) T: Type; x: ANY T Unsafe type cast. Returns x inter-
preted as type T with no conversion

A.2.4 Direct Memory Access Functions

Function Argument Types Result
Type

Description

PUT(adr,x) adr: ADDRESS;
x: Type

Mem[adr] := x where the size of type
x is 8, 16, 32 or 64 bits

PUT8(adr,x) adr: ADDRESS;
x: SHORTINT

Mem[adr] := x

PUT16(adr,x) adr: ADRESS;
x: INTEGER

PUT32(adr,x) adr: ADDRESS;
x: LONGINT

PUT64(adr,x) adr: ADDRESS;
x: HUGEINT

GET(adr,x) adr: ADDRESS;
VAR x: Type

x := Mem[adr] where the size of type
x is 8, 16, 32 or 64 bits

GET8(adr) adr: ADDRESS SHORTINT RETURN Mem[adr]
GET16(adr) adr: ADDRESS INTEGER
GET32(adr) adr: ADDRESS LONGINT
GET64(adr) adr: ADDRESS HUGEINT

MOVE(src,
dst,n)

dst: ADDRESS;
n: SIZE

Copy ”n” bytes from address ”src”
to address ”dst”

A APPENDIX 27

A.2.5 IA-32 Specific Functions

Function Argument Types Description

PORTIN(adr,x) adr: LONGINT;
VAR x: Type

Perform a port input instruction at the specified
I/O address. The size of type x must be 8, 16
or 32 bits

PORTOUT(adr,x) adr: LONGINT;
x: Type

Perform a port output instruction at the speci-
fied I/O address. The size of type x must be 8,
16 or 32 bits

CLI() Disable interrupts on the current processor
STI() Enable interrupts on the current processor

GETREG(reg,x) reg: LONGINT;
VAR x: Type

x := REGISTER(reg) where the size of type x
is 8, 16, 32 or 64 bits depending on the register

PUTREG(reg,x) reg: LONGINT;
x: Type

REGISTER(reg) := x; where SIZEOF(x) is 8,
16, 32 or 64 bits

EAX, ECX, EDX,
EBX, ESP, EBP,
ESI, EDI

32 bit registers

AX, CX, DX, BX,
SP, BP, SI, DI

16 bit registers

AL, CL, DL, BL,
AH, CH, DH, BH

8 bit registers

A.3 Active Oberon EBNF

We display the syntax of Active Oberon in the Extended Backus-Naur-Form (EBNF). We present
productions (syntactic equations) as equations with a single equal sign =. On the left hand
side of a production stands the defined nonterminal symbol, the right hand side contains the
substitution rule and is terminated by a period. Terminal symbols are embraced by single or
double quotes (for example ’:=’, "’" and ’begin’). An alternative in a production is denoted
by a vertical bar |. Brackets [and] denote optionality of the enclosed expression, while braces
{ and } denote its repetition (possibly 0 times). Additionally, parentheses (and) are used to
enclose expressions and thereby control additional precedence.

Module = ’MODULE’ Identifier [’IN’ Identifier]’;’
[ImportList] DeclarationSequence [Body]
’END’ Identifier ’.’.

ImportList = ’IMPORT’ Import { ’,’ Import } ’;’.

Import = Identifier [’:=’ Identifier] [’IN’ Identifier].

DeclarationSequence = { ’CONST’ [ConstDeclaration] {’;’ [ConstDeclaration]}
|’TYPE’ [TypeDeclaration] {’;’ [TypeDeclaration]}
|’VAR’ [VariableDeclaration] {’;’ [VariableDeclaration]}
}
[ProcedureDeclaration | OperatorDeclaration]
{’;’ [ProcedureDeclaration | OperatorDeclaration] }.

A APPENDIX 28

ConstDeclaration = IdentifierDefinition ’=’ Expression.

TypeDeclaration = IdentifierDefinition ’=’ Type.

VariableDeclaration = VariableNameList ’:’ Type.

ProcedureDeclaration = ’PROCEDURE’ [’&’ |’−’ |SystemFlag] IdentifierDefinition
[FormalParameters]’;’

DeclarationSequence [Body] ’END’ Identifier.

OperatorDeclaration = ’OPERATOR’ String [’∗’ |’−’] FormalParameters ’;’
DeclarationSequence [Body] ’END’ String.

SystemFlag = ’{’ Identifier ’}’.

IdentifierDefinition = Identifier [’∗’ |’−’].

FormalParameters = ’(’[ParameterDeclaration {’;’ ParameterDeclaration}]’)’ [’:’ Type].

ParameterDeclaration = [’VAR’ |’CONST’] Identifier {’,’ Identifier}’:’ Type.

Type = ArrayType | RecordType | PointerType | ObjectType | ProcedureType
| QualifiedIdentifier.

ArrayType = ’ARRAY’ [Expression {’,’ Expression}
| ’[’ MathArraySize {’,’ MathArraySize} ’]’] ’OF’ Type.

MathArraySize = Expression | ’∗’ | ’?’.

RecordType = ’RECORD’ [’(’ QualifiedIdentifier ’)’]
[VariableDeclaration {’;’ VariableDeclaration}] ’END’.

PointerType = ’POINTER’ ’TO’ Type.

ObjectType = ’OBJECT’ [’(’ QualifiedIdentifier ’)’] DeclarationSequence [Body]
’END’ [Identifier]
| ’OBJECT’.

ProcedureType = ’PROCEDURE’ [SystemFlag] [FormalParameters].

Body = ’BEGIN’ [’{’ BlockModifiers ’}’] StatementSequence
[’FINALLY’ StatementSequence]
| ’CODE’ {any}.

BlockModifiers = [Identifier [’(’ Expression ’)’] {’,’ Identifier [’(’ Expression ’)’]
}]

StatementSequence = Statement {’;’ Statement}.

Statement =
[
Designator [’:=’ Expression]
| ’IF’ Expression ’THEN’ StatementSequence
{’ELSIF’ Expression ’THEN’ StatementSequence} ’END’

| ’WITH’ Identifier ’:’ QualifiedIdentifier ’DO’
StatementSequence ’END’

| ’CASE’ Expression ’OF’ [’ |’] Case
{’ |’ Case} [’ELSE’ StatementSequence] ’END’

| ’WHILE’ Expression ’DO’ StatementSequence ’END’
| ’REPEAT’ StatementSequence ’UNTIL’ Expression

A APPENDIX 29

| ’FOR’ Identifier ’:=’ Expression ’TO’ Expression [’BY’ Expression]
’DO’
StatementSequence ’END’

| ’LOOP’ StatementSequence ’END’
| ’EXIT’
| ’RETURN’ [Expression]
| ’AWAIT’ Expression
| ’BEGIN’ StatementBlock ’END’
].

StatementBlock = [’{’ BlockModifiers ’}’] StatementSequence.

Case = Element {’,’ Element} ’:’ StatementSequence.

Expression = SimpleExpression [RelationOp SimpleExpression].

RelationOp = ’=’ | ’.=’ | ’#’ | ’.#’
| ’<’ | ’.<’ | ’<=’ | ’.<=’ | ’>’ | ’.>’ | ’>=’ | ’.>=’
| ’in’ | ’is’

SimpleExpression = [’+’ |’−’] Term {AddOp Term}.

AddOp = ’+’ | ’−’ | ’OR’.

Term = Factor {MulOp Factor}.

MulOp = ’∗’ | ’∗∗’ | ’.∗’ | ’+∗’ | ’/’ | ’./’ | ’DIV’ | ’MOD’ | ’&’.

Factor = Number | Character | String | ’NIL’ | ’TRUE’ | ’FALSE’ | Set
| ’(’ Expression ’)’ | ’˜’ Factor | Factor ’‘’ | Designator
| MathArrayExpression.

MathArrayExpression = ’[’ Expression {’,’ Expression} ’]’.

Set = ’{’ [Element {’,’ Element}] ’}’.

Element = Expression [’..’ Expression].

Designator = (’SELF’ | Identifier)
{’.’ Identifier |’[’ RangeList ’]’ | ’(’[ExpressionList]’)’ | ’ˆ’}.

RangeList = Range {’,’ Range}.

Range = Expression | [Expression] ’..’ [Expression] [’by’ Expression] | ’?’ |
’∗’.

ExpressionList = Expression {’,’Expression}.

VariableNameList = IdentifierDefinition [SystemFlag] {’,’ IdentifierDefinition
[SystemFlag]}.

IdentifierDefinition = Identifier [’∗’ | ’−’].

QualifiedIdentifier = Identifier [’.’ Identifier].

Identifier = Letter {Letter | Digit | ’ ’}.

Letter = ’A’ | ’B’ | .. | ’Z’ | ’a’ | ’b’ | .. | ’z’.

String = ’"’ {Character} ’"’ | "’" {Character} "’".

A APPENDIX 30

Number = Integer | Real.

Integer = Digit {Digit} | Digit {HexDigit} ’H’.

Real = Digit {Digit} ’.’ {Digit} [ScaleFactor].

ScaleFactor = (’E’ | ’D’) [’+’ | ’−’] digit {digit}.

HexDigit = Digit | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’.

Digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ .

	The A2 Operating System
	Modules and Commands
	Loading and Unloading Modules

	The Language Active Oberon
	Module Structure
	Import Section
	Constant Declaration Section
	Type Declaration Section
	Variable Declaration Section
	Procedure Declaration Section
	Body

	Basic Types
	Numeric types
	BOOLEAN
	SET
	CHAR

	Composite Types
	Arrays
	Records
	Objects
	Inheritance

	Concurrency Support
	Active Objects
	Protection
	Synchronization
	Examples

	Application Programming Interfaces
	Streams
	Commands
	Files
	Strings

	Appendix
	Built-in Functions
	The Module SYSTEM
	BIT Manipulation
	SYSTEM Types
	Addresses, Sizes and Unsafe Typecasts
	Direct Memory Access Functions
	IA-32 Specific Functions

	Active Oberon EBNF

