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Abstract. Schedulers for symmetric multiprocessing (SMP) machines
use sophisticated algorithms to schedule processes onto the available pro-
cessor cores. Hardware-dependent code and the use of locks to protect
shared data structures from simultaneous access lead to poor portability,
the difficulty to prove correctness, and a myriad of problems associated
with locking such as limiting the available parallelism, deadlocks, starva-
tion, interrupt handling, and so on. In this work we explore what can be
achieved in terms of portability and simplicity in an SMP scheduler that
achieves similar performance to state-of-the-art schedulers. By strictly
limiting ourselves to only lock-free data structures in the scheduler, the
problems associated with locking vanish altogether. We show that by
employing implicit cooperative scheduling, additional guarantees can be
made that allow novel and very efficient implementations of memory-
efficient unbounded lock-free queues. Cooperative multitasking has the
additional benefit that it provides an extensive hardware independence.
It even allows the scheduler to be used as a runtime library for appli-
cations running on top of standard operating systems. In a comparison
against Windows Server and Linux running on up to 64 cores we analyze
the performance of the lock-free scheduler and show that it matches or
even outperforms the performance of these two state-of-the-art sched-
ulers in a variety of benchmarks.

Keywords: Lock-free scheduling, cooperative multitasking, run-time en-
vironments, multicore architectures

1 Introduction

For several decades now, operating systems have provided native support for
symmetric multiprocessing (SMP). One of their key functions is to schedule
active processes (or tasks) onto available logical cores. State-of-the-art schedulers
of modern operating systems such as the completely fair scheduler (CFS) [24] in
the Linux kernel implement complex algorithms and - together with the scheduler
framework - comprise many thousand lines of code.

A significant part of the complexity of state-of-the-art schedulers stems from
guaranteeing mutual exclusion in parts of the code that access shared data struc-
tures. This form of blocking synchronization is typically implemented with locks
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in one of the different variants such as spinlocks, mutexes, semaphores, or mon-
itors [11]. Despite its conceptual simplicity, mutual exclusion has many well
documented and understood drawbacks. For instance, mutual exclusion limits
the progress of all contending tasks to a single one, effectively preventing any
parallelism amongst the contenders for as long as the lock is held. In addition,
synchronization primitives that ensure mutual exclusion traditionally suffer from
well-known problems such as deadlocks, livelocks, starvation or the failure to re-
lease resources.

Yet another issue is the design decision of what amount of shared data is to
be protected by the same lock. Coarse-grained locking reduces the overhead of
acquiring the lock but greatly decreases the available parallelism. The common
practice of fine-grained locking, on the other hand, enables more parallelism but
leads to more complicated implementations and a bigger overhead of acquiring
and releasing the locks. To make matters worse, great care has to be taken that
locks acquired during interrupt service routines do not lead to deadlocks. This
can be a problem especially for operating system schedulers that are typically
invoked as a result of either blocking system calls or timer interrupts. As a result,
it is often difficult if not impossible to prove the correctness of algorithms that
use locks to achieve mutual exclusion, but whose correct operation is essential
to the reliability of an operating system.

The prevalent form of multitasking, preemptive multitasking, is based on
timer interrupts. Since interrupts can occur at any point in a user program, it is
necessary to save and restore the entire volatile state of the processor core while
handling the interrupt. This not only introduces an overhead but also ties an
implementation of the operating system kernel to a certain hardware platform.
As a result, operating systems supporting a wide range of hardware platforms
contain different implementations of hardware-dependent functionality for each
platform.

Our experience in porting our own kernel to different platforms has resulted
in the quest for developing a runtime kernel that is as simple yet parallel and
hardware-independent as possible. In this paper, we describe one part of this
experiment, the design and implementation of the task scheduler.

In order to avoid the difficulties associated with blocking synchronization
and interrupt-based preemptive multitasking, we have made the following two
guiding principles

– exclusively employ non-blocking algorithms and
– use implicit cooperative multitasking.

Several kernels exist that employ either one of the above principles [19, 5, 12,
29], but only the combination of non-blocking algorithms with cooperative mul-
titasking allows for certain optimizations and guarantees that render the imple-
mentation of a lock-free runtime and scheduler viable.

In cooperative multitasking tasks relinquish control of the core voluntarily by
issuing a call to the scheduler. Some of the most obvious advantages are that task
switches only occur at well-known points in the program and are thus extremely
light-weight. In addition, a runtime based on cooperative multitasking can run
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on hardware without any interrupt support which is an important property for
certain embedded systems. On top of all that, it improves portability of the code.
The main problem with cooperative multitasking is where to place the calls to
the scheduler. In order to keep the application code as portable as possible,
we have opted for implicit cooperative multitasking, that is, the calls to the
scheduler are inserted automatically by the compiler.

Non-blocking algorithms have been researched as an alternative to block-
ing synchronization since the early 1990s [14, 21, 19, 28]. The general principle
of accessing shared data is not based on waiting for exclusive access but rather
relies on atomic test-and-set or fetch-and-add operations. It has been shown [6]
that compare-and-swap (CAS) is the most versatile and only necessary atomic
operation that needs to be provided by the underlying hardware. Lock-free pro-
gramming by itself is usually difficult to get right because it comes with its very
own set of shortcomings. Probably the most prominent problem is the so-called
ABA problem [15], a hidden update of a variable by one task that goes unde-
tected by a second task. The standard solutions, like hazard-pointers [22] or the
Repeat Offender Problem [9], suffers from a linear increase in execution time in
the number of threads accessing the data structure. This is obviously a serious
drawback for a lock-free scheduler. We show how the guarantees of cooperative
scheduling can be used to implement an unbounded and lock-free queue that
accesses hazard pointers in constant time.

Kernels of today’s operating systems such as Windows or Linux are heavily
optimized with respect to performance, which comes at the price of a high com-
plexity. But admittedly such systems also implement many more features. For
example, our runtime system does not support protection features such as pro-
cess isolation. These arguments make a comparison of our system with today’s
standard operating systems unfair in both directions. In order to still be able
to assess its performance, the cooperative scheduler based on lock-free program-
ming has been implemented and tested against schedulers of Windows Server
2008R2 and Linux operating systems. A wide range of microbenchmarks and
real-world application shows that the lock-free cooperative scheduler matches or
even outperforms the performance of these two state-of-the-art schedulers.

The remainder of this paper is organized as follows: Section 2 gives some
background information and discusses related work. Section 3 describes our im-
plementation of cooperative multitasking, and in Section 4 the design of our
efficient unbounded and lock-free queue and its application to the scheduler are
discussed. Sections 5 and 6 describe the experimental setup and discuss the
results. Section 7 concludes the paper.

2 Background and Related Work

Lock-free programming has been an active research topic since the early 1990s.
The prerequisite for lock-free programming is the availability of an atomic up-
date operation such as compare-and-swap (CAS). The CAS operation was intro-
duced with the IBM System 370 hardware architecture [15]. It atomically reads
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a shared memory location, compares its contents with an expected value and
replaces it with another value if there was a match. Its return value is the origi-
nal contents of the shared memory location. This operation has been proved by
Herlihy to be universal, which implies that it can actually implement all other
atomic operations such as test-and-set or fetch-and-add [7]. Hwang and Briggs
belong to the earliest researchers who have presented non-blocking queues based
on the compare-and-swap operation [14]. Further examples include the works
by Mellor-Crummey [21], Herlihy [6, 10], Massalin and Pu [19], and Valois [28].
Michael and Scott also provide an algorithm and give a good overview and com-
parison with existing implementations [23]. Their implementation draws ideas
from the work by Valois, is simple and one of the fastest to date. In contrast to
others, their lock-free queue is also practical because it explicitly allows empty
queues and concurrent dequeue and enqueue operations. In addition, it does not
require a double compare-and-swap instruction operating on two, potentially
discontiguous memory locations instead of a single one. This particular lock-free
queue is therefore very popular and adopted widely in the literature.

Lock-free queue implementations typically allocate memory during enqueue
operations. We find it surprising that memory allocations have always been con-
sidered necessary in order to implement non-blocking synchronization [9, 8, 23,
28, 5]. But the fact that memory has to be allocated for each synchronization
operation has never been considered an issue in itself. Applied to the task sched-
uler, a memory allocation is clearly not desirable. Even more so, when it triggers
a full garbage collection run. While the Michael and Scott queue [23] supports
explicit memory deallocation, it employs modification counters in order to deal
with the ABA or hidden-update problem [15]. The ABA problem describes sit-
uations when a thread modifying a queue fails to recognize that its contents
has been changed temporarily. This often results in a corrupted linked list and
occurs with a high probability when nodes are reused heavily. In addition to the
ABA problem, there is also an issue when concurrent dequeue operations deal-
locate memory that is still referenced and about to be used by other operations.
Without any further precaution, any memory deallocation must be considered
to render memory references of contending processes invalid. These references
are generally known as hazard pointers, a term coined by Michael [22]. He in-
vented the methodology of hazard pointers in order to deal with the safe memory
reclamation of lock-free objects in general. His idea was to provide for every par-
ticipating thread a list of those pointers which are about to be dereferenced in
non-blocking algorithms. The set of all hazard pointers is made accessible to
other threads in order to recognize if the reclamation of memory has to be de-
ferred because it is potentially still in use. We improve on Michel’s solution by
combining the guarantees provided by cooperative multitasking with lock-free
queues. This enables us to store the hazard pointers with constant space- and
time-overhead in processor-local storage, thus rendering the task switch time
constant.

Using non-blocking algorithms and data structures for implementing multi-
processor operating systems has been investigated for over twenty years now.
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Massalin and Pu were amongst the earliest to deliver a non-blocking imple-
mentation of an operating system kernel [19]. The kernel of their multiprocessor
operating system called Synthesis included support for threads and virtual mem-
ory as well as a file system. They showed that operating system kernels using
non-blocking synchronization are practical and achieve at least the same perfor-
mance as conventional systems. Similar conclusions have later been confirmed
many times, for example by Greenwald and Cheriton [5]. However, the imple-
mentations of the resulting non-blocking operating system kernels relied on an
atomic double compare-and-swap operation called DCAS. This operation is an
extended version of the more common single compare-and-swap operation known
as CAS that allows to atomically compare and exchange the values of two dis-
contiguous memory locations instead of one. Based on their results, the authors
argue that this operation in contrast to its simpler variant is sufficient for prac-
tical non-blocking operating systems. Unfortunately, the hardware support for
this particular operation is still very limited and most modern hardware archi-
tectures do not provide it at all. For portability reasons, in this work we rely
only on the single compare-and-swap operation in order to achieve the broadest
hardware support available.

There are several other implementations of non-blocking operating systems
that followed the very same approach. Hohmuth and Härtig for example focused
on non-blocking real-time systems by utilizing only the single compare-and-swap
operation in order to improve portability [12]. None of these approaches, however,
combine lock-free programming with the prevention of task switches during the
execution of a lock-free algorithm; only the combination of which allows the
implementation of constant time- and space-overhead scheduling queues.

3 Implicit Cooperative Multitasking

When it comes to multitasking, the designer of a scheduler has to decide how
tasks are preempted or have to relinquish their execution control respectively.
The available possibilities basically narrow down to choosing preemptive or coop-
erative multitasking. Our decision was against preemptive multitasking because
its implementation requires special hardware support in order to transfer the
control of execution from a task back to the scheduler. Usually, this form of
preemption is implemented using hardware interrupt handlers and is therefore
completely transparent to the preempted task. Generally speaking, interrupts
and external devices that trigger them, demand a deep understanding of the un-
derlying hardware architecture and are inherently not portable at all. When co-
operative multitasking is applied, the transfer of execution control is completely
software driven and requires no special hardware support. Using this approach,
we were able to write the scheduler in a high-level programming language ren-
dering its implementation completely portable across various hardware architec-
tures. Threads resemble user-level threads, or ’Green threads’ known from other
runtime systems and can therefore run on top of other operating systems.
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Cooperative multitasking used to be prevalent in the design of most operat-
ing systems but has now been superseded to quite some extent. One reason is
that the integrity of the whole system depends on user-level tasks to actually
behave cooperatively. In practice, this requires programmers of applications to
periodically perform a call to the scheduler in order to give it a chance to pass the
execution control on to another task. Wrongly uncooperative or even malicious
code compromises the correctness of the whole system and has to be validated
carefully. It is hard to prove that arbitrary programs are indeed cooperative in
this respect even if their source code is available for inspection. In our case,
we only demand programmers to compile their code using our scheduler-aware
compiler such that we can employ what we call implicit cooperative multitasking.

3.1 Implicit Task Switches

Instead of requiring programmers to scatter several calls to the scheduler all over
their code, we use a modified compiler that generates these calls automatically
behind the scenes. This approach guarantees the cooperativeness of arbitrary
programs by instrumentalizing their binary code with automatically inserted
task switches into the translated machine code. Our approach is therefore highly
suitable for embedded systems because their whole code base including operating
system and application code is often built using a cross compiler anyway. Using
compiler-generated calls to the scheduler, the user code does not have to call the
scheduler explicitly and looks exactly the same as with preemptive multitasking.
All functions are therefore turned automatically into coroutines according to
Conway and Knuth [3].

Software instrumented instruction counters have been shown to provide a
bearable overhead [20]. So, in order to implement implicit task switches effi-
ciently, we modified our compiler to reserve a dedicated general-purpose register
which stores a pointer to the descriptor of the currently running task. This de-
scriptor contains a counter called the quantum, which specifies how long the
current task is allowed to run until the next task switch is necessary. In order
to stay portable and keep the check for a necessary task switch as small as pos-
sible, the compiler does not measure the time between two consecutive checks
but rather the amount of generated instructions. The actual duration of hard-
ware operations usually varies amongst different instructions and is obviously
machine-dependent. Counting the number of instructions has the advantage that
the result is always constant and statically known while translating the code.
This could provide a certain time-inaccuracy. But the counter granularity can
be specified to provide even very low scheduling latencies for a practical realtime
system. The quantum is therefore not related to actual execution time but rather
stores the number of instructions an activity is allowed to execute until the next
cooperative task switch. Since the task switches are always synchronous, the
quantum can be chosen to be rather small and does not need to be time specific.

The compiler generates a special sequence of instructions at various places
in the machine code in order to update the quantum and call the scheduler
whenever this number reaches zero. The policy used to identify optimal places
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for the insertion of these instructions is quite simple. For each procedure in the
code, the compiler keeps track of the number of instructions it generated so far.
Whenever this number exceeds an upper limit or there is a potential branch
backwards in the instruction sequence, the compiler decrements the quantum
by the number of instructions generated since the last implicit task switch. This
strategy is portable and can be applied to virtually any programming language.
It effectively handles all kinds of loops and even indirect recursions, if the task
switch is also inserted in the beginning of the procedure. However, the purpose
of the quantum is not to satisfy strict deadlines but rather to ensure that each
thread will eventually switch to another one.

An example of an implicitly generated instruction sequence of a task switch
check in-between ten instructions targeting the AMD64 hardware architecture [1]
looks as follows. Here, the dedicated general-purpose register is called rcx and
the check requires only three simple instructions.

sub [rcx + 88], 10 ; decrement quantum by 10

jge skip ; check if it is negative

call Switch ; perform task switch

skip:

If the decremented quantum is zero or below, the code notifies the scheduler
using a call to Switch. With the exception of the immediate value for the sub-
traction instruction, each instruction sequence looks the same and its impact on
performance and space overhead is in general marginal. In addition, the memory
access in the first instruction almost always results in a cache hit because this
sequence is performed quite regularly.

The idea of implicitly inserting calls to the task scheduler has been imple-
mented by many programming languages in the form of coroutines or variations
thereof [2, 25]. Since these calls are always inserted in-between programming lan-
guage statements, they are in general as efficient as explicit synchronous task
switches. One advantage of this approach is that tasks or coroutines respec-
tively can be represented in a very light-weight fashion. Since the compiler is
in charge of when the control of execution is yielded, the amount of processor
state that has to be associated with the current task during a task switch can
be minimized. Most often, the processor state that must be restored after a task
switch is already covered by the underlying calling convention implemented by
the compiler. In the simplest case, the compiler temporarily stores the required
registers on the stack when calling a function and the remaining context informa-
tion consists only of the program counter and the stack pointers. In comparison,
preemptive multitasking can seldom determine the part of the processor state
that is actually in use, because the preemption can happen anytime during the
execution of the code. A preemptive scheduler has therefore to be prepared for
the worst case and consequently stores and restores the complete processor state.
In comparison to cooperative task switches, the cost for hardware preemption
might therefore be quite expensive.

The actual cost for a single task switch is shown in Fig. 1. The real code
of the scheduler is as compact as the pseudo-code given in this paper. It is
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procedure SwitchTo(activity, finalizer)
uncooperative

current← GetActivity() . Store context
current�frame← GetFramePointer()

activity�quantum← Default . Prepare activity
activity�index← current�index
activity�finalizer ← finalizer
activity�previous← current

SetActivity(activity) . Restore context
SetFramePointer(activity�frame)
return

Fig. 1. Algorithm for task switches

encompassed by an uncooperative statement block in order to ensure that the
compiler does not generate implicit task switches therein in order to prevent
unwanted recursion. This is similar to the “do not preempt” flag employed by
other schedulers such as in Sun Solaris [27].

In the beginning, the procedure makes use of two compiler-intrinsic functions
called GetActivity and GetFramePointer which allow to query the current
activity and the address of the current stack frame in a portable manner. In a
second step, it prepares the given activity for the task switch by resetting its
quantum to a default value and forwarding the index of the currently executing
processor and the procedure arguments. Dynamic scheduling adaptation features
like quantum stretching for example could be easily adopted by varying the
default value for each task. The actual task switch is performed in the last
step, where the context of the new activity is restored using the corresponding
intrinsic procedures SetActivity and SetFramePointer. The only context
information that is necessary to be restored in our case is the frame pointer,
since every other piece of information is already stored on the stack. As the
actual stack pointer and the program counter of the function caller are already
pushed on the stack by the compiler upon entering the function, it suffices to
store the address of the current stack activation frame. The stack pointer and
the program counter are finally restored by returning from the procedure which
pops the corresponding values from the stack automatically. Context switching
is therefore as cheap as a standard function call.

3.2 Task Switch Finalizers

Fig. 2 shows the procedure Switch which is implicitly called by the compiler.
The scheduler currently supports a limited number of priorities and maintains
a global ready queue for each priority. Starting with the highest priority, the
scheduler tries to select a task from the corresponding ready queue. If there is a
task, the scheduler performs the actual switch to that task.

This simple scheduling mechanism is potentially executed on all processors at
the same time. As discussed in Section 4, our queue implementation is lock-free
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procedure Switch
uncooperative

current← GetActivity()
activity ← Select(current�priority)
if activity 6= null then

SwitchTo(activity,EnqueueSwitch)
FinalizeSwitch()

else
current�quantum← Default

procedure EnqueueSwitch(previous)
uncooperative

priority ← previous�priority
Enqueue(previous, readyQueue[priority])
if priority 6= Idle then

if Increment(working) < Processors then
ResumeAnyProcessor()

Fig. 2. Algorithm for basic task scheduling

and because of that, there is no need to protect this code from concurrent access.
However, there is a subtle problem whenever an actual task switch happens.
While a next task has already been selected and removed from a ready queue, the
currently executing task still has to be put on the corresponding queue in order
to be available for the subsequent task switch. If this is done prior to the actual
task switch, there might be a race condition concerning the task descriptor.
Another processor concurrently performing a task switch could remove the task
from the queue and switch to it. The first processor that is still in the progress
of task switching and the second one both operate in the context of the same
task with disastrous consequences.

The solution to this problem are task switch finalizers, which are function
pointers passed as argument to the Switch function. Task switch finalizers are
always executed by the resumed task by calling the FinalizeSwitch shown in
Fig. 3 after returning from the task switch but before continuing its interrupted
work. In this particular case, the task switch finalizer passed to the SwitchTo
function is called EnqueueSwitch as shown in Fig. 2. It basically just enqueues
the suspended task into the corresponding ready queue and resumes any idling
processor if necessary. Since this code is executed by the resumed task, it is now
safe to enqueue the suspended task into the ready queue.

procedure FinalizeSwitch
uncooperative

current← GetActivity()
current�finalizer(current�previous, current�value)

Fig. 3. Algorithm of a the task switch finalizer
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This technique can be extended in order to allow arbitrary operations to be
executed on behalf of the previously executed task. The possibility of executing
code after a task switch happened provides a certain entanglement of processes
and is extremely useful in this context and probably unique to cooperative mul-
titasking. In addition, task switch finalizers are very important for implementing
synchronization primitives like mutexes and monitors. In these cases, a task is
not enqueued in a ready queue but rather in a queue associated with the primi-
tive in order to dequeue it again whenever the primitive gets signaled. However,
due to the non-blocking nature of their implementation, the condition why a
task got enqueued might already have changed in-between checking the con-
dition and enqueueing the task. Task switch finalizers allow to reevaluate this
condition a second time after inserting the task into the queue in order to prevent
lost wakeup calls. Task switch finalizers are represented as function pointers in
order to provide a generic framework for implementing arbitrary synchronization
primitives on top of our lock-free scheduler. They are not intended to be used
by the application programmer.

3.3 Protection and Usability

The discussed system does not support protection mechanisms such as process
isolation. We see and understand the point of protecting processes for general
purpose operating systems. But apart from the fact that our work was primarily
motivated by researcher’s curiosity, we have also evidence of the commercial need
for simple systems where process protection does not play the primary role. If
we had to implement process protection for our system, we would try to support
software isolated processes [13].

Porting our runtime system from one architecture to the next is very simple
by design. Moreover, the process model of the scheduler can be supported on
top of other operating systems where the offered threads play the role of virtual
processors for a native machine implementation. Therefore the restriction to use
the special compiler is, for such cases, only given on a per-application basis.

4 Unbounded Lock-Free Scheduler Queues

The several known implementations of unbounded lock-free FIFO queues, for
example [28] and [23], which have in common that they use separately allocated
node data structures to store the actually enqueued elements in a singly linked
list. A sentinel node at the beginning of the list eases the handling of empty
queues.

Unbounded queues inevitably need to allocate new nodes to accommodate
newly enqueued elements. It is this handling of the nodes of newly enqueued
or dequeued elements that poses one of the major obstacles with unbounded
lock-free queues. In a first approach, a new node is allocated every time a node
is enqueued and deallocated as soon as the element is removed from the queue.
The frequent allocations and deallocations constitute a significant overhead com-
pared to the relatively simple Enqueue and Dequeue operations. To reduce
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the number of these clearly undesirable dynamic memory operations we have
investigated some form of node reuse. The reuse of nodes, however, triggers the
ABA problem.

4.1 The ABA Problem

The ABA problem describes a situation in lock-free algorithms where an up-
date of a value goes unnoticed by a thread which as a consequence corrupts the
lock-free data structure. Due to the explicit use of atomic operations for syn-
chronization it is impossible to protect an update of the data structure involving
several operations from concurrent access. Lock-free algorithms therefore first
query and store a value of the global data structure, for example the tail node
of a queue, and later compare the locally stored value with the global one to
detect modifications by another thread. If values are reused, the same value may
appear due to an operation on the data structure by another thread but go un-
noticed by the original contender. It is important to note that the ABA problem
also occurs when nodes are not explicitly reused because in a series of memory
allocations and deallocations with a bounded amount of memory it is impossible
to guarantee that all allocations return different starting addresses.

The ABA problem can be solved by using a double-word compare-and-swap
(DCAS) operation which can atomically access and modify to separate values.
The DCAS operation can be used to pair values with a version counter that
is incremented with every modification of the value [18]. The limited support
of DCAS on contemporary hardware limits the applicability of this solution.
We would like to mention that employing pointer tagging is of limited value,
particularly in a scheduler with a high traffic on queues. Even a significant
number of bits for tagging does not solve the problem, not in theory and even
not in practice as experiments revealed to us. We employ a different approach
known as hazard pointers.

4.2 Hazard Pointers

Without any further precaution, any memory deallocation must be considered to
render memory references of contending processes invalid. These references are
generally known as hazard pointers [22]. If deallocated memory is reclaimed too
early, any subsequent dereferencing of pointers to this memory region is unsafe
and therefore called hazardous. Hazard pointers store the references of nodes
that are about to be accessed by a thread; per thread up to two hazard pointers
are required for the implementation of our queue. Hazard pointers solve the
ABA problem but suffer from two problems: first, hazard pointers are associated
with the thread accessing the lock-free queue and typically allocated in thread-
local storage. Before deallocating a node, each thread must thus access and
search the hazard pointers stored in the thread-local storage of other threads
which is against all principles of distributed and parallel programming. Second,
the space- and time-overhead of comparing all hazard pointers is linear in the
number of participating threads. In the context of a task scheduler this is clearly
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structure Item
node: pointer to Node

structure Node
next: pointer to Node
item: pointer to Item

structure Queue
head: pointer to Node
tail: pointer to Node

structure Processor
hp1: pointer to Node
hp2: pointer to Node
pool1: pointer to Node
pool2: pointer to Node

variable
processors: array N of Processor

Fig. 4. Data structures and global variables of a lock-free queue for a system with N
processors

not ideal: the more threads are active the longer the Enqueue and Dequeue
operations during a task switch will take. Our contribution here is to make use
of the guarantees provided by cooperative multitasking. By not releasing control
of the processor core during context switches, the maximum number of active
threads executing a task switch is bounded by the number of cores. We can
thus associate the hazard pointers with the cores instead of the threads, thereby
achieving a constant space- and time-overhead to search through the hazard
pointers, independent of the number of currently active threads. In addition,
this also allows us to store the hazard pointers in processor-local storage, thus
eliminating the need for threads to access other threads’ local storage.

4.3 Implementation

The basic data structure of a concurrent and unbounded lock-free queue is pre-
sented in Figure 4. The queue is implemented using a linked list of nodes. The
very first node is called the head and is always a dummy element whose sole
purpose is to unify the operations on empty and non-empty lists. tail always
references the last node in the list or one of its predecessors. This reference is
intentionally allowed to lag behind because queue operations potentially modify
head and tail nodes at the same time which cannot be done simultaneously using
independent CAS operations.

The actual data of an element is represented by extensions of a separate
data structure called Item. Users can enqueue elements of arbitrary values by
extending this base type and using instantiations thereof as arguments for the
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1: procedure Acquire(item)
2: uncooperative
3: node← item�node
4: repeat
5: for all p ∈ processors do
6: if node = NULL then
7: break
8: else if node = p.hp1 then
9: swap(node, p.pool1)

10: else if node = p.hp2 then
11: swap(node, p.pool2)

12: end for
13: until no more swaps
14: return node

15: procedure Release(item)
16: uncooperative
17: node← Acquire(item)
18: if node 6= NULL then
19: deallocate(node)

Fig. 5. Wait-free acquire and release procedures for safe node reuse

corresponding procedure. An item is assumed to be either owned by the user or
the queue and may not be enqueued twice.

The global data structure processors stores the hazard pointers and two
pooled nodes that are used to hold references to nodes that are not an element of
any queue at the moment and may be reused by any processor. The guarantees
of the cooperative scheduler (no context switches within an uncooperative block)
limits the number of threads accessing the queue concurrently to N , the number
of processors. The index of the processor core the contending thread is running
on is used as the index into the processors array. This constant-size global
data structure simplifies the process of searching for hazard pointers and also
yields constant-time complexity when searching for hazardous references.

Figure 5 shows the operations Acquire and Release which query the set
of all hazard pointers in order to safely reuse pooled nodes from the global
processors array. As for all subsequent operations, the assumption is that
the corresponding code is executed without any intervening task switches as
indicated by the uncooperative statement block in lines 2 and 16 for example.
The Acquire operation checks if a node associated with an item is hazardous by
comparing it against the complete set of hazard pointers. This operation returns
either the same node if it is safe to be reused or it returns a pooled node if
the latter is still potentially used by another processor. A return value of null
indicates that there is no node available for reuse. Because the resulting node
could be referenced by another processor, the reference has to be rechecked for all
remaining processors. Acquire must only be called for items that are owned by
the calling process; the item and its associated node are therefore not part of any
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other queue. A potentially hazardous node is atomically exchanged against the
value of the pooled node that corresponds to the hazard pointer of the processor
in question. The set of pooled nodes always contains pairwise different entries,
and because the node in question is also different from all pool entries there is at
least one more node than nodes referenced by hazard pointers. As a consequence
at most N exchanges are required until a node is found that is not referenced
by any hazard pointer, that is, the loop always terminates in constant time
and renders the whole operation wait-free. The Release operation is called by
users of the queue to deallocate an item. This operation simply reclaims either
the node associated with the item or a previously pooled one if the former is
hazardous. Release calls Acquire and contains no loops; it is therefore also
wait-free.

The lock-free Enqueue and Dequeue operations are shown in Figure 6.
The code is similar to the implementations of Valois [28] and Michael and Scott
[23, 22]. Lines 3–5 enable node reuse, and the handling of hazard pointers as
described by Michael [22] are implemented by lines 9–12, 18, 23–30, 32–33, and
38–39. As stated above, in the absence of context switches during execution of
these operations the ID of the currently executing processor core can be used
as an index into the global processors array. In addition, since each processor
core accesses only its own elements in the global array, the hazard pointers do
not have to be modified using atomic operations.

Another contribution regarding these algorithms is the improved handling of
retired nodes at the end of the Dequeue operation. Michael adds all retired nodes
into a thread-local list which is scanned for candidates to be reclaimed every once
in a while. We associate the retired node with the item that is returned by the
Dequeue operation. In case this item is appended to the same or another queue,
the Enqueue operation will first try to reuse the node by calling the Acquire
operation on the item. The node is therefore guaranteed to be reused and the
algorithm does not need to acquire more nodes than items in the queues. As
a consequence, the sum of all allocated nodes is bounded by the number of all
elements in all used queues plus 2N nodes which are potentially pooled.

4.4 Use in the Scheduler

The unbounded lock-free queue as shown in this section is used by the coopera-
tive scheduler. A thread is implemented as an extension of a queue Item. When
a new thread is created, a queue Node is allocated along with the task control
structure. During a task switch, the currently executing thread is enqueued in
a queue and another one is dequeued. Our approach ensures that this operation
is fast and only in exceptional cases needs to allocate a new node, namely in the
unlikely event that all pooled nodes are currently hazardous. As shown above,
the number of additionally allocated nodes is limited to 2N . These additional
nodes are accumulated over the course of the whole runtime of the scheduler and
their allocation overhead is therefore compensated.

The total number of allocated nodes is thus at least T and at most T + 2N
where T and N denote the number of active threads and the number of available
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1: procedure Enqueue(item, queue)
2: uncooperative
3: node← Acquire(item)
4: if node = NULL then
5: node← allocate()

6: node�item← item
7: node�next← NULL
8: repeat
9: repeat

10: tail← queue�tail
11: processors[current].hp1 ← tail
12: until tail = queue�tail
13: next← tail�next
14: if next 6= NULL then
15: CAS(queue�tail, tail, next)
16: continue
17: until CAS(tail�next,NULL, node) = NULL
18: processors[current].hp1 ← NULL
19: CAS(queue�tail, tail, node)

20: procedure Dequeue(queue)
21: uncooperative
22: repeat
23: repeat
24: head← queue�head
25: processors[current].hp1 ← head
26: until head = queue�head
27: repeat
28: next← head�next
29: processors[current].hp2 ← next
30: until next = head�next
31: if next = NULL then
32: processors[current].hp1 ← NULL
33: processors[current].hp2 ← NULL
34: return NULL
35: CAS(queue�tail, head, next)
36: item← next�item
37: until CAS(queue�head, head, next) = head
38: processors[current].hp1 ← NULL
39: processors[current].hp2 ← NULL
40: item�node← first
41: return item

Fig. 6. Lock-free enqueue and dequeue operations with hazard pointers and node reuse
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processor cores, respectively. In other words, the presented scheduler ensures that
the number of allocations does not depend on the number of task switches.

In the current implementation, no private run queues with load-balancing is
used. All threads are stored in a number of global scheduler queues to provide
several levels of priority. Scheduling of ready-to-run threads of identical priority
is performed in a round robin fashion.

5 Performance Metrics and Experimental Setup

The unbounded lock-free scheduler only constitutes one part of a lock-free run-
time that also features a lock-free garbage collector. Our main motivation for
the lock-free runtime is to avoid the difficulties associated with blocking synchro-
nization and interrupt-based preemptive multitasking. We therefore compare the
scheduler and its supporting routines in terms of simplicity and portability. Sim-
plicity and portability are not exact measures, and at the end of the day, raw
performance still matters.

Although our work is designed to be portable across several hardware archi-
tectures, we do not intend to contrast its performance on different architectures.
There are several mechanisms like caching, branch prediction, and out-of-order
execution that increase the performance but are typically implemented directly
in hardware and are therefore completely transparent to the programmer [4].
Even though they do speed up the execution of code in general, they often ren-
der the performance of processors as well as code non-deterministic at the same
time. In order to be able to minimize their effect and to concentrate on the per-
formance of the actual code, we conducted all of our experiments on identical
hardware. However, this approach makes it difficult to reason about the absolute
execution time of our algorithms in general and to compare it to performance
numbers presented in other work. Instead, our focus is on relating our work to
existing solutions when executed under high contention.

All our experiments to measure performance have been conducted on an x86
machine running with 128 GB main memory and four AMD Opteron 6380 G34
processors each featuring 16 cores and running in 64-bit mode at 2.5GHz. This
setup provides a total of 64 logical processors and allows us to evaluate and
compare the performance of our system under high contention. Time is provided
by a built-in high precision hardware timer which has an accuracy of at least 10
MHz.

The experiments consist of several concurrent programs designed to let us
compare the performance of the schedulers and synchronization primitives under
heavy load. We conducted each experiment on three different 64-bit platforms,
namely Windows Server 2008 R2, a Linux based system with kernel version
2.6.32, and our native runtime that employs our lock-free scheduler. All pro-
grams have been compiled using the same compiler in order to execute the same
machine code on each platform. If not stated otherwise, the only difference of the
generated machine code lies within the libraries used to create and synchronize
threads. On Windows we use the API functions for creating threads and critical
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sections whereas on Linux we call the PThreads library with the correspond-
ing functions. On our native kernel we use the corresponding synchronization
primitives provided by our lock-free scheduler.

The benchmarks comprise of micro-benchmarks and real-world programs.
The micro-benchmarks are crafted after other benchmarks used in related work [26,
16, 17]. The micro-benchmarks measure the time to create a certain number of
threads, the overhead of a context switch, and local and global locking perfor-
mance.

The real-world applications were taken from an existing test suite for concur-
rent programs [2]. The benchmarks include of the following full-blown programs:
[16, 17, 26].

City A simulation of a city that has N houses. Each house has its own thread
that continuously consumes K units of electricity from a power plant and K
units of water from a river. The power plant is a concurrent thread which
can store up to C units of energy produced from water.

Eratosthenes This programs employs the Sieve of Eratosthenes in order to
computes all prime numbers within the range 1..N . Each sieve is a concurrent
thread that removes the multiples of one prime number.

Mandelbrot This program computes Mandelbrot fractal in parallel by parti-
tioning a plane of C points into N parts. The number of iterations per point
is limited by K.

Matrix This program distributes the multiplication of a matrix with size N to
a set of M threads which all run in parallel and are not dependent on each
other.

News A simulation of a broadcasting agency having N customers and M re-
porters. Each reporter publishes K different news messages which are read
concurrently by all customers.

ProducerConsumer A simulation of N pairs of producers and consumers
which all use a single global buffer of size C in order to exchange K messages
in total.

TokenRing This program simulates a game with N players designed as con-
current thread which pass a token K times around.

6 Experimental Results

We compare our cooperative scheduler against two state-of-the-art contenders on
shared-memory multiprocessors, namely the Linux and Windows Server operat-
ing systems. In all graphs and tables, Native refers to our cooperative runtime,
and Linux and Windows refer to the respective server operating systems.

Microbenchmarks. The first microbenchmark measures the time required
to create, schedule, and destroy a thread for the three platforms. The benchmark
creates between one and 10’000’000 threads consisting of an empty thread body.
The effect is that the threads are created, enqueued in the scheduler queue, ter-
minated when scheduled for the first time, and then destructed. The benchmark
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ends when the last thread has been stopped. Figure 7 shows the average time
per thread for the three systems. Thanks to the extremely light-weight imple-
mentation of threads, the lock-free runtime clearly outperforms the other two
operating systems. The figure also reveals that our runtime manages to create up
to 10 million threads without a significant performance degradation, while the
benchmark fails for Linux (at 100’000) and Windows (at 1’000’000 threads). The
fact that our runtime can manage much more threads than Linux and Windows
is due to the usage of micro stacks with a granularity finer than a page size.
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Figure 8 shows the average time required to complete a context switch for
Native and Linux. In this benchmark, the compiler generates no implicit calls
to the scheduler. Instead, the threads contain a loop that consists only of an
explicit call to the scheduler. We observe that Native preforms much worse
than Linux. Since the lock-free scheduler contains only global ready queues for
the threads, the contention on the queue caused by the atomic CAS operations
of the lock-free algorithm is severe. Note, however, that the context switching
time quickly stabilizes and then remains constant.
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In Figure 9, the performance of local and global locks is shown. In the former
case, each thread repeatedly locks and unlocks a dedicated lock. In the latter
case, all threads compete to lock and unlock the same lock. The local lock bench-
mark reveals that – while the differences are minimal – our runtime implements
the most efficient locks; this may be thanks to less sophisticated book-keeping
and statistics. In the global lock benchmark on the other hand, the relative cost
per lock in our runtime system increases which we attribute to the high memory
contention surrounding the shared lock.

Real-world applications.
A matrix multiplication benchmark is used to measure speedup in depen-

dence of the number of threads (Figure 10 (a)). The matrix multiplication is not
optimized for good cache performance; the individual threads each compute one
or several, but separate rows of the result matrix. In this benchmark, we compare
Linux and Windows against our runtime system. All platforms show the typical
close-to-linear speedup until all logical cores are fully utilized. For slightly more
threads than available cores, we observe that the relative speedup drops. This is
caused by the comparatively long scheduling epochs or, in other words, uneven
progress of the threads. As soon as more threads are available, the amount of
work per thread is reduced and the speedup recovers. The absolute total run-
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time of the matrix multiplication for the different platforms is shown in Figure 10
(b). We observe that at one thread the differences between the platforms are the
most significant, ranging from 12.5s (Linux) to 14.7s (Native). This is caused by
the different initialization of the memory system. Our native runtime does not
enable any special performance enhancing measures; Linux seems most mature
in this respect. The overall difference between our system and the best perform-
ing system, Linux in this case, is caused by the overhead of the check of the
quantum and call to the scheduler inserted by our compiler. The compiler does
not (yet) contain any optimizations; we expect that gap to vanish almost com-
pletely with an optimizing compiler. With more threads, this overhead becomes
less of an issue since the limiting factor is not the raw computational power but
the memory system.

Benchmark Native Linux Windows

City (N = 1000, K = 10, C = 100) 61ms 63ms 138ms
Eratosthenes (N = 10000) 3’629ms 4’750ms 6’347ms
Mandelbrot (N = 100, C = 2000, K = 5000) 4’066ms 5’287ms 5’040ms
News (N = 1000,M = 10, K = 10) 1’260ms 374ms 280ms
Producer (N = 1, C = 10, K = 10000) 1’382ms 269ms 225ms
Producer (N = 64, C = 10, K = 10000) 54’495ms 105’086ms 31’032ms
Token Ring (N = 1000, K = 1000) 4’506ms 15’672ms 8’759ms

Table 1. Runtime comparison between the cooperative lock-free scheduler, denoted
Native, and the Linux and Windows kernels.

Table 1, finally, compares the runtime of various real-world benchmarks on
the different platforms. City perform comparably on Linux and our system but
runs twice as long on Windows. Eratosthenes and Mandelbrot show a simi-
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lar result in favor of our runtime system. News contains a tight innermost loop
and suffers from the overhead of the implicit calls to the cooperative scheduler.
Also here we expect the performance gap to be reduced with an optimizing
compiler. In the case of Producer with N=1, only one thread locks the shared
resource. Linux and Windows seem to detect and optimize for this case whereas
our runtime is not optimized. Producer (N=64), and Token Ring are very lock-
intensive; the fast locks and light-weight thread implementation provides a sig-
nificant advantage in comparison to Linux.

Overall, the results from microbenchmarks and real-world applications show
that the lock-free cooperative scheduler and its runtime perform surprisingly well
over a wide range of performance measures compared to Linux and Windows;
and this despite (or thanks to) its simple design.

7 Conclusion and Future Work

In this paper we demonstrated that implicit, compiler-supported cooperative
multitasking can be ideally combined with lock-free programming in order to
implement a lightweight, efficient lock-free scheduler. Our key contributions are

1. The observation that the number of processes executing in uncooperative
blocks is limited by the number of cores. This implies that thread-local
storage conventionally used for storing hazard-pointers can be replaced by
processor-local storage, making a highly efficient solution of the ABA prob-
lem feasible.

2. A very efficient implementation of a lock-free queue with node-reuse.
3. The newly introduced task switch finalizers: task switch finalizers are an

elegant way to deal in a scheduler with the omnipresent challenge of lock-
free programming, namely the fact that in principle at any point in time one
process can invalidate the data of another.

4. The design and implementation of a simple, lightweight, reliable and portable
scheduler.

We compared our implementation of the runtime kernel with that of two con-
temporary general purpose operating systems. A qualitative comparison, code
complexity measured in lines of code, indicates the extreme simplicity of the
discussed scheduler in comparison to other approaches.

Runtime comparisons of real-world programs and Micro-benchmarks showed
overall comparable performance for the three systems. The lock-free scheduler
outperforms partially where expected, namely for thread creation time and lock-
ing. The relatively poor result with regards to context switch times can be ex-
plained with the very frequent use of locking instructions.

Of course our approach has not only advantages. Cooperative scheduling
comes with the price that a special compiler has to be used or a compiler has
to be adapted in order to support the implicit scheduling. Moreover, there is
computing time wasted for something that can in principle be done in hardware.
However, we could not really observe a considerable overhead by the quantum
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checking code. In any case this could be improved by compiler optimizations
and a proper register allocator. All significant overheads that we observed could
basically explained with heavy use of locking instructions. Ideally, dedicated
hardware would support cooperative multitasking with a managed instruction
counter and a procedure that would be called when the counter reaches zero.
Quite similar to timer interrupts but only at defined points in the code in order
to support synchronous behavior.

Beyond the scope of this paper are our lock-free implementation of remaining
features of a complete runtime kernel including process synchronization features
such as mutexes, semaphores and monitors and a garbage collector.

The compiler used for this work was written from scratch and does not yet
contain an optimizing phase. The compiler could be equipped with optimizations
that remove a considerable portion of the quantum checks, making the sched-
uler coarser grained overall. At the moment tiny loops imply a huge number of
quantum checks that could so be avoided.

The biggest obstacle for an efficient implementation of lock-free data struc-
tures is the CAS instruction that has to be executed at each access to a shared
data structure. Such locked operations are known for their slowness due to the
cross-core synchronization, already with a limited number of cores. Usage of
such operations is thus particularly prohibitive in a scheduler when extremely
short context switching times are pursued. Therefore it would be interesting to
adopt processor-local ready queues for the scheduler and perform – lock-free –
load balancing between cores only now and then. A dramatic speed increase in
particular for context switches is expected.
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