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Whatever can go wrong,
will go wrong.

(attributed to
Edward A. Murphy)

Murphy was an optimist.

(according to authors
of lock-free programs)
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Abstract

The application of mutual exclusion in order to protect shared data from
concurrent access is a recurring programming pattern found in contempor-
ary application software. Although alternatives to blocking synchronisation
like lock-free programming solve several critical problems and offer better
progress guarantees, they have not become as popular. This especially ap-
plies to operating system kernels that provide support for multiprocessing
environments.

This thesis describes our approach to design and implement an operating
system kernel which is based solely on non-blocking algorithms. Its goal
is to provide a completely lock-free runtime system for object-oriented
programming languages that support concurrency and automatic memory
management. We also strived for an uncompromisingly high portability of
its source code and replaced all features provided by the hardware with
machine-independent software solutions wherever possible. In particular,
we abandoned the prevalent preemptive scheduler of modern systems in
favour of a compiler-guaranteed cooperative multitasking. The combina-
tion of lock-free programming with cooperative multitasking presents a
novel approach and enables several practical and beneficial non-blocking
programming techniques such as processor-local storage.

The result of this work is a concise and reliable operating system kernel
providing flexible language support for multithreading and garbage collec-
tion. Its source code is easily portable to a variety of hardware architectures
ranging from powerful multicore machines to small embedded devices
and microcontrollers. In addition, its rigorous machine independence also
allows the runtime system to be used as a library for applications running
on top of existing operating systems. Despite its simplicity, the performance
of our lock-free approach is often comparable to established and optimised
operating systems and is clearly superior to solutions based on locking.
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Kurzfassung

Die heutige Softwareentwicklung setzt häufig Verfahren des wechselseiti-
gen Ausschlusses ein, um gemeinsam genutzte Daten vor gleichzeitigem
Zugriff nebenläufiger Prozesse zu schützen. Vielversprechende Alternativen
zu dieser blockierenden Art der Prozesssynchronisation wie beispielsweise
die lockfreie Programmierung lösen zahlreiche der damit verbundenen Pro-
bleme, sind aber längst nicht so weit verbreitet. Vor allem Betriebssystem-
kerne für Mehrprozessorsysteme bauen immer noch häufig auf gegenseitige
Zugriffssperren.

Diese Arbeit geht dem Entwurf und der Entwicklung eines Betriebs-
systemkerns nach, welcher stattdessen ausschliesslich auf nicht blockie-
renden Algorithmen basiert. Das Ziel des Kerns ist es, ein durchgängig
lockfreies Laufzeitsystem für objektorientierte Programmiersprachen mit
Unterstützung für Nebenläufigkeit und automatischer Speicherbereinigung
anzubieten. Ein weiteres Anliegen ist die kompromisslose Portabilität des
Quellcodes, welche soweit möglich versucht, hardwarespezifische Funk-
tionalitäten durch unabhängige Softwarelösungen zu ersetzen. Das bedeu-
tendste Beispiel für diesen Ansatz stellt die Verwendung von kooperativem
Multitasking dar, welches als Ersatz für das typischerweise präemptive
Scheduling moderner Systeme zum Einsatz kommt. Die Verbindung von
lockfreier Programmierung mit kooperativem Multitasking wurde bislang
kaum ausgenutzt und ermöglicht einige praktische Programmiertechniken,
die für die Entwicklung von nicht blockierenden Algorithmen von grossem
Vorteil sind.

Das Ergebnis dieser Dissertation ist ein schlanker und zuverlässiger
Betriebssystemkern mit flexibler Sprachunterstützung für Multithreading
und Garbage Collection. Der Quellcode ist mühelos auf eine Vielzahl von
Hardwarearchitekturen portierbar und läuft sowohl auf leistungsstarken
Mehrkernrechnern als auch eingebetteten Systemen und Mikrocontrollern.

xi



Die konsequent umgesetzte Maschinenunabhängigkeit erlaubt es dem Lauf-
zeitsystem ausserdem, als Bibliothek für Applikationen bestehender Be-
triebssysteme zur Verfügung zu stehen. Die Auswertung der vorliegenden
Arbeit hat gezeigt, dass die Leistungsfähigkeit unserer unkomplizierten
und lockfreien Implementation in einigen Bereichen durchaus mit der von
bewährten und optimierten Betriebssystemen vergleichbar ist. Dies gilt vor
allen Dingen für Systeme, welche auf blockierender Prozesssynchronisation
beruhen.
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1 Introduction

This chapter describes the background, purpose, and scope of this thesis
and puts it into perspective with related work. In addition, it summarises our
main contributions by consolidating the ideas and concepts behind them.

1.1 Motivation

Since several years now, many operating systems provide native support for
multiple central processing units in order to utilise the fullest potential of
modern hardware. The most prominent representatives include for example
Microsoft Windows and many Unix-like operating systems. Although the
internal design and implementation of these operating systems often varies
considerably, all of them usually include a generic hardware abstraction
layer for applications running on top of them. The basic idea is to allow all
applications to access system specific services and resources independently
of the underlying hardware architecture.

The base at the lowest level of this abstraction mechanism consists of
the so-called operating system kernel which manages and provides access
to the most primitive but fundamental hardware resources such as logical
processors, the main memory, and facilities to access peripheral devices.
The functionality of the kernel is usually required directly or indirectly
by all applications as well as higher-level components of the hardware
abstraction layer like device drivers. In the context of a multiprocessing
operating system however, all of the resources managed by a kernel are
potentially used and shared amongst several applications and device drivers
running in parallel on different processors. In this case, the implementation
of an operating system kernel has to take special care in order to conduct
and properly synchronise concurrent access to these shared resources.

1



1 Introduction

One of the simplest and most popular forms of synchronising concur-
rent access to shared resources is a technique called mutual exclusion. It
basically guarantees that only one of the interested parties has access to
a resource at the same time. Modern operating systems usually provide
a variety of different constructs that provide some sort of mutual exclu-
sion. Examples include simple but efficient spinlocks or more sophisticated
mutexes, semaphores, or monitors [HS08]. As a consequence, the use of
mutual exclusion is very popular and prevalent in contemporary application
software.

Despite its conceptual simplicity however, mutual exclusion and its
various implementations have many well documented and understood draw-
backs. For instance, mutual exclusion limits the progress of all contenders
to a single one, effectively preventing any parallelism amongst them dur-
ing the shared access. Since all other contenders have to wait for a single
one, this mechanism is commonly known as blocking synchronisation. In
fact, blocking synchronisation reveals many more deficiencies of mutual
exclusion, most of which are described in more detail in Chapter 2. This
is why alternative synchronisation primitives have been researched extens-
ively since the early 1990s and still are. One particular outcome of these
studies is the notion of lock-free programming which makes use of atomic
operations while accessing shared resources concurrently. The basic goal of
this approach is to allow several contenders to make progress at the same
time.

Unfortunately, the results in this area have not yet been subject to wide-
spread use, neither in application software nor in the implementation of the
underlying systems. Operating system kernels in particular are usually still
implemented using blocking synchronisation primitives. One example of
a multiprocessor operating system employing this technique is called A2,
a derivative of the Active Object System by Pieter Muller [Mul02] which
was developed and maintained by the former Native Systems Group at
ETH Zurich. Years of experience maintaining the A2 operating system have
convinced us that adopting non-blocking synchronisation primitives reveals
a great potential for simplifying and stabilising its kernel with respect to
several recurring issues with its multiprocessor implementation.
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1.2 Scope

Since its creation, the system and its kernel have been ported to several
different hardware architectures and runtime environments. Each time, the
source code had to be modified heavily in order to accommodate the pe-
culiarities of the respective target hardware architecture [Egg01, Neg06].
Although the kernel was written in a high-level programming language, its
source code was nowhere near as portable as desired, and it exposed many
implicit hardware dependencies buried deep within its initial implement-
ation. Until today, a lot of issues concerning the portability of the kernel
have been identified and fixed, but we never truly achieved a streamlined
unification of its many different versions in existence.

At the bottom of our thesis are the unsatisfactory shortcomings of the
A2 operating system concerning its portability and multiprocessor imple-
mentation. Our main motivation for its improvement is based on the goal
of creating a highly portable kernel on the one hand and the promising
opportunities of non-blocking synchronisation in the context of operat-
ing systems on the other. The following sections draw an outline of our
accomplishments.

1.2 Scope

Except for some minor assembly code sections, the Active Object System
as well as its newest incarnation A2 are written in a high-level programming
language called Active Oberon [Rea04]. This is a backward compatible
extension of Niklaus Wirth’s Oberon programming language [Wir88] and
one of the latest instalments in the family of Pascal based languages as
depicted in Figure 1.1 on the following page. The most important additions
are the support for a modern style of object-oriented programming and the
notion of active objects for concurrency [Gut97]. Active objects are objects
that integrate a lightweight process known as a thread or activity. These
three terms will be used interchangeably throughout this thesis.

The kernel of the A2 operating system provides a complete runtime
system for the Active Oberon programming language. This runtime system
includes the support for modules with dynamic loading, active objects in a
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1970 1980 1990 2000

Pascal

Modules
// Modula

Type Extensions

// Oberon

Active Objects

// Active
Oberon

Structured
Programming

Modular
Programming

Object
Orientation

Concurrent
Programming

Figure 1.1: Descendants in the family of Pascal based programming lan-
guages and their extensions. Adapted from the Active Oberon
language report by Patrik Reali [Rea04].
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1.2 Scope

multiprocessing environment, and an automatic memory management using
a garbage collector based on mark and sweep. In addition, the kernel also
provides a low-level framework for accessing and controlling peripheral
hardware [Mul02].

The scope of this thesis is partially defined by the core functionality of
the original A2 operating system kernel. However, its design and imple-
mentation endeavours to achieve an uncompromisingly high portability of
its source code using only lock-free programming techniques. The innov-
ation comes from imagining of how all of the basic system services can
be implemented having these objectives in mind. We call the resulting im-
plementation a runtime system rather than a kernel of an operating system
as it is designed to fulfil two different purposes. One the one hand, it still
features a scheduler for executing activities on multiple processors and a
memory manager including a conditionally supported garbage collector.
The runtime system can therefore be used on a machine without an underly-
ing operating system, in which case the system additionally supports the
handling of interrupts and provides low-level access to peripheral hardware.
As a result, the runtime system can be used as an in-place replacement for
the original A2 kernel as it mimics all of its functionality.

On the other hand however, our work is also designed to be the basic
runtime system for applications that are executed on top of existing operat-
ing systems like Microsoft Windows or systems based on the Linux kernel.
If an Active Oberon program is compiled targeting one of these runtime
environments, the runtime system is just an additional application library
linked into the resulting binary executable file. In this case, the runtime
system cannot access the hardware resources directly because they are
usually not available to standard applications. Instead, the runtime system
makes use of the system interface provided by the operating system itself.
For example, the scheduler of the runtime system has no direct access
to the processors of the system. It mimics their functionality by creating
lightweight processes or threads that act as actual processors. The same
technique is applied to the memory manager, where all memory allocations
are just forwarded to the corresponding application programming interface
of the operating system.

5



1 Introduction

All of these replacements are enabled by a very small and concise ab-
straction layer inside the runtime system itself consisting only of a handful
of functions. These functions are replaced automatically by the linker with
their environmental specific substitutes. The underlying execution envir-
onment of the runtime system is therefore completely transparent to the
application running on top of it. This kind of source code portability allows
us to target different runtime environments as well as hardware architectures
easily and without much effort.

Although the runtime system is written in and provides support for the
Active Oberon programming language, the concepts and ideas presented
in this thesis are not limited to this language in any way. The runtime
system provides a generic abstraction for memory management, lightweight
processes, and interrupt handling. This is the fundamental basis for an
operating system kernel and could be implemented just as well in any
other system programming language. The most important aspect of the
language invariance however is the tight coupling of the runtime system
with the compiler. In contrast to lower level programming languages that can
translate most of their constructs directly into machine code, Active Oberon
features some sophisticated mechanisms which require the assistance of a
runtime system. Therefore, the Active Oberon compiler generates a lot of
meta data and implicit calls to functions provided by the runtime system.
This implies that all code has to be compiled by the same compiler in
order to conform to the programming interface provided by the runtime
system. If another language is to be used for implementing the runtime
system, the compiler used for generating the executables must be modified
accordingly. It is therefore necessary for programmers to have full control
over the implementation of the programming language. The simplicity of
Active Oberon and its implementation was one reason why we opted for
this particular programming language.

Another basis for this decision was the high level of abstraction provided
by Active Oberon as well as its strong type system which guarantees many
runtime checks. Other system programming languages like C or C++ on the
other hand, are notorious for their broad range of unchecked runtime errors
caused by misusing their features. In C and C++ parlance, this sort of errors
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1.3 Related Work

is known as undefined behaviour. In many cases, the robustness of modern
operating systems stems from astounding efforts that have been undertaken
to cope with undefined behaviour. Especially where shared resources like
the main memory are concerned, these systems have a strong tendency to
make use of hardware facilities whenever possible in order to detect and
handle faulty processes.

An example is the implementation of virtual memory which is often
provided by dedicated memory management units. Virtual memory can be
used to protect an operating system from erroneous and corrupting memory
accesses but render its implementation inherently non-portable. Active
Oberon as implemented by the compiler and the runtime system provides all
of these checks by itself and does therefore not require any virtual memory
management. This approach effectively reduces the necessary hardware
support and achieves a high portability across different architectures.

1.3 Related Work

Using non-blocking algorithms and data structures for implementing multi-
processor operating systems has been investigated since over twenty years
now. Massalin and Pu were amongst the earliest to deliver a non-blocking
implementation of an operating system kernel [MP91]. The kernel of their
multiprocessor operating system called Synthesis included support for
threads and virtual memory as well as a file system [Mas92]. They showed
that operating system kernels using non-blocking synchronisation are prac-
tical and achieve at least the same performance as conventional systems.
Similar conclusions have later been confirmed many times, for example by
Greenwald and Cheriton [GC96, Gre99].

However, the implementations of the resulting non-blocking operating
system kernels relied on an atomic double compare-and-swap operation
called DCAS. This operation is an extended version of the more common
single compare-and-swap operation known as CAS which allows to atomic-
ally compare and exchange the values of two unrelated memory locations
instead of one. Based on their results, Greenwald and Cheriton argued that
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1 Introduction

this operation is sufficient for practical non-blocking operating systems.
Unfortunately, the hardware support for this particular operation is very
limited and most contemporary hardware architectures do not provide it at
all.

The single compare-and-swap operation on the other hand is supported
widely on shared-memory architectures capable of multiprocessing. This
may be due to the postulations of Herlihy who showed early on that single
atomic read-modify-write operations are the most general and can even
substitute other atomic operations [Her91]. For portability reasons, this
thesis relies only on the single compare-and-swap operation in order to
achieve the broadest hardware support available. There are several other
implementations of non-blocking operating systems that followed the very
same approach. Hohmuth and Härtig for example focused on non-blocking
real-time systems by utilising only the single compare-and-swap operation
in order to improve portability [HH01].

However, most of the non-blocking kernels in the literature are based
on Unix-like environments and are therefore written in popular system
programming languages like C or C++. In comparison to Active Oberon,
these programming languages often depend on the underlying operating
system in order to detect faulty processes. Our approach on the other hand
relies completely on runtime checks provided by the implementation of
the programming language. As a consequence, the corresponding runtime
environment established in this thesis is many times simpler and smaller
than the systems targeted in related work.

The lock-free runtime system presented in this dissertation makes use
of several non-blocking data structures and algorithms. Most of them have
already been investigated extensively in the standard literature. For instance,
there exist many lock-free implementations of abstract data structures
like queues or lists [Val94, MS96, HLM03]. Examples of non-blocking
algorithms as well as complete software components include lock-free
memory managers and garbage collectors [HM91, Mic04c, GGH07]. For
what it is worth, all of this research is designed throughout to be applicable
in programs running on on top of modern operating systems in order to be
most useful.

8



1.4 Contributions

However, lock-free algorithms and data structures are always implicitly
based on and restricted by the characteristics of the underlying runtime
environment. Considering modern operating systems, the corresponding
execution environment is most often implemented using preemptive multi-
tasking. This means that any lock-free algorithm has to be prepared that a
context switch to another task could potentially happen at any time. To the
best of our knowledge, lock-free programming has hardly been considered
in contexts that use cooperative multitasking instead. In contrast to the
standard literature, this thesis explores the advantages and consequences
of lock-free programming in execution environments where task switches
are under the control of the lock-free algorithm itself. All lock-free data
structures and algorithms presented in the following chapters are considered
under this novel point of view.

1.4 Contributions
The main result of this work is a portable multiprocessor operating system
kernel and runtime system for the Active Oberon language. Its implementa-
tion does not rely on blocking synchronisation and takes advantage of the
novel approach of combining lock-free programming with cooperative mul-
titasking. The runtime system itself is based on the following contributions
of this thesis:

1. We propose a set of fundamental programming techniques for authors
of lock-free programs. The techniques are enabled by cooperative
multitasking and are designed to simplify the implementation of
non-blocking algorithms and to reason about their progress.

2. Applying these techniques, we provide a lock-free implementation
of an unbounded concurrent queue that is especially well suited
for being integrated into task schedulers. In contrast to other lock-
free queues in the literature, our approach does not unconditionally
allocate memory in enqueue operations which renders task switches
inexpensive.

9



1 Introduction

3. We present a scalable scheduler for cooperative multitasking of light-
weight processes on multiple processors with shared memory. It
supports interrupt handling and provides a lock-free framework for
implementing sophisticated synchronisation primitives on top of it.

4. We provide a lock-free implementation of a memory manager for
memory heaps of arbitrary sizes. In addition, we complement the
manual memory management with a non-blocking garbage collector
which is designed to be an ordinary and optional process instead of
an integral part of the runtime system.

1.5 Overview
The contents of this dissertation are organised in the following chapters:

Chapter 2 focuses on the concepts of lock-free programming in general
and introduces memory models and programming techniques which
are required by the subsequent chapters.

Chapter 3 exemplifies solutions to recurring problems of lock-free pro-
gramming by stepwise refining an implementation of a lock-free
queue which is used extensively by the runtime system.

Chapter 4 presents the design and implementation of a lock-free sched-
uler which is used for implicit cooperative multitasking on multiple
processors.

Chapter 5 describes the design and implementation of a lock-free memory
manager including a concurrent and incremental garbage collector.

Chapter 6 discusses several case studies concerning the portability of the
runtime system and summarises the necessary software abstractions.

Chapter 7 evaluates the performance of various system components and
compares them with related work.

Chapter 8 concludes this thesis and identifies future directions.

10



2 Lock-Free Programming

This chapter introduces the concept of lock-free programming in general
and the definitions associated with it. After the specification of a simple
memory model, it presents some useful programming techniques for imple-
mentations of practical lock-free programs.

2.1 Introduction

The term lock-free programming is used to describe the application of
non-blocking atomic operations instead of blocking synchronisation prim-
itives provided by a scheduler. Herlihy and Shavit provide an excellent
overview of multiprocessor programming in general that includes both
synchronisation techniques [HS08].

The most common usage of blocking synchronisation primitives is to
achieve mutual exclusion of processes or threads competing for a shared
resource. Other applications include the notification of arbitrary events or
conditions being met. Blocking synchronisation is in general characterised
by the fact that there are potentially one or more processes waiting for
another process to progress. This form of synchronisation is ubiquitous in
concurrent programs and most modern multiprocessor operating systems
often support a variety of different blocking synchronisation primitives
usually known as locks, mutexes, semaphores, or monitors. Similarly, al-
most all programming languages with built-in support for concurrency also
provide some constructs for blocking synchronisation.

Despite its simplicity and availability however, blocking synchronisation
traditionally suffers from several well-known problems. Generally speaking,
all of them are based on the absence of a guarantee about how long a blocked
process has to wait. The following list summarises the most common issues:

11



2 Lock-Free Programming

• Deadlocks occur whenever a group of two or more competing pro-
cesses are mutually blocked because each process waits for another
blocked process in the group to proceed.

• Livelocks happen when competing processes are able to detect a
potential deadlock but make no observable progress while trying to
resolve it.

• Starvation characterises the repeated but unsuccessful attempt of a
recently unblocked process to continue its execution.

In general, waiting processes depend heavily on the cooperativeness of
competing processes. If, for whatever reason, a process fails to unblock
waiting processes, they can remain blocked forever. There exist several
solutions and recommended programming patterns that try to cope with all
these concrete problems. However, there are also many principal challenges
conditioned by the fundamental design of blocking synchronisation. For
instance, mutual exclusion prevents any parallelism among competing
processes by definition. Even if there is no contention at all, the setup for
mutual exclusion adds overhead for each access to a shared resource. This
can be compensated to some extent by increasing the amount of shared data
that is protected by the same synchronisation primitive. On the other hand,
a more coarse-grained locking scheme prevents processes from accessing
shared but potentially independent data at the same time. As a consequence,
there is some trade-off that has to be considered.

In addition, it is often complicated to actually prove that the usage of the
primitives is correct and that the issues raised above cannot happen. In the
context of operating system kernels for example, blocking synchronisation
is especially problematic when interrupts are used to handle external events.
An interrupt causes a processor to temporarily suspend the execution of the
currently running code in order to complete an interrupt handler instead.
The problem arises when the handler needs to access shared resources that
are currently in use by the interrupted code and have therefore already
been protected using mutual exclusion. In this case, the mutual exclusive
acquisition of the resource has to be made insensitive to the potential

12



2.1 Introduction

reentrancy in order to ensure that the interrupt handler can still proceed
successfully. Achieving reentrant blocking synchronisation is difficult but
so crucial that failure to do so has negative impacts on the reliability and
responsiveness of the complete operating system.

The term non-blocking synchronisation and its research have their seeds
in the dissatisfaction with mutual exclusion and its implications. Herlihy
was one of the first to coin the term in the early 1990s [Her90]. In the
beginning, the term lock-free was used synonymously with non-blocking
and implied that a concurrent algorithm does not require any blocking syn-
chronisation primitives like locks at all. Instead, a non-blocking algorithm
relies solely on atomic operations provided by the hardware architecture
that allow to change a memory location in a transactional manner. The most
common operations are test-and-set, fetch-and-add, load-link and store-
conditional, or the superior compare-and-swap operation. Herlihy showed
that the latter is universal and can therefore actually implement all other
atomic operations [Her91].

From the beginning, the goal of non-blocking synchronisation was to
devise some basic guarantees about the progress of non-blocking algorithms.
An algorithm is said to make progress if the number of steps it takes to
complete its operation has an upper bound [Her91]. Since the early 2000s,
the following three different basic notions of non-blocking progress are
distinguished [HLM03]:

• Obstruction-freedom guarantees that an algorithm makes progress
even if its operation was obstructed previously by other algorithms.
This implies that algorithms do make progress when run in isolation,
but not necessarily when other algorithms are executed concurrently.
This is the weakest non-blocking property.

• Lock-freedom guarantees that at least one algorithm makes progress
even if other algorithms run concurrently. This non-blocking prop-
erty ensures system-wide progress and therefore implies obstruction-
freedom. However, it also implicates that some algorithms may starve
forever or require an undetermined number of steps to proceed.
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• Wait-freedom guarantees that all algorithms eventually make pro-
gress. This is the strongest non-blocking property and combines lock-
freedom with starvation-freedom. It typically relies on algorithms
being aware of the progress of others and cooperatively helping them
if necessary.

Hence, the term lock-free nowadays describes a property of non-blocking
algorithms rather than the absence of blocking synchronisation primitives.
Herlihy has shown that any algorithm can be implemented wait-free if
enough resources like memory and processing power are available [Her88].
This is a rather theoretical statement since designing wait-free algorithms
is a very complex task and only a few practical and efficient wait-free
algorithms are known [KP12]. Lock-freedom on the other hand is much
easier to achieve and often considered to deliver wait-free progress in
practice. It has been proven, that a large class of lock-free algorithms are de
facto wait-free and can be closely bounded in the average number of steps
they take to complete [ACHS14]. All algorithms presented in this thesis are
lock-free by design and we will show how cooperative multitasking helps
to improve the progress of contending processes.

Despite its progress guarantees, lock-free programming should not be
considered to be the holy grail, as it has its own set of challenges. First
of all, non-blocking algorithms are in general very hard to get right. As if
the implementation of concurrent programs was not difficult enough, the
lack of a proper process synchronisation renders non-blocking algorithms
highly non-deterministic. Programmers must always keep in mind that
in the worst case, the state of the complete program could have been
changed after the execution of a single instruction. As a consequence, even
marginal modifications of the source code can lead to a completely different
behaviour at runtime. This severely impacts all sorts of debugging facilities
and provokes so-called heisenbugs which change their behaviour as soon
as they are observed.

Furthermore, there is the omnipresent ABA problem which describes
a category of situations when a process fails to recognise that the state
of the program has been changed in the meantime. Since non-blocking
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synchronisation uses atomic read-modify-write operations, the state of a
program is always stored and encoded in a few small shared memory loca-
tions. Without further precaution, a process erroneously assumes that the
program state is still the same if the values of these memory locations have
not changed since the last readout. This can lead to disastrous consequences
like corrupted data structures if any other process concurrently modified
the corresponding memory locations meanwhile.

Nevertheless, we will show how to deal with all of these kinds of prob-
lems by providing useful programming techniques for practical lock-free
algorithms in the last part of this chapter. But first we have to specify what
actually constitutes an atomic operation.

2.2 Memory Models

Many recent programming languages with support for concurrency define
a so-called memory model. A memory model describes the behaviour of
concurrent programs that share data between their threads of execution. A
careful design of a memory model enables many compiler optimisations
while still providing important guarantees for the programmer. Java was the
first programming language whose specification included an explicit and
extensive description of its underlying memory model [GJSB05]. Its first
release was generally considered flawed and had to be revised several times.
Over the time, other popular languages like C or C++ have also evolved
into multithreaded programming languages. Their technical standards have
been updated in order to incorporate the notion of a memory model as
well [ISO11a, ISO11b].

The Active Oberon programming language used for the implementation
of this thesis currently still lacks this kind of specification [Rea04]. Due to
the missing guarantees for programmers, there exist many programs written
in Active Oberon whose authors obviously acted on implicit assumptions
about the interaction of active objects without proper synchronisation. As a
consequence, the resulting programs are often non-portable because they
highly depend on the implementation chosen by the compiler.
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One of our goals was to overcome this unsatisfying situation and to
establish a solid foundation for the lock-free algorithms as presented in this
thesis. In this section, we will dissect some of the most popular memory
models of other programming languages in order to derive a concise spe-
cification of a simple yet powerful and portable memory model suitable
for Active Oberon. In contrast to often overly complex memory model
definitions, our approach aims at staying true to the nature and heritage of
the Active Oberon programming language by striving for simplicity.

2.2.1 Properties of Common Memory Models

Today, almost all of the most widely used programming languages provide
some notion of concurrency support. Typically, the concept of concurrent
execution of code is accompanied by built-in facilities that enable synchron-
isation of concurrent executions. This kind of synchronisation is required
when concurrent threads of execution share memory or other resources.
Objected oriented programming languages like Java or C# for example
provide special language constructs that try to solve this issue with mutual
exclusion using locks and monitors [GJSB05, ECM06]. Additionally, the
libraries provided by these programming languages typically feature ad-
vanced synchronisation constructs that enable more fine-grained control
over critical sections.

Often however, programming languages allow programmers to access
shared data without enforcing any proper synchronisation. In this case,
reading and writing shared data across different threads has to be done
very carefully because it may lead to unpredictable or at least unexpected
behaviour. In order to still provide some basic guarantees for programmers,
a precise memory model is required to describe the behaviour of shared data
in this situation. In absence of such a specification, programmers should
ideally not rely on unsynchronised access to shared resources. Programs
that ignore this implication inherently assume some sort of behaviour during
their execution and are therefore likely to behave differently if compiled
using a different compiler or if executed on another platform or execution
environment.
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Another advantage of specifying a memory model for programming
languages is to enable implementations to optimise multithreaded programs.
In this context, one of the most prominent optimisation techniques is out-
of-order execution which allows to decrease the performance penalties of
memory accesses. Reordering instructions is often applied by the compiler
since it can deduce data dependencies in a program directly from its source
code. In the case of Java and C# for example which both run inside a virtual
machine, the code can be rearranged once again just before it gets executed.
Finally, some implementations of hardware architectures such as the 32-bit
and 64-bit architectures by Intel and AMD are also able to reorder and cache
memory accesses on a per instruction level basis [Int14, Adv13]. A memory
model should not restrict these different stages of optimisation which are
able to improve the efficiency of multithreaded programs substantially.

For the following discussion of common properties we will focus on
the specifications of the memory models of the Java and the C# program-
ming language [GJSB05, ECM06]. Although the memory models share
many equivalent characteristics, they differ significantly in the effort made
to describe them. The current edition of the Java programming language
for example describes the underlying memory model at great length. The
detailed specification is obviously targeting an audience of compiler de-
velopers and may be confusing and overwhelming for ordinary users of the
language. The specification of C# on the other hand does not mention the
actual term memory model at all.

• Both programming languages use the concept of synchronisation
barriers to describe the operation of their synchronisation constructs.
Synchronisation barriers are sequence points in the execution of a pro-
gram where all changes of one thread become accessible to another.
All built-in synchronisation primitives like synchronised methods
or lock statements act as synchronisation barriers. Once the mutual
exclusion is released and transferred to a different thread, all changes
become accessible instantaneously. In general, synchronisation bar-
riers constitute the necessary guarantees that allow programmers to
reason about the state of shared data at any given point in time.
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• Java as well as C# define volatile fields which are declarations of field
variables of fundamental type that include a modifier called volatile.
Both memory models specify the ordering of read and write accesses
to volatile fields with respect to any other memory references in the
instruction sequence of multithreaded programs. Reading a volatile
field for example is guaranteed to happen before any other memory
reference in the instruction sequence of one thread, while writing a
volatile field will happen after any other memory reference preceding
the instruction sequence. The process of accessing a volatile field can
therefore also be regarded as a synchronisation barrier.

• Apart from proper synchronisation constructs provided by the lan-
guages and their libraries, both specifications do not provide any
other guarantees. In particular, memory references to non-volatile
fields may happen in arbitrary order as long as their effect equals
the observable behaviour of the instruction sequence as executed by
a single thread. The overall purpose of this notion of a sequential
execution order is to explicitly enable optimisations like reordering
instructions on any stage of the execution environment. This inten-
tionally includes the compiler, the runtime system, as well as the
hardware architecture. At the same time however, the memory mod-
els still provide a hardware abstraction that allows programs to be
portable across different platforms.

2.2.2 A Memory Model for Active Oberon

Based on the previous analysis we derived a memory model suitable for
lock-free programming using the Active Oberon programming language.
Although our proposal implements a memory model for this language, our
approach is in general not bound to any particular programming language
and is applicable to many execution environments. Deriving a specification
for Active Oberon provided an excellent opportunity to define the mechanics
of memory accesses beyond synchronised constructs many programs in
existence relied upon.
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procedure CAS(reference to variable,old,new)
value← variable
if value = old then

variable← new
return value

Listing 2.1: The function of the atomic compare-and-swap operation.

The original Active Oberon language report only included the descrip-
tion of how active objects are synchronised and how shared objects can be
protected from concurrent access [Rea04]. All object instances integrate a
monitor that provides support for mutual exclusion and awaiting conditions.
Similar to the corresponding facilities found in Java or C#, the operations
on this monitor naturally act as synchronisation barriers. Unfortunately,
the language report does not mention what happens if shared memory is
accessed without having been protected properly beforehand. This kind
of concurrent memory access is actually crucial for lock-free program-
ming where algorithms and access to data structures are intentionally not
synchronised.

Non-blocking algorithms need support for atomic operations to access
shared memory. The powerfulness of the atomic compare-and-swap opera-
tion combined with its wide availability on modern processors was the main
reason why we wanted to include it in the Active Oberon programming lan-
guage. We extended the original language specification of Active Oberon by
introducing a predefined compare-and-swap operation called CAS, defined
in Section C.1 on page 204. The function of this built-in procedure is shown
in Listing 2.1. It takes three arguments of the same basic or reference type,
where the first argument indicates the shared variable to be changed. First,
it compares the value of the shared variable with the value of the second
argument. If the two values match, the variable is overwritten with the value
of the third argument. The return value of the procedure is the original value
of the variable. The whole operation is executed atomically and its result is
visible instantaneously to other processes.
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If the second argument matches the third one, the operation does not have
to actually write the shared variable and is conceptually equivalent to an
atomic read of the variable. This operation is necessary for consistency on
platforms that perform ordinary read operations on single memory locations
by executing two or more consecutive instructions. Another advantage of
this atomic operation is the fact that we can require compilers to imple-
ment it to be a synchronisation barrier in addition to the synchronisation
constructs provided by Active Oberon.

While defining a memory model for Active Oberon we kept the tradition
of that programming language and its predecessors in mind. Our focus
was to keep the memory model as simple as possible but still provide a
mechanism for lock-free programming without sacrificing any potential
optimisations. The resulting memory model implemented by our compilers
for Active Oberon consists of the following two simple rules:

1. Data that is shared between two or more activities at the same time
has to be protected using exclusive blocks unless the data is read or
modified using the atomic compare-and-swap operation.

2. Changes to shared data become accessible to other activities after
leaving an exclusive block or executing an atomic compare-and-swap
operation. Implementations are free to reorder all other memory
accesses as long as their effect equals a sequential execution within a
single activity.

This memory model is comparably simple but not restrictive and ex-
plicitly allows compiler and hardware optimisations. It does not rely on
the definition of volatile variables but still provides portable means for
concurrent access. On the other hand, it provides important guarantees for
programmers concerning the visibility and consistency of modified shared
data. This is an important requirement for authors of lock-free algorithms
in order to reason about the correctness of their programs. Therefore, this
memory model is sufficient to provide a reasonable foundation for lock-free
programming which is used extensively in this thesis.
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2.3 Programming Techniques

In this section, we will present a set of useful programming techniques for
developing lock-free algorithms. Each of them is exemplified by a practical
application written in the Active Oberon programming language [Rea04].
All techniques are based on the underlying cooperative scheduler that will
be described in detail in Chapter 4.

In contrast to preemptive multitasking which finds a use in almost all
modern operating systems, cooperative multitasking requires all particip-
ating processes to cooperate with each other in order to guarantee system-
wide progress. Cooperative processes are basically coroutines which take
on the responsibility of passing the control of execution on to other pro-
cesses [Con63]. In the context of non-blocking synchronisation however,
cooperative multitasking not only requires but actually also allows a process
to decide for itself when it will yield execution to another process. This fine-
grained control offers several advantages over preemptive scheduling where
task switches occur asynchronously and are therefore completely trans-
parent to the non-blocking algorithm. All algorithms and data structures
presented in this thesis are based on combining lock-free programming with
this advantage of cooperative multitasking. The fundamental idea is to com-
pletely omit and delay task switches during the execution of a non-blocking
algorithm.

2.3.1 Disabling Task Switches

In our implementation of the Active Oberon language, all task switches
required by cooperative multitasking are managed by the compiler instead
of the application. The compiler inserts the necessary task switches at
various places in the program. The exact mechanism and the actual insertion
points are described in detail in Chapter 4. The advantages of this approach
which we call implicit cooperative multitasking are twofold. First of all, the
compiler is able to automatically insert all task switches that are necessary
in order to ensure the cooperativeness of all participating processes which
basically guarantees system-wide progress.
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Second, all task switches are transparent to the programmer and do not
require any user intervention. As a consequence, the source code of a pro-
gram does not need any modifications regardless of whether it is executed
under preemptive or cooperative multitasking. However, we explicitly allow
programmers to temporarily disable the automatic insertion of task switches
by the compiler. The corresponding Active Oberon language feature we
have introduced is called an uncooperative block. Uncooperative blocks are
compound block statements with a special modifier called uncooperative,
defined in Section C.12 on page 214.

The semantics of an uncooperative block enforce the compiler to com-
pletely elide the generation of any implicit task switches while translating
the statement sequence encompassed by the block statement. This rule only
applies to the immediate code sequence of one particular block and is not
transitive to any other statement sequence executed indirectly by calling
a procedure for example. The reason is to make the cooperativeness of a
statement block a compile-time property of the source code rather than an
expensive policy that has to be checked at runtime.

Each process executing the statement sequence of an uncooperative block
does not implicitly yield execution to another process unless task switches
are requested explicitly by the programmer. Although technically possible,
we highly recommend programmers to refrain from doing so, since it defies
the whole purpose of uncooperative blocks. For the further discussion, we
therefore assume that there are neither implicit nor explicit task switches in
an uncooperative block.

We call the statement block uncooperative because each process executes
the encompassed statement sequence without stopping as soon as it has
entered the block and is never interrupted by any other process until it leaves
the block. This has the nice implication that on a machine with a single pro-
cessing unit, only one process at a time actually executes an uncooperative
block. In this particular case, the contained statement sequence is effect-
ively executed under mutual exclusion. As a consequence, uncooperative
blocks can be regarded as synchronisation primitives which interestingly
enough do neither use any sort of blocking nor incur any runtime overhead
whatsoever.
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The most important property of uncooperative blocks however is the fact
that the number of concurrently executing processes is also limited even
on a machine with more than one processor. Because of the absence of
any task switches, each processor has to execute an uncooperative block
in its entirety. Thus, a process is neither interrupted by another process
nor executed partially on a different processor. On hardware with several
processing units, the maximal number of processes concurrently executing
an uncooperative block is therefore always bounded by the actual number
of physical processors. The fact that this number has an architectural limit
and is always statically known is one of the main ideas of this thesis and
we try to exploit it wherever possible.

The advantages of having a statically known upper bound of processes
concurrently executing an uncooperative block are manifold. All of them
are usually not available using a preemptive scheduler and have therefore
hardly been considered in practice:

1. The upper bound allows to make better estimates about the progress
even under high contention. When a process enters an uncooperative
block and hits the architectural limit, it is guaranteed that all pro-
cessors are busy executing either the same or another uncooperative
block. Before any other process can enter the uncooperative block,
one or more currently running processes must have left some other
block beforehand.

In comparison, in a preemptive scheduler the number of processes
executing arbitrary statement blocks are in general completely un-
bounded. In principle, a block could be entered by any number of
processes without requiring a single one of them to actually proceed.

2. Since there are no task switches during the execution of an unco-
operative block, the actual time spent in a block depends only on the
actual statement sequence and the number of contending processors.
Regarding a preempted statement block, this execution time also
depends on the total number of processes in the system which can
cause arbitrarily long delays.
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The statement sequence within an uncooperative block is typically
quite short and is always executed by the same processor. Thus, in or-
der for a processor to repeatedly starve, it would have to be constantly
overtaken by contending processors. For all practical purposes, star-
vation is therefore in general much less likely than using preemptive
multitasking.

3. Lock-free algorithms sometimes need information about all currently
contending processes. This applies especially to processes executing
wait-free algorithms which require the state of other processes in
order to help them finishing their operation in time. Since preemptive
schedulers permit any number of contending processes, the required
information has to be associated with each process and gathering
it can be difficult and expensive especially since all temporarily
suspended processes have to be considered as well.

Our approach effectively reduces the number of contending processes
down to the amount of processing units which is usually a much
smaller number. In addition, the maximal value of this number is
always known at compile time which allows to store the required
information in static arrays. This allows us to associate the requested
information efficiently and readily available for other processes with
the algorithm itself. We will exemplify this programming technique
in Section 2.3.3.

Regarding preemptive multitasking, the same results could technically
speaking also be achieved by temporarily disabling preemption for the
duration of the uncooperative block. In the typical case where preemption
is implemented using interrupts, this would imply that the corresponding
interrupt handling mechanism must be disabled as well. Although turning
interrupts off is an inexpensive operation, it can severely impact the stability,
responsiveness, and reliability of the complete system. This is why the
control over interrupt handling is in practice most often secured by the
operating system and usually not accessible to ordinary applications running
on top of it.
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Using cooperative multitasking on the other hand, task switches do not
rely on hardware facilities like interrupts and can therefore be implemented
completely in software. There is no need to enable or disable interrupts
during the execution of an uncooperative block and it does usually not
matter if they are enabled or not. The only exceptional case is the fact that
in the course of handling an interrupt, the processor might execute the very
same uncooperative block that was interrupted beforehand. In the worst
case, the uncooperative block could even be executed by several nested
interrupt handlers at once. Of course, the uncooperative block cannot be
considered to be executed under mutual exclusion on a single processor
machine in this scenario.

Although interrupt handlers are executed on physical processors, they can
conceptually also be regarded as being processed by an additional virtual
processor that only runs every once in a while. Hardware architectures often
explicitly allow and are designed to handle several nested interrupts at once.
But the nesting level itself is always limited to the number of different
interrupt handlers, since a handler should not interrupt itself. Therefore,
the maximal number of virtual processors is equal to the architectural limit
of nested interrupts. Thus, the sum of physical and virtual processors has
always an upper bound and is defined by the hardware architecture and
known for any given system. Consequently, the conclusion of always having
a limited set of processes executing any uncooperative block still holds
even with enabled interrupt handling.

The ability of representing interrupt handlers as virtual processors also
helps to reason about the problematic reentrancy in interrupt handlers.
Since lock-free programming intentionally omits blocking synchronisation
primitives, a non-blocking algorithm can potentially be executed by any
number of processes instead of one at a time. As long as the algorithm does
not rely on any specific information related to the currently running process
or processor, it is completely irrelevant which processes or processors
actually execute the algorithm concurrently. From the perspective of the
algorithm, it could theoretically even be executed concurrently by the same
process or processor at the same time. Therefore, non-blocking algorithms
are usually considered to be reentrant by design.
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procedure INCREMENT(reference to counter)
uncooperative . (1)

repeat
previous← CAS(counter,0,0) . (2)
value← CAS(counter, previous, previous+1) . (3)

until value = previous . (4)
return previous

Listing 2.2: An example of a lock-free operation incrementing a shared
counter variable and returning its previous value.

With the help of virtual processors we can represent an interrupt handler
to be executed by an additional process running on a distinct processing
unit. As a result, the issue of reentrancy of uncooperative blocks completely
vanishes. Our approach even works when non-blocking algorithms require
information about the process or processor during their execution. In short,
we solve this problem by assigning the same basic context information to a
virtual processor that is also required by an ordinary process. The actual
interrupt handling applied in this thesis is described in detail in Section 4.5.

2.3.2 Basic Lock-Free Operations

An example of one of the simplest but still useful and practical non-blocking
data structures is an atomic counter. Its operations allow to atomically incre-
ment and decrement the integer value of the counter. Considering modern
hardware architectures, the increment operation is sometimes provided nat-
ively by the processor itself. Unfortunately, atomic increment instructions
do usually not allow to consistently determine the actually incremented
value. This is for example valuable when contending processes require
unique integer values.

Listing 2.2 shows a sample implementation of a portable increment oper-
ation on an atomic counter which returns its previous value in a consistent
manner. It follows the basic structure of all lock-free algorithms:
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1. The whole body of the procedure is marked as uncooperative causing
the compiler to omit task switches completely while compiling the
procedure. This guarantees that there is an upper limit of contend-
ing processes potentially executing this operation in parallel which
reduces the probability of starving as discussed above.

2. The value of the shared variable is read atomically using a compare-
and-swap operation and stored in a local copy. This particular in-
vocation of the compare-and-swap operation does not modify the
variable but it is applied in order to ensure that the value of the whole
variable is read atomically. This is important for accessing shared and
concurrently modified variables consistently on architectures where
ordinary reads and writes require more than one hardware instruction.

3. A subsequent compare-and-swap operation tries to atomically modify
the shared variable based on its value read beforehand. Even if this
operation is called by several processes, one compare-and-swap oper-
ation has to be the first according to the sequential ordering defined
by the memory model. As a consequence, there is always one process
that will succeed even under high contention rendering the whole
operation lock-free.

4. If the compare-and-swap operation returns a different value than
expected, one or more other processes were faster and changed the
variable already. In this case, the increment operation must be re-
peated by reading the variable and trying to modify it again.

The increment operation is lock-free but not wait-free because a single
process can theoretically starve when it never succeeds in the third step. This
can only happen when one or more different processes repeatedly succeed
modifying the value of the shared counter in the meantime. However, each
process that does succeed also exits the uncooperative block and returns
from the procedure. Since the number of processes doing so is limited by
the number of processors, there are no additional processes involved which
would cause the initial process to starve.
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Thanks to cooperative multitasking, starvation can only be provoked
when the participating processors modify the same shared counter over
and over in a tight loop. In practice however, it is completely unrealistic
that a single processor is forever outperformed by contenders even in this
pathological case [ACHS14]. For example, the number of instructions re-
quired for repeatedly executing the whole procedure is much larger than the
relative short instruction sequence for atomically reading and modifying
the shared variable. Moreover, in contrast to preemptive multitasking, the
instruction sequence is never interrupted by any other process. If the instruc-
tion sequence would have been preempted, other processes could cause
arbitrarily long delays and even successfully modify the shared counter in
the meantime. Therefore, the ability to disable task switches in lock-free al-
gorithms renders unsuccessful atomic compare-and-swap operations much
more unlikely.

2.3.3 Using Processor-Local Storage

Modern programming languages and operating systems alike support the
notion of thread-local storage which allows to access global data that is
unique to the currently running thread. This facility is typically implemented
by instantiating a unique copy of a predefined set of global variables for each
new thread and associating it accordingly. The main advantage of thread-
local storage is that these variables are still globally accessible but behave
like local variables and do therefore not require any access synchronisation.
A completely different usage can be found in wait-free algorithms which
often make use of thread-local storage to store and publish the current state
in order to allow other threads to help them making progress.

However, thread-local memory associated with a thread is usually not
designed to be shared across multiple threads as it is for example reclaimed
as soon as the thread stops its execution. In addition, the usage of thread-
local storage incurs a performance overhead when accessing thread-local
variables or creating threads. Moreover, the corresponding memory may
always be allocated upon the creation of the thread regardless of whether
the latter actually uses some of its thread-local storage or not.
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Using cooperative multitasking, we were able to improve upon these
issues. The key idea is to gather all accesses to thread-local variables inside
uncooperative blocks. Since there are no task switches while executing an
uncooperative block, any thread-local variable is always accessed by the
same processor during that period. The required set of distinct instantiations
of global variables for concurrent access is therefore limited by the number
of processors in the system. We call that set processor-local storage as it
consists of one copy of predefined global variables per processor rather
than per process. This technique offers several advantages:

1. The amount of memory allocated for processor-local storage does
not depend on the number of processes in the system. Its size is only
limited by the actual number of processors. Since the upper bound
of this number is statically known, processor-local storage can be
simply represented by global arrays where each element is associated
with one individual processor.

2. Using distinct elements of an array, processor-local storage can be
efficiently accessed using the unique index of the currently running
processor. As before, accessing the array does not need any syn-
chronisation since each processor only modifies its own element.
Furthermore, the creation of a process does not incur any overhead
as all processor-local data can be allocated statically at the beginning
of a program.

3. Using an array, the set of data local to all processors can be defined
together with the actual algorithm which requires that data. The
algorithm can therefore easily query all processor-local data that is
concurrently used by other processors by traversing the corresponding
array.

In general, thread-local storage might still be useful and cannot be re-
placed completely by our approach. For example, there is no guarantee that
two consecutive uncooperative blocks are executed by the same processor
because an intermediate task switch could cause one process to be resumed

29



2 Lock-Free Programming

by another processor. Therefore, it is impossible to cache data specific to the
currently running processor while executing two consecutive uncooperative
blocks. The index of the current processor should only be used to refer
to data that is associated with that particular processor since the actual
value of the index typically varies from the viewpoint of a single process.
However, our approach is sufficient for all of our purposes and we think that
it provides a more elegant solution than its counterpart. Additionally, all of
our algorithms can actually be implemented without requiring the runtime
system or extending the programming language to support the notion of
thread-local storage.

A practical application of processor-local storage is improving the per-
formance of the compare-and-swap operation under high contention. Since
atomic operations like compare-and-swap act as synchronisation barriers,
they usually put a strain on the caches of multiprocessor memory devices.
Their actual performance drops all the more under high contention because
there are more atomic memory accesses that have to be synchronised. In
the case of non-blocking algorithms where failed operations are typically
repeated until they succeed, memory devices tend to congest even more. As
a result, atomic operations have to be considered several times more expens-
ive than standard machine instructions. See Figure 7.1 on page 147 for the
actual performance of the compare-and-swap operation under increasing
contention on a concrete machine with 32 processors.

In order to cope with the performance degradation of atomic compare-
and-swap operations under high contention, Dice et al. have analysed several
so-called contention management algorithms [DHM13]. The basic idea
behind contention management is to delay the repetition of failed atomic
operations in order to prevent memory devices from congesting. Dice et
al. identified a technique called exponential backoff to be one of the best
performing contention management algorithms on contemporary hardware
architectures. This algorithm keeps track of how many times the compare-
and-swap operations failed and waits for an exponentially long time if
that number hits a machine-dependent threshold. The actual waiting time
depends on the number of failures as well as on some algorithm specific
parameters that have to be tuned carefully for each machine.
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More important than the actual details of the waiting time in this context
however, is the fact that Dice et al. utilise thread-local storage in order to
count the failures. This is convenient but conceptually flawed since the
congestion is not triggered by threads but rather the underlying processors
running the threads. Using thread-local storage, newly created processes
always start out with the same initial value of the failure counter. This
number may need some time first to stabilise at a certain level which might
distort the actually required waiting time during that period. Regarding a
system with a preemptive scheduler, it is possible for a task switch to occur
while a process is waiting because of a failed compare-and-swap operation.
If the scheduler resumes a process that will execute an atomic operation as
well, the corresponding processor did not wait enough time between the
two atomic operations and may cause the memory device to congest. In
addition, the original process may be resumed at a time when there is no
congestion any more causing it to continue its wait for too long.

Listing 2.3 on the following page shows a sample implementation of an
atomic compare-and-swap operation which makes use of processor-local
storage in order to implement exponential backoff for N processors. Each
processing unit uses its unique index exemplarily called processor to access
its own element of a global array counting the failures. In comparison to the
implementation by Dice et al., the number of failures is therefore associated
with each processor instead of each process. This effectively solves all
issues raised above since the actual number of failures is always up to date
regardless of which process has actually executed the atomic operation. In
addition, the surrounding uncooperative block ensures that there are no task
switches while waiting. As a consequence, the corresponding processor
will always wait for the necessary time after an atomic operation failed
regardless of how many concurrent processes there are.

Processor-local storage and all other programming techniques presented
in this section are used extensively in the lock-free algorithms discussed in
the remainder of this thesis. The following chapter for example discusses
a lock-free implementation of a concurrent queue data structure which
makes use of processor-local storage in order to implement safe memory
deallocation.
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2 Lock-Free Programming

variable
f ailures : array N of integer

procedure COMPAREANDSWAP(reference to variable,old,new)
uncooperative

value← CAS(variable,old,new)
if value = old then

if f ailures[processor]> 0 then
f ailures[processor]← f ailures[processor]−1

else
f ailures[processor]← f ailures[processor]+1
if f ailures[processor]> threshold then

WAIT(2min( f ailures[processor]· f actor,maximum))

return value

Listing 2.3: Compare-and-swap operation using an exponential backoff
contention management algorithm for N processors. Adapted
from Dice et al. [DHM13].

32



3 Case Study: Lock-Free Queues

This chapter acts as a case study of lock-free programming and describes the
implementation of a concurrent and unbounded first-in first-out queue data
structure. We use queues extensively within the scheduler of our runtime
system in order to keep track of the set of all activities that are currently not
running. This chapter illustrates several development stages by stepwise
improving and revising a naive implementation into a practical, safe, and
memory-efficient final version. Along the way, it also reveals several typical
pitfalls of lock-free programming and proposes generic solutions to them.

3.1 Introduction

Queues are fundamental and popular data structures which are used in
a variety of contexts, ranging from simple software applications to the
implementation of the underlying operating systems. Their field of applica-
tion can also include multiprocessing environments where data structures
are potentially accessed concurrently by several processes. In this case,
the corresponding operations of the data structures have to be properly
synchronised in order to guarantee their correctness. Because of their pop-
ularity and broad field of application, the synchronisation of queues has
been researched thoroughly in the standard literature.

Besides many implementations based on mutual exclusion, also several
non-blocking versions of concurrent queues have been proposed. Hwang
and Briggs for example belong to the earliest researchers who have presen-
ted a non-blocking queue based on the atomic compare-and-swap op-
eration [HB84]. Further lock-free implementations include the studies
by Mellor-Crummey [Mel87], Herlihy [Her90, HLM03], Massalin and
Pu [MP91], and Valois [Val94].
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However, the single most popular lock-free queue implementation is
probably the one devised by Michael and Scott [MS96]. There are several
reasons why their queue set a standard which is widely adopted in the
literature as well as in practice. By drawing ideas from the work by Valois,
their implementation is simple and one of the fastest to date [HS08, KP11].
In contrast to some of the algorithms proposed by other researchers, their
lock-free queue implementation is highly practical because it explicitly
allows empty queues as well as an arbitrary number of concurrent enqueue
and dequeue operations. In addition, unlike some other methods, it does
not require an atomic double compare-and-swap operation which is hardly
supported by contemporary hardware.

All of the unbounded lock-free queues in the standard literature including
the one by Michael and Scott are based on representing queue items using
a singly linked list. The list consists of a linked chain of intermediate nodes
which do not store the actual user data but only a reference to it. As a
consequence, each operation that inserts a new element into the linked list
also allocates memory for the intermediate node representing that element.

There are also wait-free queue implementations, for example the one by
Kogan and Petrank [KP12]. They guarantee starvation-freedom by publish-
ing information about each atomic operation a process is about to perform
on a queue in order to allow contending processes to help each other. Unfor-
tunately, these algorithms therefore not only allocate memory per element
but also for each of the atomic steps which accumulate to a total of three
memory allocations per enqueue operation.

The allocation of memory seems to be ubiquitously accepted as a neces-
sary means to implement non-blocking data structures. But nevertheless,
the overhead of allocating memory may actually make up the largest part
of a lock-free operation and we are surprised that this issue has never been
addressed before. Regarding the task scheduler of our runtime system for
instance, each task switch implies that the currently running activity gets
suspended and therefore placed into a queue. We believe that this simple
operation is critical and should ideally not require any memory allocation
at all. Otherwise, a basic task switch could lead to a system failure if there
is no more memory available, or even trigger a full garbage collection.
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As a consequence, we refrained from applying an existing solution and
tried to come up with an implementation of a lock-free queue that is more
suitable for our purposes. We based our first approach on a basic and
unsynchronised algorithm that satisfies our memory constraints. Listing 3.1
on the next page shows a standard implementation of an unsynchronised
queue representing its elements by a singly linked list. It consists of a
basic data structure called QUEUE which stores references to the first and
last elements of the linked list. A single element is represented by a data
structure called ITEM which just stores a reference to the next element in
the list. This data structure is intended to be a base type which has to be
extended by users of the queue in order to associate it with meaningful
user data. In our scheduler for example, we extend the representation of an
activity from this base type and are therefore able to enqueue and dequeue
activities into any queue.

The technique of representing elements of a container using base types
requires the programming language to support user-defined type extensions.
It can therefore be often found in programs written in object-oriented
programming languages. For example, it has been applied extensively
in the implementation of Project Oberon [WG92]. An advantage of this
technique is its generality, as it allows users of the queue data structure to
store arbitrary data per element in the linked list. But most importantly, it
chains the elements directly rather than indirectly using intermediate nodes
which are typically used as place holders for the actual user data. Therefore,
once an element is allocated by the user, it can be enqueued and dequeued
repeatedly without requiring additional memory allocations. This is the
main reason why we chose this representation as the base for our lock-free
queue implementation.

An obvious restriction of this technique however is the fact that user
data as represented by a single item may not be part of two distinct queues
at the same time. If an element is currently part of a queue, it has to be
dequeued first before it can be enqueued again into the same or another
queue. This limitation poses no problem in our scheduler, since activities
are either currently running, or enqueued exclusively in a single queue in
order to be resumed.
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structure ITEM

next : pointer to ITEM

structure QUEUE

f irst : pointer to ITEM

last : pointer to ITEM

procedure ENQUEUE(item,queue)
item�next← null
if queue.last 6= null then

queue.last�next← item
else

queue. f irst← item
queue.last← item

procedure DEQUEUE(queue)
item← queue. f irst
if item 6= null then

queue. f irst← item�next
if queue. f irst = null then

queue.last← null
return item

Listing 3.1: Data structures and operations of an unsynchronised imple-
mentation of an unbounded first-in first-out queue.
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The queue implementation in Listing 3.1 on the following page is not
safe to be used by several activities in parallel, as both of its operations are
not protected properly from concurrent access. If there are no additional
operations accessing the underlying linked list, it would actually be suffi-
cient to protect both procedures simply by applying mutual exclusion in the
form of a blocking synchronisation primitive. This would signify the actual
code of both operations as critical sections which may only be executed
by one process at a time. In order to achieve a non-blocking alternative to
this approach however, the algorithm has to be rewritten significantly. But
first, we have to identify the set of all algorithmic steps which appear to
contending processes to take effect instantaneously.

3.2 Linearisation Points

Our memory model specifies that any change to a shared variable becomes
accessible to other activities immediately after the execution of the atomic
compare-and-swap operation. In general, if an operation appears to take
effect instantaneously at some point in time between its invocation and
response, it is called linearisable. The notion of linearisability was devised
by Herlihy and applies to all atomic operations [HW90]. The atomic step
when a linearisable operation takes effect is generally known as its lin-
earisation point. According to our memory model, executing a modifying
compare-and-swap operation as well as leaving an exclusive block both
serve as linearisation points.

In the absence of proper synchronisation of concurrent activities that
execute non-blocking algorithms, any atomic change of a shared variable is
immediately visible to other activities. By implication, the state of shared
variables must always be considered to be volatile in between the execution
of atomic operations. In the worst case, any possible state can and will
eventually be observed by an activity and it is the task of the programmer
to reason about the correctness of the non-blocking algorithm in all of these
states. Identifying the set of linearisation points of an algorithm allows to
isolate the state space that has to be considered for this purpose.
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Listing 3.2 on page 39 shows our first approach to implement a lock-free
queue. We naively tried to mimic the implementation of the unsynchronised
version and used therefore the same data structures as before. Complying
with the memory model as defined in Section 2.2.2, we replaced all accesses
to potentially shared variables in both procedures of the unsynchronised
version with atomic compare-and-swap operations. This pertains to the
references of the first and last queue element as well as to the successor of
the last queue element. In addition, we reordered statements and added loops
in order to take account of failed compare-and-swap operations according
to the guidelines given in Section 2.3.2. Although this version might look
correct at first glance, its implementation is severely flawed.

The linearisation points in our first approach include all modifying
compare-and-swap operations and are labelled accordingly in Listing 3.2.
Both procedures have three distinct linearisation points which can be sum-
marised as follows:

E1: The ENQUEUE procedure repeatedly tries to swing the reference to
the last element of the queue to the item given as argument. The
successor of this element is guaranteed to be invalid as it is reset at
the beginning of the procedure.

E2: If there previously was a last element, the reference to its successor
is set to the new item. This operation must succeed because any other
activity enqueueing an element operates on a different reference to
the last element.

E3: If there was no last element, the queue was empty and the reference
to its first element is changed instead. This operation might fail if
another element was enqueued in the meantime. However, this case
can be ignored because the reference to the first element would then
already point to the correct item in the linked list.

D1: The DEQUEUE procedure returns with a special value if there is no
first element. This linearisation point does not modify shared data
but still takes effect immediately from the point of view of the caller.
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3.2 Linearisation Points

procedure ENQUEUE(item,queue)
item�next← null
repeat

last← CAS(queue.last,null,null)
until CAS(queue.last, last, item) = last . E1
if last 6= null then

CAS(last�next,null, item) . E2
else

CAS(queue. f irst,null, item) . E3

procedure DEQUEUE(queue)
repeat

f irst← CAS(queue. f irst,null,null)
if f irst = null then

return null . D1

next← CAS( f irst�next,null,null)
until CAS(queue. f irst, f irst,next) = f irst . D2
if next = null then

CAS(queue.last, f irst,null) . D3

return f irst

Listing 3.2: Operations of a naive approach to implement a lock-free queue.

D2: If the queue is not empty, the procedure tries to swing the reference
to the first element of the queue to its immediate successor. If this
operation was successful, the previously first element of the queue
is now dequeued. Otherwise, another activity already modified the
queue in which case the dequeue operation must be repeated all over.

D3: If the dequeued element has no successor, the queue has been emptied.
In order to ensure the correctness of the next enqueue operation, the
reference to the last element of the queue has to be invalidated if it
matches the dequeued element.
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Although the sequential execution of both procedures is obviously correct
in isolation, there are several issues when they are executed concurrently.
For the sake of the argument, we assume that there are only two activities P
and Q concurrently accessing a single queue. Using the linearisation points
identified above, we can easily detect execution sequences that lead to a
corruption of the linked list. For this purpose, it is sufficient to look at a few
execution sequences where the linearisation points of both procedures are
interspersed with each other.

First, we look at an execution sequence where activity P calls the EN-
QUEUE procedure and enqueues a new element called A. Right after P
reaches linearisation point E1, denoted by P|E1, the other activity Q invokes
the DEQUEUE procedure. Activity P continues after Q has reached its first
linearisation point. Figure 3.1 on the facing page shows the states of two
different queues in this scenario. On the left hand side, the initial queue is
empty and the corresponding sequence of reached linearisation points is
P|E1,Q|D1,P|E3. Activity Q leaves the DEQUEUE procedure immediately
after reaching linearisation point D1 since the reference to the first element
has not yet been modified by P and is still invalid. Activity P can therefore
complete its operation without interruption and leaves behind a correct data
structure.

The other queue depicted on the right hand side of Figure 3.1 on the
next page initially contains a single element called B. Since the queue is
not empty, different linearisation points are reached and the corresponding
sequence is P|E1,Q|D2,P|E2. Here, activity Q resets the reference to the
first element of the queue because B has no successor yet. Although the
successor is just about to be set when P reaches E2, the queue data structure
is now corrupted because the reference to the first element does not point
to the actual first element A. Any subsequent dequeue operation returns
prematurely after reaching D1 while enqueue operations append elements
without ever correcting the reference to the first element.

This problem does not occur if the initial queue contains more than one
element. In this case, the first element already has a valid successor and Q
is able to correctly modify its reference after reaching D2. When P reaches
E2, it eventually sets the missing successor yielding a valid linked list.
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Figure 3.1: States of two different shared queues after reaching linear-
isation points while one activity P enqueues an element and
another activity Q dequeues an element.

41



3 Case Study: Lock-Free Queues

Another sample execution sequence describes a similar scenario where
a dequeue operation is interspersed with a concurrent enqueue operation
instead. The corresponding sequence of linearisation points on a shared
queue containing a single element is Q|D2,P|E1,Q|D3,P|E2. In this case,
activity Q resets the reference to the first element of the queue when reach-
ing linearisation point D2 as before. This time however, activity P fails
to properly readjust this reference because it reaches linearisation point
E2 instead of E3 in the end. As a consequence, the resulting queue gets
corrupted the same way as described above.

A third example illustrates the case where one activity gets suspended
in between two subsequent linearisation points of an operation but is never
resumed. Although this scenario is unlikely in practice since it involves
some sort of external events which must interrupt the activity within an
extremely short time frame, it has to be nevertheless considered in all non-
blocking algorithms. Regarding the ENQUEUE procedure, any activity that
fails to reach linearisation points E2 or E3 does not connect the enqueued
element to the linked list. Although subsequent enqueue operations can
successfully append new elements, the linked list remains partitioned into
two separate parts. The same applies to activities that are suspended in
between linearisation points D2 and D3 and therefore fail to update the
reference to the last element of a queue that got empty. In this case, a
subsequent enqueue operation does not update the reference to the first
element of the queue because the reference to its last element has not
been invalidated. As a consequence, enqueue operations succeed while any
dequeue operation aborts prematurely in D1.

Besides proving that our algorithm is incorrect, the linearisation points
also help to reason about its progress guarantees. Since both procedures
contain a single loop, it is sufficient to show in which cases they may
loop forever. Both operations fail to make progress when they never reach
linearisation points E1 and D2 respectively. In both cases, the linearisation
points coincide with modifying compare-and-swap operations. Therefore,
these atomic operations must fail repeatedly in order to cause an activity to
get stuck permanently in the corresponding loop. Although this starving is
very unlikely in practice, the algorithm cannot be wait-free by definition.
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3.2 Linearisation Points

However, even if an activity actually starves it has not yet successfully
executed an atomic compare-and-swap operation. Hence, there has not been
any change visible to other concurrently running activities. The starving
activity can therefore never obstruct the operation of other activities. On
the other hand, the starvation of one activity implies that there is at least
one other activity that successfully executed an atomic compare-and-swap
operation. As a result, the successful activity always makes progress by
exiting the corresponding loop and renders the algorithm therefore lock-
free. We will use the same sort of argumentation for all other lock-free
algorithms in this thesis.

We could try to rewrite our lock-free procedures in order to fix all the
issues raised above. In fact, we tried out several variations and each time
reordered the linearisation points inside the procedures. However, the in-
herent problem with our algorithm does not lie in its operations but in
the choice of the underlying data structure which forces us to treat empty
queues differently from non-empty ones.

The advantage of having two references to each end is that both queue
operations can ideally operate on their respective part without interfering
with each other. But whenever an enqueue operation inserts an element into
an empty queue it also has to update the reference to the first element of the
queue. Conversely, a dequeue operation removing the last remaining ele-
ment of a queue has also to invalidate the reference to its last element. Since
we are using compare-and-swap operations that modify single memory
locations, only one of both references can be updated at a time. As a con-
sequence, if two references have to be modified simultaneously, only one of
them can be up to date in between their modifications. The other reference
must be deemed to be lagging behind and all procedures have to prepared
for this issue.

Since we have only two references that have to be modified successively
in two different procedures, there are at most four possible combinations
of how to choose the most current reference in each case. In our naive
implementation for example, we chose the reference to the last element
to be the most current in the ENQUEUE procedure whereas the first ele-
ment is always up to date in the DEQUEUE procedure. For each possible
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combination however, we have found sequences of linearisation points that
eventually lead to a corruption of the linked list. Consequently, this data
structure has to be abandoned in favour of a design that does not have to
update two references in both procedures.

An alternative approach consists of discarding the reference to the last
element altogether. This solution does not suffer from the problems de-
scribed above since there is only one reference to keep up to date. However,
it requires enqueue operations to actually traverse the linked list in order
to get to the currently last element of the queue. The obvious decrease in
performance of querying the last element going from constant time to linear
complexity is unfortunate at least. However, a real problem occurs when
enqueue operations traversing the linked list are overtaken by concurrent
dequeue operations. Without further precaution, any dequeued element
that is immediately enqueued into another queue could cause a traversal
to be potentially proceeded in a different linked list. We did not pursue
this approach further since solving the intricate problem of concurrently
traversing elements seems to be disproportionate to its actual value.

The next section follows another idea and unifies the representation of
empty and non-empty queues instead. It describes an improved version of
our algorithm as well as the consequences of incorporating the notion of a
sentinel element.

3.3 Intermediate Nodes

Our next version of the queue data structure introduces a distinguished
dummy element of the linked list called the sentinel. The sentinel is preal-
located and always the first element in the linked list regardless of how
many actual items there are. Its sole purpose is to unify the representation of
empty queues and non-empty queues. An empty queue consists only of the
sentinel element and is referenced by both pointers to the first and the last
element of the queue. Both references therefore always point to an existing
element and it is never necessary to invalidate them while enqueueing or
dequeueing an item.
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3.3 Intermediate Nodes

structure ITEM

structure NODE

next : pointer to NODE . successor in linked list
item : pointer to ITEM . associated element

structure QUEUE

f irst : pointer to NODE . first node of linked list, sentinel
last : pointer to NODE . last node of linked list, may lag behind

Listing 3.3: Data structures of an unbounded first-in first-out queue making
use of intermediate nodes.

Regarding our initial design, we still want users of the queue to provide
their own user data in the form of an extension of the basic ITEM data
structure. In a non-empty queue, the sentinel element therefore points to its
successor which stores the actual user data of the first item. If a dequeue
operation advances the reference to the first element to its successor, the
latter automatically becomes the new sentinel. Although the new sentinel
holds the actual user data that has been dequeued, it is still part of the linked
list and therefore cannot be returned to the user. Otherwise, the user could
immediately enqueue this item in the same or another queue breaking the
linked list of the original queue.

This problem can be solved by adding another level of indirection in
the form of an intermediate data structure called NODE that references
the actual enqueued item. The linked list therefore consists of a chain of
nodes where the first is the sentinel node and all others have the actual
item associated with them. Listing 3.3 shows an improved definition of the
data structures which have been modified accordingly. Although this design
solves the problem raised above, it unfortunately also subverts our goal of
memory-efficiency since intermediate nodes require memory allocations.
For the sake of the argument, we will ignore this issue for now and resolve
it in a later section.
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Figure 3.2: Example of a queue containing three elements referenced by a
linked list of four nodes.

Figure 3.2 depicts a sample instantiation of this queue data structure. It
consists of a linked list of four nodes S, A, B, and C where the first one is
the distinguished sentinel node. While S has no item associated with it, the
actual queue items numbered from one to three are referenced by the nodes
A, B, and C respectively.

The invariant of this data structure is that the linked list of nodes is always
up to date. The list always begins with the sentinel node and ends with the
first node that has no valid successor. The reference to the last node always
points to some node of the linked list and is intentionally allowed to lag
behind.

The idea to this design was drawn from Michael and Scott [MS96] who
in turn based their work on Valois [Val94]. The advantage of its invariant
is that the reference to the last node does not have to be up to date since
the last node can always be identified by a missing successor. Furthermore,
thanks to the introduction of a sentinel node, enqueue operations do not
need to modify the reference to the first node any more in order to indicate
an empty queue. As a result, the enqueue operation only operates on the
successor of the last node in order to keep the linked list up to date. The
reference to the last element can be used to find the actually last node
efficiently but does not need to be updated at the same time.
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procedure ENQUEUE(item,queue)
node← ALLOCATE()
node�next← null
node�item← item
repeat

last← CAS(queue.last,null,null)
next← CAS(last�next,null,node) . E1
if next 6= null then

CAS(queue.last, last,next) . E2

until next = null
CAS(queue.last, last,node) . E3

Listing 3.4: Enqueue operation making use of intermediate nodes.

Listing 3.4 shows the lock-free enqueue operation for the improved queue
data structure. Apart from some minor rearrangements, it corresponds to
the algorithms presented by Valois [Val94] and Michael and Scott [MS96].
In this preliminary version, the enqueue operation always allocates a new
intermediate node at the beginning. For the sake of convenience, we assume
for now that all allocated nodes occupy different memory regions.

As required by the invariant of the data structure, the ENQUEUE proced-
ure updates the reference to the last node after modifying the linked list.
The corresponding linearisation points are labelled in the listing and can be
summarised as follows:

E1: The enqueue operation first tries to update the successor of the cur-
rently last node. This operation fails if another enqueue operation has
overtaken it at this step causing the corresponding reference to the
last node to lag behind.

E2: If there is already a successor, the reference to the last node obviously
lags behind. In this case the procedure tries to swing the reference to
the last node to its successor in order to repeat the enqueue operation
on a subsequent node of the linked list.
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procedure DEQUEUE(queue)
repeat

f irst← CAS(queue. f irst,null,null)
next← CAS( f irst�next,null,null)
if next = null then

return null . D1

CAS(queue.last, f irst,next) . D2
item← next�item

until CAS(queue. f irst, f irst,next) = f irst . D3
FREE( f irst)
return item

Listing 3.5: Dequeue operation making use of intermediate nodes.

E3: If the modification of the successor was successful, the procedure
finally tries to update the reference to the last node by swinging it
to the currently appended node. This operation fails if this reference
already lags behind again at this point.

The corresponding dequeue operation is shown in Listing 3.5 and has the
following linearisation points:

D1: As before, the dequeue operation returns with a special value if the
sentinel node has no successor indicating an empty queue.

D2: If the reference to the last node points to the sentinel, the procedure
advances it to its immediate successor before removing the sentinel
from the linked list. Otherwise, the reference to the last element
points to a node which is not part of the linked list after the removal.

D3: The procedure tries to swing the reference to the first element of the
queue to its immediate successor. This operation fails and has to be
repeated if another dequeue operation as overtaken it in the meantime.
Beforehand, the item associated with the node that is about to become
the new sentinel is stored as return value.
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The correctness of this algorithm has been shown by Michael and Scott
in terms of safety and liveness [MS96]. Here, we deduce its correctness by
arguing that there is no sequence of linearisation points reached by concur-
rent activities that violates the invariant of the data structure. Without loss of
generality, we will focus on all combinations of single linearisation points
sequentially reached by two concurrent activities P and Q operating on a
single shared queue. Sequences of linearisation points involving more than
two activities can always be pairwise reduced to this set of combinations
and must therefore be correct by induction. Both conditions of the invariant
can be considered separately:

1. The invariant requires the linked list of nodes to be chained correctly
at all times. The linked list consists of the sentinel node and all of its
direct and indirect successors. The corresponding linearisation points
potentially modifying the linked list are therefore only E1 and D3.

If both activities reach the same linearisation point, only the cor-
responding compare-and-swap operation of the first activity in the
sequence can succeed because both try to modify the same memory
location. In the sequence P|E1,Q|E1 for example, only P will succeed
leaving behind a correctly linked list, while Q will have to repeat the
operation because the successor has been updated in the meantime.
The same applies to the sequence P|D3,Q|D3 where only P will suc-
ceed in advancing the sentinel node, while Q has to repeat the loop
because the reference to the first node no longer matches its expected
value. In both cases, only one activity modified the data structure and
did not violate the invariant while doing so.

Regarding the sequences P|E1,Q|D3 and P|D3,Q|E1, both of the
corresponding compare-and-swap operations are potentially able to
succeed because they modify two distinct memory locations in each
case. If for example the compare-and-swap operation in P|E1 was
successful, then P has modified the reference to the next node of
either the sentinel or one of its successors. The sentinel node will
therefore always have a valid successor and Q cannot violate the
invariant when advancing the reference to the first node in D3.
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Regarding the second sequence P|D3,Q|E1 on the other hand, the
only conceivable way to break the invariant is when Q modifies the
successor of the previous sentinel node which was just removed
from the linked list by P. But the corresponding compare-and-swap
operation in E1 cannot succeed, since the previous sentinel node must
have had a successor or else P could not have reached D3 in the first
place.

2. The invariant additionally requires the reference to the last node al-
ways to point to a node that is part of the linked list. The linearisation
points that potentially modify this reference are E2, E3 and D2. In
E2 and D2, the reference the last node is modified to point to its
immediate successor. If the atomic compare-and-swap operation in
E3 succeeds, the reference now points to the currently appended node.
Therefore, the reference to the last node always points to one of its
direct or indirect successors when modified.

It remains to show that the reference to the last node does not lag too
far behind. The only way this could happen is when this reference is
overtaken by the reference to the first node while advancing the latter
in D3. However, this linearisation point is always preceded by D2
which ensures that the reference to the first node and the last node are
never the same before removing the sentinel. Hence, the reference to
the last node always points to one of the successors of a potentially
removed sentinel.

As in the previous section, the linearisation points also allow to derive the
progress guarantees of the algorithm. Both procedures contain a single loop
which could hinder an activity from proceeding. In order for an activity
to get stuck permanently in one of these loops, the compare-and-swap
operations at E1 or D3 must fail repeatedly. Since both operations try to
modify distinct memory locations, there must have been another activity that
actually succeeded while executing the same compare-and-swap operation.
As a consequence, there exists at least one activity that actually does proceed
even if others starve executing the same queue operation.
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During the execution of any of the two loops, each activity additionally
updates the reference to the last node in case it falls behind. The corres-
ponding linearisation points are E2 and D2. Both can help an ongoing
enqueue operation to advance the reference to the appended node in E3.
This technique of helping concurrent activities is very common in lock-free
programming. The general idea is to satisfy preconditions oneself instead
of waiting for another activity to establish them. The same technique even
allows to compensate for queue operations that never reach their last linear-
isation point because they are suspended and never resumed for whatever
reason. The algorithm is therefore also correct when activities halt halfway
in between two consecutive linearisation points. Concurrent activities can
therefore not obstruct each other and the algorithm is therefore lock-free by
definition.

At this point, we have improved our first queue implementation and
turned it into a correct lock-free algorithm. But unfortunately, we also
sacrificed the desired memory-efficiency along the way. The next section
will get rid of our oversimplifications and discuss the consequences of
reusing nodes in order to save memory allocations wherever possible.

3.4 The ABA Problem

The next iteration of our lock-free queue algorithm reintroduces the same
kind of memory-efficiency our very first approach implemented. The basic
idea is to pair each item that is currently not enqueued with a node that can
be reused for that purpose whenever the item is enqueued again.

As discussed above, this kind of memory-efficiency can only be exploited
when the same item is enqueued and dequeued several times. In our case
however, lock-free queues are used in the task scheduler where enqueued
items correspond to activities that are currently suspended. We assume that
long-living activities are suspended and resumed frequently especially when
there are more running activities than processors. By reusing intermediate
nodes, this approach allows to save all implicit memory allocations caused
by suspending and thereby enqueueing an activity.
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Listing 3.6 on the facing page shows the extended data structure and
queue operations implementing the idea of reusing intermediate nodes. All
changes with respect to the previous version are labelled accordingly. In
particular, the unconditional allocation of a new node at the beginning of the
ENQUEUE procedure has been replaced by a reuse of the node associated
with an item if available. Additionally, the deallocation of the previous
sentinel node at the end of the DEQUEUE procedure has been substituted
for a pairing of that node with the returned item. The assumption here is
that the user will finally deallocate the node associated with a dequeued
item as soon as the item is no longer used. The deallocation can also be
automatically performed by a corresponding finaliser or deconstructor of
the ITEM data structure in case that notion is supported by the programming
language.

In both procedures, the modification of the associated node are in regions
where the item is completely owned by the caller of the operation. Except
for the pairing of the items with their intermediate nodes, nothing else has
been altered with respect to the algorithm shown in Listings 3.4 and 3.5.
In particular, both algorithms have the same set of linearisation points.
Therefore, they seem to share the same correctness and liveness guarantees.
However, reusing nodes is extremely prone to the ABA problem.

The ABA problem was first mentioned in the manual of the compare-
and-swap operation of the IBM System/370 [IBM83] and occurs when
one activity fails to recognise that a single memory location was modi-
fied temporarily by another activity and therefore erroneously assumes
that the overall state has not been changed. In our case, the ABA problem
is triggered when a dequeue operation does not recognise that the queue
has been modified in the meantime. Since the nodes are reused whenever
possible, it could very well happen that the queue ends up having exactly
the same sentinel node before and after the execution of several queue
operations. If a concurrent activity expects the same sentinel node while
dequeueing, the corresponding atomic compare-and-swap operation at lin-
earisation point D3 will succeed. The activity therefore falsely assumes that
the contents of the queue have not been modified and effectively cancels all
operations that happened in the meantime.
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structure ITEM

node : pointer to NODE . node associated with item

procedure ENQUEUE(item,queue)
node← item�node . reuse node associated with item
if node = null then

node← ALLOCATE()

node�next← null
node�item← item
repeat

last← CAS(queue.last,null,null)
next← CAS(last�next,null,node) . E1
if next 6= null then

CAS(queue.last, last,next) . E2

until next = null
CAS(queue.last, last,node) . E3

procedure DEQUEUE(queue)
repeat

f irst← CAS(queue. f irst,null,null)
next← CAS( f irst�next,null,null)
if next = null then

return null . D1

CAS(queue.last, f irst,next) . D2
item← next�item . store a local copy of the item

until CAS(queue. f irst, f irst,next) = f irst . D3
item�node← f irst . associate free node with item
return item

Listing 3.6: Data structure and operations of a lock-free queue reusing
intermediate nodes by pairing them with the actual items.
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Figure 3.3: Example of a queue containing a single item.

The initial state of one of the simplest cases where the ABA problem
occurs is depicted in Figure 3.3. It shows an example of a queue consisting
of a linked list of two nodes A and B where A is the sentinel and B points to
the single item of the queue. Figure 3.4 on the next page shows a sequence of
linearisation points reached by two concurrent activities P and Q operating
on this initial queue. The sequence reads as follows and triggers the ABA
problem in the end:

1. Both activities P and Q try to dequeue the single item from the queue.
Both reach D2 but do not modify the reference to the last node since
it is already up to date. For the illustration of the problem, we assume
that only P proceeds with D3 whereas Q does not execute it until step
four below. However, Q still remembers node A as the first node and
B as its successor.

2. Activity P now completely enqueues the same item again by reaching
linearisation points E1 and E3. The enqueue operation reuses the node
A as it was associated beforehand with the enqueued item.

3. Activity P immediately dequeues the item again by reaching P|D2
followed by P|D3 and leaves behind an empty queue consisting only
of the sentinel node A. This time node B becomes associated with the
dequeued item.
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Figure 3.4: States of the same queue after two activities P and Q reach
different linearisation points while performing several enqueue
and dequeue operations showing the ABA problem.
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4. Only now activity Q continues and reaches D3. The corresponding
compare-and-swap operation succeeds because the reference to the
first node matches with the expected node A. This is a false positive
since the queue is currently empty and any dequeue operation should
return prematurely instead. Hence, activity Q erroneously advances
the reference to the first node to B although the current sentinel A has
no successor. The result of this occurrence of the ABA problem is a
linked list that consists of two sentinel nodes and no actual item.

The very same problem can also occur when we use the algorithm from
the previous section but discard its simplistic assumption that all allocated
nodes occupy different memory regions. In this case, it is only a matter of
time before the memory manager reuses the memory of a deallocated node
again when allocating a new node. As a consequence, a new allocated node
may have the same reference value as a previously deallocated one. In this
case the node is reused as well but this time by the memory manager rather
than by the algorithm itself. In the end however, the effect is the same and
the ABA problem can occur just as easily.

In the sample sequence of linearisation points showed above we assumed
that one activity performs several complete queue operations before the
other one finishes a single one. This might seem unrealistic but is not en-
tirely impossible since the slower activity might have been suspended by a
preemptive scheduler. Using cooperative multitasking we can weaken the
probability of this scenario by wrapping both procedures in uncooperative
blocks which prevent voluntary task switches altogether. However, on an
interrupt driven system an interrupt may happen at any time and cause
additional delay in the execution of the queue operation. In addition, activ-
ities running on distinct processors may be executed at different speeds.
In practice, the ABA problem does still occur and we have been able to
reproduce at will.

In the standard literature, there exist several different approaches to cope
with the ABA problem in general. All of them are more or less useful
in practice but only few solve the problem conceptually. The four most
common techniques are as follows:
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1. One solution for most lock-free data structures is the application of
the double compare-and-swap operation called DCAS. It allows to
compare two unrelated memory locations instead of one in order
to be sure that the overall state has changed indeed. This technique
has for example been used by Massalin and Pu [MP91, Mas92] and
Greenwald and Cheriton [GC96, Gre99]. Unfortunately, this atomic
operation is not as well supported on common modern hardware
architectures as its single compare-and-swap variant.

Regarding our lock-free queue implementation, this operation could
help to check simultaneously whether the local copy of the sentinel as
well as its immediate successor are still the same. Another possibility
is to introduce an additional variable in the queue data structure which
counts the number of all previous modifications in order to keep track
of all temporary changes.

2. Being limited to the single compare-and-swap operation supported
by almost all multiprocessor hardware architectures, it has been
tried several times to mimic the behaviour of DCAS. This solution
is generally referred to as pointer tagging or pointer stamping and
encodes the number of modifications inside the shared reference
instead of using a separate entity. This technique has been employed
multiple times by Michael and Scott [MS96, Mic04a].

In practice, the allocated memory for representing an intermediate
node intentionally gets aligned on a certain word boundary such that
some of the least significant bits of pointers to this data structure
can be repurposed for counting the modifications. However, if the
ABA problems happens often enough in sequence, any set of bits will
eventually overflow and pointer tagging is therefore not bullet-proof.

3. Another solution is trying to ensure that intermediate nodes are never
reused as long as there are other activities that still reference them.
This rule can be easily enforced by relying on a runtime environment
that implements an automatic memory management in the form of a
garbage collector [GPST09].
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Regarding our lock-free queue, any node still referenced by an activ-
ity executing a dequeue operation is not reclaimed by the garbage
collector and cannot be reused for the node allocation in the enqueue
operation. However, this would imply to fall back on unconditionally
allocating nodes as in the previous version in order to leave the task
of reusing nodes to the automatic memory management instead.

4. The same strategy of ensuring that nodes are not referenced by con-
current activities was also pursued by Michael [Mic04b]. Although
his approach also solves the ABA problem as above, his main con-
cern was safe memory deallocation in runtime environments without
automatic memory management. His research was motivated by the
question of how to manually deallocate objects safely in lock-free
algorithms when there are concurrent activities potentially accessing
these objects at the same time.

The next section describes the final iteration of our lock-free queue
implementation which solves the ABA problem by drawing from the ideas
of Michael for safe memory deallocation in lock-free programs.

3.5 Safe Memory Deallocation
There exist numerous runtime environments which do not have automatic
memory management facilities such as garbage collectors. In addition, auto-
matic memory management usually incurs a runtime overhead which for
example may not be practical because of real-time considerations. Its altern-
ative of manually deallocating data structures requires special attention by
programmers in order to prevent applications from leaking memory. Cor-
rect manual memory management is even more difficult if the dynamically
allocated data structures are potentially shared across several concurrent
activities. This especially applies to data structures used in lock-free al-
gorithms since there is no proper synchronisation of concurrent accesses.
The corresponding memory can only be deallocated safely if no other
activity is accessing it any more.
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The problem of safe memory deallocation has been addressed several
times using techniques like epoch based reclamation [Fra04] or refer-
ence counting [GPST09]. Michael proposed the notion of hazard pointers
which identify all objects that are about to be used by concurrent activit-
ies [Mic04b]. The basic idea is to announce to contending activities that
memory is potentially still in use and must therefore not be deallocated.
If this is the case, the reclamation of the memory has to be deferred until
there are no other activities referencing it any more. As a consequence,
memory is deallocated and potentially reused if and only if it is referenced
by a single activity which nicely solves the ABA problem. If the memory
is reclaimed too early on the other hand, any subsequent dereferencing of
pointers to this memory region is unsafe and therefore called hazardous.

An interesting question regarding this approach is how to represent hazard
pointers and make them available to all activities. Obviously, the property
of whether an object is still referenced cannot be stored in that object itself
since that would require an activity to access it in order to set or query
that information. This implies a race condition because the corresponding
memory could have already been deallocated in the meantime. Therefore,
hazard pointers have to be stored and identified by their actual value.

The challenge of making hazard pointers usable in lock-free algorithms is
to implement their lookup efficiently and their data structures in a lock-free
manner. Michael proposed a data structure called hazard pointer record
which stores the values of all hazard pointers of a single activity. The set of
all hazard pointers in the system is represented by a linked list of all hazard
pointer records which grows for each additionally participating activity.
This list is accessible to all activities and must be traversed in order to check
whether a pointer is actually hazardous or not. The number of required
hazard pointers per activity at any given point in time depends on the actual
non-blocking algorithm but is usually not higher than two [Mic04b].

Using the notion of processor-local storage as described in Section 2.3.3
we were able to simplify and optimise the representation of hazard pointers
in general. We show how this technique is used by applying it to a final
iteration of our lock-free queue implementation. The result is an unbounded
and memory-efficient queue that does not suffer from the ABA problem.
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structure PROCESSOR

hp1 : pointer to NODE

hp2 : pointer to NODE

pool1 : pointer to NODE

pool2 : pointer to NODE

variable
cpu : array N of PROCESSOR

Listing 3.7: Generic data structure for storing hazard pointers for a system
with N processors.

Listing 3.7 shows a generic data structure for storing hazard pointers for
a system with N processors. It consists of a global array of records which
stores a pair of hazard pointers and a pair of so-called pooled nodes for
each processor in the system. A pooled node is a currently free node whose
reuse has been deferred because it might still be hazardous.

The advantage of this representation is that the complete set of hazard
pointers is stored in a single array which can be traversed efficiently for
lookup. It can be extended easily for algorithms that need more than two
hazard pointers and is therefore universally applicable in any lock-free data
structure. Each activity can efficiently and concurrently modify its hazard
pointers by using the unique index of the currently executing processing
unit called processor hereafter. The precondition is that the corresponding
section of the code which maintains hazard pointers is always executed
by the same processor. With the help of cooperative multitasking, we can
embed the corresponding code in an uncooperative block which guarantees
that there are no switches to other tasks or processors during its execution.

The management of potentially reused nodes including the lookup of haz-
ard pointers is shown in Listing 3.8 on the facing page. The corresponding
algorithm for safely recycling a node is shown in the ACQUIRE procedure.
It either returns a node that is not hazardous and therefore safely reusable,
or an invalid reference if no such node could be found.
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procedure SWAP(reference to local,reference to shared)
uncooperative

node← CAS(shared,null,null)
if CAS(shared,node, local) = node then

local← node

procedure ACQUIRE(node)
uncooperative

repeat
for all c ∈ cpu do

if node = null then
return null

else if node = c.hp1 then
SWAP(node,c.pool1)

else if node = c.hp2 then
SWAP(node,c.pool2)

until no more swapping occurred
return node

Listing 3.8: Wait-free node acquisition for safe reuse.

The ACQUIRE procedure takes a node as argument and checks whether
it is hazardous by comparing its value against the complete set of hazard
pointers. If there is a match, the node may not be reused safely since
another activity has indicated that it is still potentially using it. In order to
defer the reuse of the node, its reference is atomically exchanged with the
pooled node of the corresponding hazard pointer using the SWAP procedure.
The hazardous node becomes pooled and the algorithm continues with
the previously pooled node. Because the resulting reference could still be
hazardous, it has to be compared against all remaining hazard pointers. The
algorithm continues checking as long as the node reference is valid and
further exchanges were necessary. Hence, the returned node reference is
either invalid or assuredly not hazardous.
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Whenever the node is potentially hazardous, it is atomically exchanged
with the pooled node that corresponds to one of the hazard pointers of a
processor. Since lock-free algorithms are constrained to store distinct values
in their hazard pointers, the set of pooled nodes therefore always contains
pairwise different entries per processor. Because the node initially passed as
argument is different from all pool entries, there is always at least one more
node available than nodes referenced by hazard pointers. Thus, no more
than 2 ·N exchanges are required until a node is found that is not referenced
by any hazard pointer. As a result, the loop always terminates and renders
the whole operation wait-free.

Listing 3.9 on the next page shows the ENQUEUE and DEQUEUE proced-
ures of our final queue implementation. Both procedures are similar to the
previous version and therefore use the same queue data structures as before.
This time however, the application of processor-local storage to access the
hazard pointers requires both operations to be executed in uncooperative
blocks. All other changes are labelled accordingly and include the node
acquisition at the beginning of the ENQUEUE procedure as well as code
that sets and resets hazard pointers. All of these changes do not influence
the correctness and liveness properties of the previous version.

As before, the assumption of this algorithm is that the user or a respective
finaliser reclaims the node associated with an item whenever the latter is no
longer used and is deallocated. In order to reclaim it safely, its reference can
be passed to a call of the ACQUIRE procedure. The node returned by that
procedure may potentially be another one but is guaranteed not used by any
other activity. This allows to safely deallocate either the node associated
with the item or a previously pooled one and no memory is leaked.

The shown technique of acquiring and accessing nodes is not bound
to our particular lock-free queue implementation in any way. In fact, it is
a very generic programming idiom and can be universally applied to all
lock-free algorithms that employ intermediate nodes. The only difference
may be a higher number of hazard pointers that are simultaneously required
by an algorithm [Mic04b]. In this case, only the sets of hazard pointers and
pooled nodes have to be increased in order to cover the differing setting
while the underlying node acquisition can be reused as is.
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procedure ENQUEUE(item,queue)
uncooperative

node← ACQUIRE(item�node) . Safe node acquisition
if node = null then

node← ALLOCATE()

node�next← null
node�item← item
repeat

last← ACCESS1(queue.last) . Access shared node
next← CAS(last�next,null,node)
if next 6= null then

CAS(queue.last, last,next)
until next = null
cpu[processor].hp1← null . Reset hazard pointer
CAS(queue.last, last,node)

procedure DEQUEUE(queue)
uncooperative

repeat
f irst← ACCESS1(queue. f irst) . Access shared nodes
next← ACCESS2( f irst�next)
if next = null then

cpu[processor].hp1,2← null . Reset hazard pointers
return null

CAS(queue.last, f irst,next)
item← next�item

until CAS(queue. f irst, f irst,next) = f irst
cpu[processor].hp1,2← null . Reset hazard pointers
item�node← f irst
return item

Listing 3.9: Lock-free queue operations with safe node reuse.
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procedure ACCESSindex(reference to shared)
uncooperative

repeat
node← CAS(shared,null,null)
cpu[processor].hpindex← node

until CAS(shared,null,null) = node
return node

Listing 3.10: Generic operation to safely access a shared reference by
copying its value into a processor-local hazard pointer.

Listing 3.10 finally shows the generic ACCESS procedure used to update
the value of a single hazard pointer. An algorithm must call this operation
before it can safely dereference a shared node. The procedure first copies
the value of the shared reference given as argument into the processor-local
hazard pointer identified by the indices processor for the current processing
unit and index for the respective instance. It then compares the copy again
with the value of the shared reference which might have already changed
and repeats the update of the hazard pointer if necessary. This check is
required to ensure that contending activities have seen the new value of the
hazard pointer before erroneously assuming that a node is not hazardous.
The value returned by this procedure is the current value of the shared
reference given as argument. The whole operation does not obstruct other
activities since it only modifies processor-local data. It is therefore lock-free
and safe from concurrent access.

Concerning an activity that fails to make progress in a lock-free algorithm
for whatever reason, it is possible that a hazard pointer is never invalidated
any more. As a consequence, all contending activities naturally assume that
the corresponding node is still in use. The hazardous node therefore gets
pooled and can never be reused again causing a new node to be allocated
instead. However, the set of pooled nodes is limited by the number of hazard
pointers and is thus never higher than 2 ·N at any given time. Therefore, the
amount of surplus allocations is bounded by the same number.
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By combining lock-free programming with cooperative multitasking,
we finally reached our goal of developing a practical, safe, and memory-
efficient implementation of an unbounded and lock-free queue. This work
forms the foundation of the cooperative scheduler described in the next
chapter where queues are used extensively for lock-free multitasking.
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This chapter describes all components of the cooperative task scheduler
used in our runtime system. It first explains the fundamental lock-free build-
ing blocks which form a framework for implementing more sophisticated
synchronisation primitives.

4.1 Introduction
The term multitasking describes a technique that allows several independent
tasks to progress concurrently by sharing the same execution environment.
This shared environment includes common processing resources like a
processor or main memory. A task switch is the process of divesting the
currently running task of these resources and reassigning them to a different
task. Multitasking therefore does not imply parallelism per se but it can con-
vey that impression if task switches happen frequently enough. In general,
the following two different types of task switches are distinguished:

• Synchronous task switches are initiated by a currently running task
whenever it has to wait for some event to occur. It voluntarily gives
up the control of execution and explicitly leaves it to some other
task that is ready to run. The kind of event it waits for can be the
occurrence of an interrupt or a condition that has to be met by another
task.

• Asynchronous task switches are initiated by external events like
periodical interrupts and are in general not under the control of the
currently running task. This kind of task switch is typically com-
pletely transparent to the currently running task since it is preempted
at an arbitrary location during its execution.
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The process of determining the next running task and the duration of
its execution until the next task switch is generally called scheduling. A
preemptive scheduler employs asynchronous as well as synchronous task
switches in order to implement multitasking. Asynchronous task switches
offer the advantage that a program does not have to be prepared for the
execution in a multitasking environment. Since the preemption is com-
pletely transparent to the program, a preemptive scheduler allows to execute
arbitrary programs concurrently. This is why preemptive scheduling is a
popular choice for modern operating systems running on machines that
allow to dynamically load arbitrary programs interactively.

However, asynchronous task switches are generally considered expensive
since they preempt programs at arbitrary locations during their execution.
As a consequence, the subset of the common processing resources that have
to be stored and restored upon consecutive task switches can usually not be
known in advance. In order to be prepared for the worst case, the complete
state of the processor including the values of the program counter, the stack
and frame pointers, and all potentially modified processor registers has to
be recorded when it is reassigned to a different task.

Table 4.1 on the facing page for example shows the processor registers
that have to be potentially restored on a task switch performed on the
AMD64 architecture [Adv13]. The corresponding processor context takes
up a total of 736 bytes which has to be stored once for the suspended task
and restored once for the resumed task during a task switch. Most of the 42
registers cannot be accessed in bulk and require the execution of separate
instructions to get and set their values individually. This is often considered
computationally expensive and implies an overhead since most of the time
only a small subset of the execution environment is actually in use.

In order to compensate for the runtime costs of asynchronous task
switches, preemptive schedulers often try to delay them as long as possible.
The corresponding time window in which tasks are allowed to execute
without being preempted is usually called a quantum or a time slice. The
schedulers of modern operating systems like Windows and Linux based
systems commonly choose a quantum with a duration between ten and few
hundred milliseconds [RSI12, Lov10].
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Application Registers Count Size (Bytes)

64-bit general-purpose registers 16 128
80-bit floating-point registers 8 80
256-bit vector computing registers 16 512
64-bit program counter 1 8
64-bit program flags 1 8

Total 42 736

Table 4.1: Contents and memory consumption of the processor context on
the AMD64 architecture [Adv13].

Considering a fair scheduler where each task is resumed on a regular
basis, the length of the quantum directly affects the overall idle time of a
task as well as its observable responsiveness under high load. As a result,
there is a trade-off between optimising the costs of asynchronous task
switches and maintaining interactivity when there are a lot of task switches
to be scheduled.

Regarding synchronous task switches on the other hand, tasks always
pause themselves at predetermined locations. Since they give up the control
of execution explicitly, the set of processing resources that has to be restored
after the synchronous task switch is known by the task itself. Explicit task
switches are most often realised by calling corresponding functions offered
by the scheduler or runtime system. In this case, the processor state that
has to be restored after the task switch is most often already covered by the
underlying calling convention implemented by the compiler. In the simplest
case, the compiler temporarily stores the required registers on the stack
when calling a function and the remaining context information consists only
of the program counter and the stack pointers. As a result, synchronous task
switches are typically much more efficient than asynchronous task switches
because their runtime cost is equivalent to ordinary function calls. There is
hardly any trade-off that has to be considered and significantly smaller time
slices can be used if necessary.
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A further advantage of synchronous task switches is the fact that they can
be implemented exclusively in software since they do not rely on external
events like hardware interrupts. The implementation of synchronous task
switches can therefore be written in a completely portable manner, whereas
asynchronous task switches always require some sort of machine-dependent
interrupt handling and processor state representation.

In order to achieve a highly portable runtime system, we abandoned the
idea of preemptive scheduling which requires asynchronous and therefore
machine-dependent task switches. Instead, our scheduler implements only
synchronous task switches which are completely portable. The result is a
cooperative scheduler which relies on tasks relinquishing control voluntarily
from time to time in order to cooperate with all other tasks in the system.

4.2 Foundations

In this section we present a lock-free scheduler for cooperative multitask-
ing of lightweight activities on multiple processors. As explained above,
since it is based only on synchronous task switches, it does not rely on
hardware specific features and can be implemented completely in software.
Gidenstam and Papatriantafilou, authors of the LFTHREADS library, were
amongst the earliest to give a proof of concept of this approach [GP07].

The basic foundation of the scheduler is a simple task descriptor called
ACTIVITY shown in Listing 4.1 on the next page, which represents an
activity associated with an active object. An activity is an extension of the
ITEM data structure and can therefore be enqueued in and dequeued from
instances of the lock-free queue presented in Section 3.5. The descriptor
stores information about its stack, the associated active object, as well as
specific properties like its current priority, the index of the processor it is
running on and the remaining length of its quantum.

In contrast to the A2 operating system where processes can be in one
of several different states [Mul02], activities in our runtime system have
only two implicit states. They are either currently running and executed on
a processor with the given index, or they are currently suspended in which
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structure ACTIVITY extends ITEM

ob ject : object . Associated active object

quantum : integer . Time quantum
priority : integer . Task priority
index : integer . Processor index

stack : pointer to array size of byte . Stack representation
limit : address . Lowest valid stack address
f rame : address . Frame pointer

f inalizer : procedure . Task switch finaliser
argument : any . Argument for finaliser
previous : pointer to ACTIVITY . Suspended activity

Listing 4.1: Representation of an activity associated with an active object.

case their descriptor is or is about to be enqueued in a lock-free queue.
This generic simplification still covers all process states of the original A2
system but allows at the same time to express the transition between the two
remaining states in a lock-free manner. In addition, the lack of an explicit
process state allows the creation of arbitrary synchronisation primitives on
top of the scheduler.

Each activity has its own stack memory represented by an array of
bytes that embodies its complete call stack. Stacks correspond to ordinary
memory blocks on the heap and can therefore have an arbitrary size. They
are designed to grow dynamically in order to accommodate activities which
require larger call stacks, see Section 5.2. The total number of activities is
therefore only limited by the available memory in the system.

The stack also stores the context of an activity during a task switch. In
general, this context consists of the stack represented by stack and frame
pointers as well as the values of application-specific hardware registers.
These registers are handled by the compiler, when it has to follow a calling
convention which requires them to be temporarily pushed on the stack
during function calls. Since all synchronous task switches are initiated by
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ordinary function calls, activities need not represent any processor state
besides the stack, because all of the context which is required to be restored
afterwards is already stored by the compiler. The same applies to the pro-
gram counter of an activity which is also pushed on the stack because of the
function call. Therefore, a synchronous task switch only has to exchange
the stack and frame pointers just before returning from the corresponding
function call.

The actual algorithm of task switching is shown in Listing 4.2 on the
facing page. The SWITCHTO procedure first gets access to the descriptor
of the currently running activity in order to store its current context. The
procedure makes use of two functions called GETACTIVITY and GET-
FRAMEPOINTER which are provided by the compiler and allow to query
the values of the registers storing the current activity and the stack frame
pointer in a portable manner. Since the actual stack pointer and the program
counter of the function caller are already pushed on the stack by the function
prologue generated by the compiler, it suffices to store the address of the
current stack activation frame.

In a second step, the procedure prepares the given activity for the task
switch by resetting its quantum to a default value and also supplying the
index of the currently executing processor. The actual task switch is per-
formed in the last step, where the context of the new activity is restored
using the procedures SETACTIVITY and SETFRAMEPOINTER provided by
the compiler. The stack pointer and the program counter are finally restored
by returning from the procedure which pops the corresponding values from
the stack automatically.

4.2.1 Task Switch Finalisers

By returning to a different activity, the task switch changes the implicit
state of the previously running activity to suspended, while the new activity
changes from suspended to currently running. However, there is a subtlety
which prevents the suspended activity from being placed in a queue. The
reason is that the SWITCHTO procedure is technically speaking executed in
its entirety by the same activity.
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procedure SWITCHTO(activity, f inalizer,argument)
uncooperative

current← GETACTIVITY() . Store context
current� f rame← GETFRAMEPOINTER()

activity�quantum← De f ault . Prepare activity
activity�index← current�index
activity� f inalizer← f inalizer
activity�previous← current
activity�argument← argument

SETACTIVITY(activity) . Restore context
SETFRAMEPOINTER(activity� f rame)
return

Listing 4.2: Basic context switching for activities.

Although the return operation pops the new value of the stack pointer
from the stack frame of the resumed activity, the stack pointer used within
the SWITCHTO procedure still refers to the stack of the calling activity. The
actual context switch is therefore not completed until the return instruction
has been executed. If the calling activity would have been enqueued in
a lock-free queue before the task switch is completed, another processor
could dequeue that activity immediately. This is a severe problem if that
processor switches to the dequeued activity before the original processor
completed the first task switch. In this disastrous case, the same activity is
actually running on two different processors which share the same stack
pointers and therefore probably corrupt the stack.

Consequently, the enqueue operation must always be executed after the
SWITCHTO procedure has returned to the resumed activity. A basic solution
to this problem would be the execution of the actual task switch including
the enqueue operation by a third designated activity created solely for this
purpose. A much more generic solution is provided by the notion of task
switch finalisers which we introduced in order to execute arbitrary code on
behalf of the suspended activity after a task switch has completed.
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procedure FINALIZESWITCH( )
uncooperative

current← GETACTIVITY()
current� f inalizer(current�previous,current�argument)
return

Listing 4.3: Finalising task switches on behalf of the suspended activity.

Task switch finalisers are basically function pointers given as an argument
to the SWITCHTO procedure which supplies it to the resumed activity. A
call to this procedure must always be followed immediately by a call to
the FINALIZESWITCH procedure which in turn executes the supplied task
switch finaliser as shown in Listing 4.3. This convention allows to execute
an arbitrary procedure in the context of the resumed activity before it
continues its own execution. The concept of executing code on behalf of
other activities is indispensable for implementing synchronisation primitives
in a lock-free manner. Unconditionally placing the suspended activity in a
lock-free queue is just one of many applications.

4.2.2 Basic Scheduling

Besides providing support for basic task switching, the scheduler also keeps
track of all activities that are currently suspended but otherwise ready to
be resumed by any processor. Ready activities are placed in global lock-
free queues called ready queues. The first-in first out character of this data
structure ensures that activities are scheduled in a round robin fashion.

The scheduler currently supports a simplistic priority model and main-
tains a separate global ready queue for each of the four increasing priorities
nominally called idle, normal, high, and real-time. The corresponding data
structure and the procedure for selecting the next activity to be switched
to is given in Listing 4.4 on the next page. The SELECT procedure tries to
dequeue a single activity from the ready queue associated with the highest
priority and continues with the next lower priority until an activity is found
or the minimal priority given as argument has been reached.
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variable
readyQueue : array 4 of QUEUE

procedure SELECT(minimalPriority)
uncooperative

for all priority ∈ {Realtime,High,Normal, Idle} do
if priority >= minimalPriority then

activity← DEQUEUE(readyQueue[priority])
if activity 6= null then

return activity
return null

Listing 4.4: Selecting activities from ready queues with different priorities.

variable
working : integer

procedure RESUME(activity)
uncooperative

ENQUEUE(activity,readyQueue[activity�priority])
if CAS(working,0,0)< Processors then

RESUMEANYPROCESSOR()

Listing 4.5: Entering suspended activities into ready queues.

A suspended activity can be entered into a ready queue by calling the
RESUME procedure shown in Listing 4.5. As soon as the activity is en-
queued by this procedure, it is available for selection by the same or another
processor and a task switch to this activity can be performed. The RESUME

procedure additionally keeps track of an atomic counter called working
which indicates the number of processors that are currently not idle. If there
is an idle processor, it is resumed by a call to the RESUMEANYPROCESSOR

procedure which is described in more detail in Section 4.4.
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procedure SWITCH( )
uncooperative

current← GETACTIVITY()
activity← SELECT(current�priority)
if activity 6= null then

SWITCHTO(activity,ENQUEUESWITCH,current�priority)
FINALIZESWITCH()

else
current�quantum← De f ault

procedure ENQUEUESWITCH(previous, priority)
uncooperative

ENQUEUE(previous,readyQueue[priority])
if priority 6= Idle then

if CAS(working,0,0)< Processors then
RESUMEANYPROCESSOR()

Listing 4.6: Performing cooperative task switches.

4.2.3 Cooperative Task Switches

Cooperative multitasking relies on each activity to relinquish the control
of execution voluntarily to another activity on a regular basis. In order
for activities to cooperate with each other, the scheduler provides a global
procedure called SWITCH which is shown in Listing 4.6. It selects a sus-
pended activity that has to be resumed and suspends the calling activity
by enqueueing it into the corresponding ready queue. The actual enqueue
operation is performed by a task switch finaliser called ENQUEUESWITCH

which is executed by the resumed activity. This ensures that the suspended
activity is not available for resuming by another processor until the task
switch is actually completed. If there is no activity with the same or higher
priority available, there is no task switch necessary and the activity can
continue with a default quantum.
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previous
...
��

next

SwitchTo(next,EnqueueSwitch, . . .)
FinalizeSwitch()
→EnqueueSwitch(previous, . . .)

...

SwitchTo(previous, . . . , . . .)

FinalizeSwitch()
...
��

Figure 4.1: Sample control flow of a single processor executing two con-
secutive task switches between two activities.

A concrete example of the control flow on a single processor execut-
ing two consecutive task switches is depicted in Figure 4.1. This sample
scenario involves two activities called previous and next which pass the
control of execution to each other. After its time quantum has expired,
activity previous calls the SWITCH procedure which in turn executes the
SWITCHTO procedure in order to initiate a task switch to next and passes
ENQUEUESWITCH as task switch finaliser. Before activity next resumes
its previously suspended execution, it first calls the FINALIZESWITCH pro-
cedure which indirectly calls the task switch finaliser of previous. After a
while, next eventually relinquishes the control of execution and passes it
again on to previous by calling the SWITCHTO procedure correspondingly.
By returning from its previous call of the SWITCHTO procedure, activity
previous continues its execution where it left off before but first finalises
the task switch of next.
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Each call to the SWITCH procedure in a program represents an additional
entry point for suspending and resuming its execution. Any subroutine
calling this procedure is therefore automatically turned into a coroutine
according to Conway and Knuth [Con63]. However, if a program fails to
call this procedure during its execution for whatever reason, there will be no
task switches on the corresponding processor. This uncooperative behaviour
can have a severe impact on the reliability, responsiveness, and correctness
of the whole runtime system. The next section shows how to cope with this
problem and to ensure that programs are always cooperative.

4.2.4 Implicit Cooperative Multitasking

Usually, systems with cooperative multitasking rely heavily on the pro-
grammer to insert cooperative task switches at appropriate locations in the
code. It is hard to prove that arbitrary programs are indeed cooperative in
this respect even if their source code is available for inspection. This might
have been one additional reason why preemptive multitasking is almost
ubiquitously applied in modern multiprocessor operating systems, since
preemption does not depend on this kind of correctness.

Another approach to guarantee the cooperativeness of arbitrary programs
is to let the compiler automatically insert task switches into the translated
machine code where necessary. We call this implicit cooperative multitask-
ing since a program compiled with this development tool does not require
the programmer to insert any explicit task switches in order to be correct
with respect to cooperativeness. As a result, source code compiled with en-
abled implicit cooperative multitasking looks exactly the same as code that
is executed with a preemptive scheduler in mind. It is therefore irrelevant
for programmers which kind of scheduler their program is targeted at, as
long it is recompiled accordingly.

The actual code inserted by the compiler checks whether the quantum
of the current activity has expired and calls the SWITCH procedure if
necessary. For this purpose, the compiler knows the layout of the ACTIVITY

data structure and reserves a dedicated general-purpose register that stores
the descriptor of the currently running activity.
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sub [rcx + 88], 10 ; decrement quantum by 10
jge skip ; check if it is negative
call Switch ; perform task switch

skip:

Listing 4.7: Inserted instruction sequence for implicit task switches on the
AMD64 architecture.

In order to stay portable for the implementation of the runtime system
and keep the check as small as possible, the compiler does not measure
the time between two consecutive checks but rather the amount of gener-
ated instructions. The actual duration of hardware operations usually varies
amongst different instructions and is obviously machine-dependent, but
counting the number of instructions has the advantage that the result is al-
ways constant and statically known while translating the code. The quantum
is therefore not related to actual execution time but rather stores the number
of instructions an activity is allowed to execute until the next cooperative
task switch must occur. However, task switches are always synchronous
which is why the quantum can be chosen to be rather small and does not
need to be time specific.

Listing 4.7 shows an example of an implicitly generated instruction
sequence of a task switch check after ten instructions targeting the AMD64
hardware architecture [Adv13]. Here, the dedicated general-purpose register
pointing to the descriptor of the current activity is called rcx while its
quantum has an offset of 88 bytes into the ACTIVITY structure. The check
consists of only three instructions requiring twelve bytes in total.

The compiler inserts this sequence whenever a program executes a loop
statement or calls a recursive procedure. From a low-level perspective, the
compiler inserts the checks for loops whenever it emits backward branches
in the code. This generic approach basically covers all possible looping
control-flow constructs of high-level programming languages. Checks are
also inserted after ordinary statements when the number of instructions that
have been generated since the last check exceeds a predefined limit.
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This basic policy guarantees that the activity always behaves cooperat-
ively even if it executes infinite loops or otherwise does not make observable
progress. A similar technique of code instrumentation for software-based
multitasking has also been proposed by Bläser [Blä07]. His dedicated
general-purpose register directly represents the quantum of the currently ex-
ecuting activity and its value is decremented by periodical timer interrupts.
This approach allows to express the quantum in time specific units but is
obviously not as portable since it requires the runtime system to handle
timer interrupts accordingly.

As specified in Section 2.3.1, uncooperative blocks prevent the compiler
from inserting any checks inside a statement block. All procedures shown so
far in this chapter are directly or indirectly called by an implicit task switch
generated by the compiler. This is why all of them have been marked as
uncooperative in order to prevent any potential infinite recursion triggered
by an implicit task switch.

4.3 Synchronisation Primitives

The previous section established a solid foundation of basic scheduler
operations. This section shows how this generic framework can be used
to build sophisticated synchronisation primitives in a lock-free manner. It
exemplifies three popular constructs which build upon each other including
a fully-fledged monitor for object oriented programming languages such as
Active Oberon.

4.3.1 Events

A simple primitive for synchronising activities is an event, also known
as an event semaphore, which allows arbitrary activities to wait for an
event to occur [HS08]. A simplistic implementation of an event is given in
Listing 4.8 on the facing page. The corresponding data structure consists
simply of a lock-free queue which stores all activities waiting for the event
to be signalled.
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structure EVENT

waiting : QUEUE

procedure WAIT(event)
uncooperative

repeat
activity← SELECT(Idle)

until activity 6= null
SWITCHTO(activity,ENQUEUEWAIT,event)
FINALIZESWITCH()

procedure ENQUEUEWAIT(previous,event)
uncooperative

ENQUEUE(previous,event.waiting)

procedure SIGNAL(event)
uncooperative

repeat
activity← DEQUEUE(event.waiting)
if activity 6= null then

RESUME(activity)
until activity = null

Listing 4.8: Data structure and operations of a simplistic event synchron-
isation primitive.
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The waiting queue is filled with activities calling the WAIT procedure.
This procedure first repeatedly tries to select any activity that is ready to
run and then performs a task switch to that activity. The corresponding
task switch finaliser called ENQUEUEWAIT is responsible for placing the
suspended activity into the waiting queue of the event.

The selection of a ready activity can fail if all other processors are
concurrently performing a cooperative task switch but their task switch
finalisers have not yet placed the suspended activities into the ready queue.
The chances that all ready queues are empty is low since all processors are
making progress towards the completion of their task switch finalisers. The
failed selection is therefore harmless and can just be repeated yielding a
ready activity with a high probability. This kind of race condition however is
a direct consequence of relying only on non-blocking scheduler operations.

The SIGNAL procedure finally dequeues all activities from the waiting
queue of an event and resumes all of them. The simplistic assumption of
this naive implementation is that no activity begins to wait while another
activity executes this procedure. Otherwise, a resumed activity that waits
immediately again on the same event could be resumed twice by the same
signal operation. The next synchronisation primitive shows how to deal
with this kind of problem.

4.3.2 Mutexes

A popular synchronisation primitive known as mutex or binary semaphore
facilitates mutual exclusion [HS08]. A mutex can be acquired by a single
activity in which case it is said to be owned by that activity. At the end of
a critical section, the owner releases the mutex allowing it to be acquired
again. A mutex is similar to an event, as it also must wake up activities that
are blocked because of a failed acquisition and waiting for the mutex to be
released.

Listing 4.9 on the next page shows the data structure and the acquire
operation of a sample mutex implementation. A mutex consists of a queue
of blocked activities and a reference to the current owner. The following
actions are performed during the execution of the acquire operation:

82



4.3 Synchronisation Primitives

structure MUTEX

blocked : QUEUE

owner : pointer to ACTIVITY

procedure ACQUIRE(mutex)
uncooperative

current← GETACTIVITY()
while CAS(mutex.owner,null,current) 6= null do . (1)

activity← SELECT(Idle) . (2)
if activity 6= null then

SWITCHTO(activity,ENQUEUEAQUIRE,mutex)
FINALIZESWITCH()

procedure ENQUEUEACQUIRE(previous,mutex)
uncooperative

ENQUEUE(previous,mutex.blocked) . (3)
if CAS(mutex.owner,null,null) = null then . (4)

activity← DEQUEUE(mutex.blocked)
if activity 6= null then

RESUME(activity)

Listing 4.9: Data structure and acquire operation of a mutex synchronisa-
tion primitive.

1. The ACQUIRE procedure first tries to set the ownership of the mutex
to the currently running activity using an atomic compare-and-swap
operation. If the result is an invalid reference, the owner was set
successfully and the mutex is now acquired. Otherwise, the mutex
has already an owner and the current activity must be blocked.

2. The procedure selects any ready activity and performs a task switch
using the ENQUEUEACQUIRE procedure as task switch finaliser. If
there is no ready activity, the whole operation is repeated.
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3. The ENQUEUEACQUIRE procedure is executed by the selected activ-
ity and places the suspended activity into the blocked queue of the
mutex. Since there is no proper synchronisation, a concurrent release
of the mutex could occur before, while, and after the enqueue opera-
tion. The ownership must therefore be rechecked in order to prevent
the enqueued activity from remaining suspended forever. This check
must occur after the enqueue operation because the check as well as
the enqueue operation can be seen as linearisation points, and one of
them has to precede the other one.

4. If the mutex is still acquired after the enqueue operation, it means
that its owner or a follower will eventually release the mutex and
dequeue the suspended activity. The same applies if the mutex was
already released and immediately acquired again in the meantime.

If the mutex is not acquired, a release operation must have been
executed concurrently. If the release operation has already finished,
the enqueue operation must be undone in order to prevent a lost wake-
up call. Since queue data structures do not provide a corresponding
operation, a dequeue operation must be performed instead. This
yields either the suspended or any another blocked activity. In either
case, resuming the activity probably allows it to acquire the mutex
and a subsequent release operation will finally resume any blocked
activity.

Resuming too many activities is harmless because only one of them
can acquire the mutex and all others will be blocked again. If the
blocked queue was empty on the other hand, the suspended activity
has already been dequeued and resumed.

The task switch finaliser used in the acquire operation is the first one that
does not just place the suspended activity into some queue. It marks the first
example where it is highly critical to recheck the condition which caused
the previous activity to get suspended in the first place. This is necessary
because there is no proper synchronisation between the evaluation of a
condition and the corresponding enqueue operation.
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procedure RELEASE(mutex)
uncooperative

current← GETACTIVITY()
CAS(mutex.owner,current,null) . (1)
activity← DEQUEUE(mutex.blocked) . (2)
if activity 6= null then

RESUME(activity)

Listing 4.10: Release operation of the mutex synchronisation primitive.

In general, conditions for suspending an activity must always be evaluated
again after the enqueue operation in order to cancel it if necessary. This
interleaving of condition checking is a lock-free programming idiom that is
used throughout the implementation of all synchronisation primitives.

The remaining release operation is shown in Listing 4.10. It is much
simpler and performs the following steps:

1. The ownership of the mutex is invalidated using an atomic compare-
and-swap operation which can only succeed if the RELEASE proced-
ure was actually called by the current owner of the mutex.

2. One single blocked activity is resumed if there is one in the corres-
ponding queue. This step cannot precede the previous one because
the resumed activity could suspend itself immediately again and as a
result remain suspended forever.

From this discussion we informally conclude that this lock-free imple-
mentation of a mutex is correct and does not suffer from the problems of the
event synchronisation primitive shown before. However, this particular mu-
tex implementation does not allow the mutex to be acquired recursively by
the same owner. Moreover, releasing the mutex is not a fair action because
resumed activities are only enqueued to the ready queue whereas activities
acquiring the mutex for the first time receive preferential treatment. The
synchronisation primitive discussed in the next section solves this problem
by atomically transferring the ownership to the resumed activity.
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4.3.3 Monitors

The final synchronisation primitive presented in this section is an example
of a monitor for object-oriented programming languages. In the case of
Active Oberon, a monitor is entered by executing a statement block marked
as exclusive. This ensures mutual exclusion and allows several activities
to synchronise with each other by awaiting conditions to be met. Monitors
therefore combine the concept of mutexes and events.

Listing 4.11 on the facing page shows the data structure and the enter
operation of our monitor implementation. Since we wish to allow nested
acquisitions of a monitor, the data structure not only keeps track of the
current owner, but also a counter called level which indicates the number of
acquisitions by that owner. In addition, there are two distinct queues which
contain activities that are either blocked because they failed to acquire the
monitor or waiting for a condition to be satisfied.

The ENTER procedure is similar to the ACQUIRE procedure of the mutex
and requires two parameters. The first one is the monitor to be acquired and
the second one is the number of nested acquisitions to be performed by a
single call of this procedure. The procedure performs the following actions:

1. Like the mutex acquisition in the previous example, the ownership of
the monitor is set to the currently executing activity using a compare-
and-swap operation. If this operation succeeds or the monitor is
already owned by the calling activity, the procedure just increments
the counter for nested acquisitions and returns.

2. As before, the currently running activity has to be suspended and
enqueued into the blocked queue of the monitor if the acquisition
fails. For this reason, the procedure selects any ready activity and
performs a task switch using the ENQUEUEENTER procedure as task
switch finaliser. If there is no activity ready to run, the procedure tries
to acquire the monitor again without being suspended.

3. The ENQUEUEENTER procedure places the suspended activity into
the blocked queue since that activity failed to acquire the monitor.
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structure MONITOR

level : integer
blocked,waiting : QUEUE

owner,sentinel : pointer to ACTIVITY

procedure ENTER(monitor, level)
uncooperative

current← GETACTIVITY()
loop

previous← CAS(monitor.owner,null,current) . (1)
if previous = null∨ previous = current then

monitor.level← monitor.level + level
return

activity← SELECT(Idle) . (2)
if activity 6= null then

SWITCHTO(activity,ENQUEUEENTER,monitor)
FINALIZESWITCH()

procedure ENQUEUEENTER(previous,monitor)
uncooperative

ENQUEUE(previous,monitor.blocked) . (3)
if CAS(monitor.owner,null,null) = null then . (4)

activity← DEQUEUE(monitor.blocked)
if activity 6= null then

RESUME(activity)

Listing 4.11: Data structure and enter operation of a monitor synchronisa-
tion primitive.
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4. As discussed above, the monitor could have already been released at
any point in time between selecting an activity, switching to it, and
enqueueing the suspended activity in the task switch finaliser. In this
case, the blocked activity should not remain in the queue in order to
prevent that it is never resumed again.

Since the queue data structure does not support undoing the previous
enqueue operation, the procedure performs a single dequeue opera-
tion instead. The resulting activity was the oldest one in the blocked
queue and gets resumed. As before, this activity will in turn either
successfully acquire the monitor or suspend itself again. In either
case, the initially suspended activity will eventually be resumed.

The reverse operation of releasing the monitor is called EXIT and is
shown in Listing 4.12 on the next page. It also takes two parameters indicat-
ing the monitor and the number of nested releases. The procedure performs
the following actions:

1. The number of nested acquisitions is decremented. If this number
does not reach zero, the monitor is still acquired and the procedure
returns.

2. A single activity to be resumed is dequeued either from the waiting
queue, or the blocked queue if there was no waiting activity. This
order ensures that activities waiting for a condition to be satisfied
take priority with respect to activities that are blocked while trying to
acquire the monitor. This design known as eggshell model guarantees
that any waiting activity is resumed as soon as another activity has sat-
isfied its condition and released the monitor [ISO95]. This signalling
regime has been proven by Dahl to be superior in terms of sequencing
control and efficiency in comparison to its alternatives provided by
modern programming languages like Java and C# [Dah99].

3. The ownership of the monitor is transferred to the dequeued activity
using an atomic compare-and-swap operation. If there is no activity
to be resumed, the owner is automatically released instead.
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procedure EXIT(monitor, level)
uncooperative

monitor.level← monitor.level− level . (1)
if monitor.level > 0 then

return
current← GETACTIVITY()
activity← DEQUEUE(monitor.waiting) . (2)
if activity = null then

activity← DEQUEUE(monitor.blocked)
CAS(monitor.owner,current,activity) . (3)
if activity = null then . (4)

activity← DEQUEUE(monitor.blocked)
if activity 6= null then

RESUME(activity)

Listing 4.12: Exit operation of the monitor synchronisation primitive.

4. If the ownership was transferred in the previous step, the new owner
is resumed. However, if the ownership was released instead of trans-
ferred, any activity that suspended itself beforehand will eventually
be placed in the blocked queue of the monitor. If the corresponding
task switch finaliser is finished before the ownership is released, the
blocked activity could remain suspended forever and must therefore
be dequeued and resumed.

Finally, monitors also allow activities that have acquired the monitor
to wait for specific conditions to be met by contending activities. While
waiting for a condition, the ownership is transferred to any other waiting or
blocked activity in order to give it the chance to satisfy the condition. Since
there might be several activities waiting for differing conditions, all of them
have to be checked in succession. In order to prevent an endless loop, the
monitor data structure additional contains a sentinel which indicates the
first waiting activity in this sequence.
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The corresponding AWAIT procedure is shown in Listing 4.13 on the
facing page. This procedure is called by the Active Oberon compiler for
each occurrence of an await statement. The compiler generates code that
repeatedly checks the await condition and calls this procedure if it is not
satisfied. The procedure performs the following actions:

1. Because the ownership of the monitor is released while waiting, the
value of the corresponding nesting level is cached and set to zero.

2. If there is another waiting activity, the ownership is transferred to that
activity by using the TRANSFERAWAIT task switch finaliser shown
in Listing 4.14 on page 92. In order to prevent two or more waiting
activities to transfer the ownership to each other in an infinite loop,
the first activity waiting for a condition also sets the sentinel to refer
to itself.

3. If the next waiting activity equals to the sentinel, all waiting activities
checked their conditions but none could progress. The monitor must
therefore be released in order to give blocked or newly arriving
activities a chance to satisfy any of the unmet await conditions. The
sentinel is reset and enqueued again in the waiting queue so that all
waiting activities will recheck their conditions afterwards.

4. Since there is no waiting activity that can proceed at this point, any
blocked activity is resumed instead. If there is a blocked activity,
the ownership gets atomically transferred to it by performing a task
switch using the TRANSFERAWAIT task switch finaliser shown in
Listing 4.14. This procedure enqueues the suspended activity to the
waiting queue of the monitor and atomically swaps the ownership.

5. If there was no blocked activity, any other activity ready to run is
selected and gets the control of execution. The corresponding task
switch finaliser called RELEASEAWAIT shown in Listing 4.14 en-
queues the suspended activity into the waiting queue and invalidates
the ownership. As before, any blocked activity must be resumed
afterwards in order to prevent lost wake-up calls.
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procedure AWAIT(monitor)
uncooperative

level← monitor.level . (1)
monitor.level← 0
current← GETACTIVITY()
activity← DEQUEUE(monitor.waiting) . (2)
if activity 6= null∧activity 6= monitor.sentinel then

if monitor.sentinel = null then
monitor.sentinel← current

SWITCHTO(activity,TRANSFERAWAIT,monitor)
FINALIZESWITCH()

else
monitor.sentinel← null . (3)
if activity 6= null then

ENQUEUE(activity,monitor.waiting)
activity← DEQUEUE(monitor.blocked) . (4)
if activity 6= null then

SWITCHTO(activity,TRANSFERAWAIT,monitor)
FINALIZESWITCH()

else
activity← SELECT(Idle) . (5)
if activity 6= null then

SWITCHTO(activity,RELEASEAWAIT,monitor)
FINALIZESWITCH()

else
CAS(monitor.owner,current,null) . (6)
SWITCH()

ENTER(monitor, level) . (7)

Listing 4.13: Await operation of the monitor synchronisation primitive.
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procedure TRANSFERAWAIT(previous,monitor)
uncooperative

current← GETACTIVITY()
ENQUEUE(previous,monitor.waiting)
CAS(monitor.owner, previous,current)

procedure RELEASEAWAIT(previous,monitor)
uncooperative

ENQUEUE(previous,monitor.waiting)
CAS(monitor.owner, previous,null)
activity← DEQUEUE(monitor.blocked)
if activity 6= null then

RESUME(activity)

Listing 4.14: Task switch finalisers of the monitor wait operation.

6. If there is no other activity ready to run, the ownership is released
and an ordinary cooperative task switch is performed. This can only
happen when all other processors perform a task switch at the same
time in which case the ready queue is about to get filled immediately.

7. As soon as a waiting activity is resumed, it tries to acquire the monitor
using an ordinary call to the ENTER procedure providing the nesting
level stored beforehand. If the ownership was transferred to this activ-
ity by the TRANSFERAWAIT task switch finaliser, the corresponding
acquisition will always succeed. This ensures that the current activity
has always the ownership when returning to the compiler generated
code that rechecks the previously unsatisfied await condition.

Our monitor implementation improves upon the existing implementation
in A2 in several ways. In A2, await conditions are always checked by the
current owner of the monitor instead of the waiting activity [Mul02]. Our
implementation in contrast performs task switches to waiting activities and
therefore always evaluates await conditions in the correct context.
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Furthermore, the original Active Oberon report does not allow activities
to enter an exclusive region more than once [Rea04]. This restriction always
seemed somehow artificial and misled many developers into duplicating pro-
cedures once using exclusive regions and once without. Our implementation
derestricts reentrant exclusive blocks which simplifies the corresponding
implementation when blocked and waiting activities transfer the ownership
to each other. A proposal for the relaxation of the corresponding language
rules concerning reentrancy in Active Oberon is described in Section C.14
on page 216.

4.4 Multiprocessor Support

The scheduler and synchronisation primitives described so far are com-
pletely portable and do not require any special architectural support. Re-
garding the implementation of multiprocessors however, different shared-
memory architectures may impose distinct requirements on the runtime sys-
tem. This concerns issues like properly setting up cache coherency protocols
in order to comply with our memory model, or enabling multiprocessing
using physical processors, multiple cores, or hardware multithreading.

In order to assemble all inherently non-portable hardware dependencies
regarding multiprocessing in a single place, we tried to minimise the number
of functions that need to be implemented anew for each targeted architecture.
This set of functions acts therefore as hardware abstraction layer for the
multiprocessor support of the runtime system. Its main purpose is basically
to start and stop the scheduler on each of the logical processors of the
machine and consists of the following three parameterless procedures:

• STARTALLPROCESSORS

This procedure is called once when the runtime system is initialised
and starts the scheduler on each logical processor of the system.
Its main purpose is to initialise processors uniformly and to count
the total number of processors which is required for all lock-free
algorithms that make use of processor-local storage.
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Within the kernel for the AMD64 architecture for example, this pro-
cedure uses the advanced programmable interrupt controller (APIC)
in order to send an interprocessor interrupt to all other logical pro-
cessors in the system. This includes physical processors as well as
all of their cores and hardware threads.

Beforehand, it sets up simplified bootloaders which are executed by
each logical processor when they receive the initial interprocessor
interrupt. The task of the bootloader is to jump from real mode (16-
bit) over protected mode (32-bit) to long mode (64-bit) and initialise
the processor accordingly before starting the scheduler in the end.

In the case where the runtime system is running as an application
library on top of Windows or Linux based operating systems, this
procedure starts ordinary threads instead. The basic idea is to emulate
all logical processors of the underlying machine by starting one thread
per processing unit. By assigning distinct thread affinities, we can
actually ensure that each thread is executed only on its corresponding
processor.

• SUSPENDCURRENTPROCESSOR

This procedure is used to temporarily disable logical processors that
have no work to do. The runtime system maintains a set of idle
activities, one per logical processor, which all call this procedure
when there is no other activity ready to run.

In the native case, this procedure basically executes a hardware-
dependent sequence of instructions which puts the processor in a low
power state. In this state, the processor halts its execution and waits
for the next interrupt to occur.

Regarding the case where processors are represented by ordinary
threads of the underlying operating system, this procedure makes
use of the synchronisation primitives provided by the system. In
Windows for example, a global semaphore counting the number of
non-idle activities is used for this purpose.
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• RESUMEANYPROCESSOR

The task of this procedure is to wake up any logical processor that
is currently suspended because of a call to the SUSPENDCURRENT-
PROCESSOR procedure. The scheduler calls this procedure whenever
a new activity enters the system or a currently suspended one gets
resumed, see for example Listing 4.5 on page 75.

In the native kernel, this procedure sends an interprocessor interrupt
to a suspended processor which subsequently resumes its execution.
Where idling processors are implemented using a global semaphore
provided by the underlying operating system, this procedure signals
the semaphore instead.

4.5 Interrupt Handling

The goal of the runtime system was to be independent of the hardware ar-
chitecture, and is therefore designed not to require any support for hardware
interrupts for its own implementation. Where the runtime system is used
as a kernel for an operating system however, it still provides the necessary
means to write drivers for interrupt-driven devices.

In this section we describe a lock-free and portable interrupt handling
model which allows to view device drivers as cyclic processes which can
just wait for the next interrupt to occur. This model is similar to the altern-
ative one proposed by Muller for the Active Object System [Mul02], but
uses a library approach instead of special statements built into the program-
ming language. The reason for this design is the observation that the actual
number of an interrupt request is highly platform specific and should not be
bundled with a high-level language specification.

The interrupt handling mechanism is based on the idea that there are no
designated processes responsible for handling interrupts. Any activity in
the system should ideally be able to await the occurrence of an interrupt.
Interrupts are therefore modelled like any other synchronisation primitive
and can thus use the same framework provided by the scheduler.
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Listing 4.15 on the facing page shows the definition and initialising
operations of the data structure called INTERRUPT that can be used by
implementers of device drivers to wait for an interrupt. It consists of the
unique number of the actual interrupt request and a local time stamp value
which indicates when the corresponding interrupt was handled for the last
time. The number of the interrupt request can be used as index into the
global arrays shown after the data structure definition. These arrays store
a queue of activities waiting for the corresponding interrupt as well as the
global time stamp value which is incremented whenever an interrupt occurs.

Before users can wait for an interrupt, the corresponding data structure
must be initialised and the actual interrupt request has to be enabled. The
corresponding operation to install an interrupt is called INSTALL. This pro-
cedure copies the interrupt index and the current value of the corresponding
time stamp into the user-provided data structure. The time stamp must
be queried using an atomic compare-and-swap operation in order to read
consistent data in case the time stamp is modified concurrently.

Afterwards, a low-level interrupt handler routine is installed using a
machine-dependent procedure called INSTALLINTERRUPT. This procedure
is the only operation of the interrupt handling model that is not portable
as it is highly hardware specific. Its main purpose is to drive the interrupt
controller or equivalent devices in order to unmask the corresponding
interrupt. In addition, it modifies the interrupt vector table such that the
provided interrupt handler gets called whenever the interrupt occurs. It also
ensures that the context of the interrupted activity is restored properly after
the interrupt handler returns.

The actual interrupt handler is called HANDLEINTERRUPT shown at
the bottom of Listing 4.15. It increments the global time stamp associated
with the interrupt and resumes all waiting activities. Any overflow while
incrementing the time stamp can be ignored as the time stamps are only
compared for equality. Before calling the uncooperative operations of the
queue and the scheduler however, the interrupt handler temporarily swaps
the currently executing activity. This is necessary in order to comply with
the semantics of uncooperative blocks which require that only one activity
per processor is executing code inside an uncooperative block.
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structure INTERRUPT

index : integer
timestamp : integer

variable
timestamps : array Interrupts of integer
awaitingQueue : array Interrupts of QUEUE

virtualProcessor : array Interrupts of ACTIVITY

procedure INSTALL(interrupt, index)
interrupt.index← index
interrupt.timestamp← CAS(timestamps[index],0,0)
INSTALLINTERRUPT(HANDLEINTERRUPT, index)

procedure HANDLEINTERRUPT(index)
uncooperative

current← GETACTIVITY()
SETACTIVITY(virtualProcessor[index])
timestamp[index]← timestamp[index]+1
activity← DEQUEUE(awaitingQueue[index])
while activity 6= null do

RESUME(activity)
activity← DEQUEUE(awaitingQueue[index])

SETACTIVITY(current)

Listing 4.15: Data structures for interrupt handling.

97



4 Lock-Free Scheduling

Since interrupts are never explicitly disabled, they can basically occur
at any time and could therefore also happen during the execution of an
uncooperative block. If the corresponding interrupt handler in turn executes
the very same uncooperative block, there are theoretically speaking two
activities executing the same block. This has disastrous consequences for
lock-free operations using processor-local storage which highly depend on
uncooperative blocks to be executed entirely without being interrupted by
another activity.

Our solution is to change the currently executing activity temporarily to
a special-purpose activity associated with the interrupt. We call the corres-
ponding activity a virtual processor because it stores a unique processor
index which differs from all physical processors in the system. Using this
trick, lock-free operations cannot distinguish a processor executing an
interrupt handler from any other processor as explained in Section 2.3.1.

Although this design allows nested interrupts in general, it implies that a
handler for one particular interrupt may not interrupt itself. However, this
behaviour is hardly required in practice and can be prevented completely
when hardware interrupts have to be acknowledged first to the interrupt
controller. Thanks to this convention, comparing time stamps is sufficient
in order to ensure that interrupts are never missed.

Once an interrupt data structure is initialised and the corresponding
hardware interrupt is enabled, device drivers can wait for an interrupt using
the AWAITINTERRUPT procedure showed in Listing 4.16 on the next page.
It first compares the local time stamp of the interrupt data structure against
the value of the global time stamp. If the two values do not match, there
was an interrupt and the procedure returns immediately by updating the
local time stamp value.

Otherwise it selects any activity ready to run and performs a task switch
to that activity. The corresponding task switch finaliser called ENQUEUE-
INTERRUPT places the suspended activity into the waiting queue associated
with the corresponding interrupt. As always, the value of the time stamp
must be rechecked in order to prevent activities from remaining suspended
forever because the interrupt could have already occurred during the task
switch or the enqueue operation.
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procedure AWAITINTERRUPT(interrupt)
uncooperative

index← interrupt.index
timestamp← CAS(timestamps[index],0,0)
while interrupt.timestamp = timestamp do

repeat
activity← SELECT(Idle)

until activity 6= null
SWITCHTO(activity,ENQUEUEINTERRUPT, interrupt)
FINALIZESWITCH()
timestamp← CAS(timestamps[index],0,0)

interrupt.timestamp← timestamp

procedure ENQUEUEINTERRUPT(previous, interrupt)
uncooperative

index← interrupt.index
timestamp← interrupt.timestamp
ENQUEUE(previous,awaitingQueue[index])
if CAS(timestamps[index],0,0) 6= timestamp then

activity← DEQUEUE(awaitingQueue[index])
while activity 6= null do

RESUME(activity)
activity← DEQUEUE(awaitingQueue[index])

Listing 4.16: Procedure for awaiting the occurrence of an interrupt and the
corresponding task switch finaliser.
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Our interrupt handling mechanism is lock-free and uses only lock-free
data structures. The main advantage of this approach is that we can make
use of a very important property of non-blocking algorithms. Neither the
lock-free operation executed by the interrupt handler nor the interrupted
activity which is potentially operating on the same data structure wait for
each other. If a lock-free operation gets interrupted by an invocation of the
same operation, it just looks like another processor was faster executing
the corresponding atomic operations. Whether the interrupted code was
overtaken by another physical or the same processor does not matter at
all. This is why lock-free algorithms are in general considered reentrant by
design. Lock-free data structures are therefore very well suited for being
used in interrupt handlers. In particular, non-blocking synchronisation in
interrupt handlers is what makes lock-freedom even beneficial for machines
with only one processor.
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Our lock-free queue used by the scheduler potentially allocates memory
during enqueue operations. In order to call the scheduler lock-free, the
corresponding memory allocation must therefore be lock-free as well. This
chapter describes our approach towards a simple and portable lock-free
memory management including a concurrent garbage collector that com-
pletes the required runtime support for Active Oberon.

5.1 Heap Management

Lock-free memory managers have not been investigated as thoroughly in
the standard literature as other lock-free data structures such as queues. Two
of the few known implementations have been presented concurrently and
independently by Michael [Mic04c] as well as Gidenstam and Papatrianta-
filou [GPT05]. Both approaches are based on a well-known and practical
concurrent memory allocator called Hoard [BMBW00, Ber02] and use
atomic compare-and-swap operations in order to create lock-free versions
of it. Dice and Garthwaite on the other hand provided a memory allocator
which is lock-free for the most part [DG02].

As all of these memory allocators are derived from Hoard, they classify
memory allocations according to the requested size and dedicate large
chunks of memory called superblocks for this purpose. Interestingly, Hoard
only manages memory blocks that fit into superblocks and passes the
allocation of larger blocks and superblocks themselves on to the virtual
memory management of the underlying operating system. However, as
long as the virtual memory management system is not implemented in a
lock-free manner as well, any memory management built on top of it does
strictly speaking not qualify as a lock-free algorithm.
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Since our runtime system does not rely on virtual memory management or
separate address spaces, we have the advantage of representing the complete
physical memory as one contiguous superblock referred to as a heap. In
order to allow heaps to encompass an arbitrary memory area, we decided to
represent allocated and free memory blocks using a lock-free binary buddy
system. Buddy systems are well-known memory allocation schemes that are
fast and expose little external fragmentation [Kno65, Knu68]. In the context
of lock-free programming, they offer an additional distinct advantage over
other dynamic allocation schemes. While other techniques have to look
up and modify several addresses simultaneously while coalescing adjacent
free memory blocks, buddy systems can compute the addresses instead
and have to modify only single memory locations. This is important for
portably merging free memory blocks into bigger ones on machines that
only provide single compare-and-swap operations.

Our design allows to manage several heaps which are represented as
contiguous memory ranges of arbitrary size. Each heap is partitioned into
blocks where each block size is a power of two. For this purpose, the heap
maintains for each block size 2i a singly linked list of free blocks called
f reei. These lists are accessed as stacks whereby an allocation of a memory
block basically pops a block from the free stack, and a deallocation pushes
it again onto the stack.

The data structures representing heaps and memory blocks are shown in
Listing 5.1 on the facing page. A heap consists of a contiguous sequence
of bytes addressed by [begin . . .end) within which all managed memory
blocks reside. This assumes that heaps are non-overlapping and manage
distinct memory ranges. As stated above, each heap also maintains an array
of stacks which point to the first element of a linked list of free blocks with
the same size. In addition, there is an array of stacks containing blocks
which cannot be deallocated safely and are therefore pooled separately.

The number of different block sizes depends on the size of the actual
memory range but cannot exceed blog2(end−begin)c. Regarding a heap
encompassing the complete available address space, the maximal number
of required block sizes therefore equals the actual bit width of the address
size of the underlying machine.
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structure HEAP

begin,end : address
f ree : array address bit width of pointer to BLOCK

pooled : array address bit width of pointer to BLOCK

structure BLOCK

index : integer
next : pointer to BLOCK

Listing 5.1: Data structures of lock-free heaps and their memory blocks.

Each allocated memory block stores its size as index of the corresponding
stack. If the memory block is free and therefore part of a linked list of free
blocks, it stores a reference to its successor in that list. This datum is
completely ignored and reused for the actual payload in case the memory
block becomes allocated. The minimal block size of allocated and free
blocks is therefore two words. In practice, we use a multiple of this block
size in order to compensate for the overhead of the meta data.

Before a heap is available for allocation and deallocation of memory
blocks, its data structure has to be initialised properly. At the beginning, an
empty heap consists of the minimal amount of free blocks that is required
to cover the complete memory range. The corresponding initial partitioning
of the heap is performed by the INITIALIZE procedure shown in Listing 5.2
on the next page. Since we assume that this operation is performed once at
the beginning by a dedicated process, there is no need to protect the code
from concurrent access.

The procedure consecutively appends the biggest block not exceeding
the remaining free space to the corresponding stack. The biggest block is
found by halving a block whenever its buddy block adjacent to it would
completely lie outside the specified memory range. If the last free block is
found, all stacks with a smaller block size are initialised to be empty. This
algorithm assumes that the specified address range is aligned to the minimal
block size and has space for at least one block.
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procedure INITIALIZE(heap,begin,end)
heap.begin← begin
heap.end← end
index← blog2(end−begin)c
repeat

next← begin+2index

while next > end do
index← index−1
heap. f ree[index]← null
heap.pooled[index]← null
next← begin+2index

block← begin
block�next← heap. f ree[index]
heap. f ree[index]← block
heap.pooled[index]← null
begin← next

until begin = end

while index 6= 0 do
index← index−1
heap. f ree[index]← null
heap.pooled[index]← null

Listing 5.2: Initialisation of a memory heap partitioning it into the smallest
possible amount of free blocks.

104



5.1 Heap Management
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Figure 5.1: Sample memory allocation in a heap of size 32.

An example of a heap managing up to 32 blocks is depicted in Figure 5.1.
For illustrative purposes, the unit of an address in this example is equal to
the minimal block size of the system. The sample heap therefore manages
blocks in the address range [0 . . .32). It consists of four allocated blocks
which are shaded grey in the heap layout depicted at the top of the figure.
The addresses of the allocated blocks are 0, 8, 11, and 16. The remaining
white blocks are free for allocation and are chained in a linked list that
begins with the top of the stack of the corresponding size as shown on the
right hand side. Regarding block size 4 for example, there are two free
blocks at addresses 4 and 12 as indicated by the linked list referenced by
the stack f ree2.

An allocation in our buddy system first tries to find one of the smallest
free blocks providing enough space for the requested size. A free block
is found and allocated quickly by inspecting and popping the top of the
corresponding free stack. In a second step, the resulting block is halved into
two adjacent blocks as long as the requested memory still fits into one half.
During this operation, the other half is deallocated and pushed back to the
corresponding free stack.
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Figure 5.2: Same heap after two consecutive block allocations of size 2.

If for example a block of size 2 is requested in the example depicted
in Figure 5.1, the block at address 2 would be popped from stack f ree1.
A subsequent allocation of the same size would try to pop a block from
stack f ree2 instead since f ree1 is now empty. The right half of the resulting
block with address 4 is deallocated again and pushed onto stack f ree1. The
resulting layout of the heap and its data structures is depicted in Figure 5.2.

Memory deallocations in the buddy system just reverse the operations
of a memory allocation. Each deallocation of a block checks whether
the corresponding buddy of the block is free or currently allocated. Two
adjacent free buddy blocks are coalesced into one bigger block which can
potentially be merged again with its own buddy recursively. Ideally, the
deallocation completely reverts the partitioning from beforehand yielding
exactly the same heap layout as before.

One issue of representing free blocks using lock-free stacks however, is
the fact that naive implementations of the pop operation are prone to the
ABA problem: If a stack ends up having the same element at the top after
several push and pop operations, a delayed pop operation does not detect
any change and may erroneously replace the top with an outdated successor.
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variable
hazard : array N of pointer to BLOCK

procedure ACCESS(reference to shared)
uncooperative

block← CAS(shared,null,null)
repeat

hazard[processor]← block
block← CAS(shared,null,null)

until block = hazard[processor]
return block

procedure ISHAZARDOUS(block)
uncooperative

index← 0
while index 6= N∧block 6= hazard[index] do

index← index+1
return index 6= N

Listing 5.3: Data structure and operations for managing hazard pointers.

The ABA problem is also an issue in related work where it is generally
solved using pointer tagging [Mic04c, GPT05]. As explained in Section 3.4
however, this technique may be sufficient to solve the problem in practice
but is conceptually unsound because pointer tags could overflow and wrap
around. Based on the sound solution to the ABA problem of our lock-free
queue, our heap manager makes use of hazard pointers instead [Mic04b].

Similar to the lock-free queue implementation, the heap manager uses
processor-local storage in order to represent hazard pointers. Listing 5.3
shows the corresponding global array for N processors. The subsequent
ACCESS procedure returns the current value of a shared memory block refer-
ence which has been marked as hazardous. The ISHAZARDOUS procedure
returns whether a memory block reference matches any hazard pointer.
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procedure POOL(block, index,heap)
uncooperative

repeat
pooled← CAS(heap.pooled[index],null,null)
block�next← pooled
value← CAS(heap.pooled[index], pooled,block)

until value = pooled

procedure FREE(index,heap)
uncooperative

pooled← CAS(heap.pooled[index],null,null)
if CAS(heap.pooled[index], pooled,null) = pooled then

while pooled 6= null do
next← pooled�next
RELEASE(pooled, index,heap)
pooled← next

Listing 5.4: Operations for managing pooled memory blocks.

A memory block is marked as hazardous whenever it is dereferenced
in order to read its successor which is used to pop the block from the
corresponding free stack. A hazardous memory block implies that it is
still in use and may therefore not be pushed back onto the free stack. This
prevents concurrent pop operations from seeing the same block twice at
the top of the stack after it has been already allocated temporarily which
effectively solves the ABA problem. The deallocation of hazardous memory
blocks may therefore not take place immediately and has to be deferred.

Hazardous memory blocks can be pooled for deallocation by pushing
them to a completely different stack called pooled. The corresponding
lock-free operation to pool a single hazardous memory block is called
POOL and is shown in Listing 5.4. It just pushes the memory block to
the corresponding stack by repeatedly trying to atomically replace the top
element with the pooled block.
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procedure ACQUIRE(index,heap)
uncooperative

FREE(index,heap)
repeat

f ree← ACCESS(heap. f ree[index])
if f ree = null then

hazard[processor]← null
return null

next← f ree�next
value← CAS(heap. f ree[index], f ree,next)
hazard[processor]← null

until value = f ree
return f ree

Listing 5.5: Lock-free acquisition of blocks from the specified free stack.

Pooled memory blocks can be deallocated using the FREE procedure.
Rather than popping a single element from the stack which is again not safe
from the ABA problem, this procedure atomically exchanges the reference
to the block at the top with an invalid reference. If this operation succeeds,
the procedure gets exclusive access to the linked list of pooled memory
blocks and all subsequent pool operations operate on an empty stack. The
linked list is then traversed and each block gets deallocated in turn.

The actual allocation and deallocation of memory blocks is performed
using two helper functions called ACQUIRE and RELEASE. They are named
like this because an activity allocating a memory block conceptually gets
exclusive ownership over it.

The algorithm for acquiring a heap block from a specified free stack
is shown in Listing 5.5. It basically resembles a lock-free pop operation
because it tries to remove the block at the top from the specified free stack.
It additionally marks this block as hazardous using a call to the ACCESS

procedure in order to read its successor safely. At the very beginning, it first
frees all memory blocks that have been pooled to defer their deallocation.
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procedure RELEASE(block, index,heap)
uncooperative

repeat
loop

if ISHAZARDOUS(block) then
POOL(block, index,heap)
return

buddy← heap.begin+(block−heap.begin)⊕2index

f ree← ACCESS(heap. f ree[index])
if f ree 6= buddy then

hazard[processor]← null
break

next← f ree�next
value← CAS(heap. f ree[index], f ree,next)
hazard[processor]← null
if value 6= f ree then

f ree← value
break

index← index+1
if buddy < block then

block← buddy
block�next← f ree
value← CAS(heap. f ree[index], f ree,block)

until value = f ree

Listing 5.6: Lock-free release of blocks to the specified free stack.

The corresponding lock-free release operation is shown in Listing 5.6. It
first checks whether the heap block given as argument is hazardous in which
case it gets pooled and the procedure returns immediately. Otherwise, it
computes the address of the buddy of the block by swapping the address bit
that corresponds to its size. The procedure then tries to allocate the buddy
by performing a lock-free pop operation on the corresponding free stack.
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procedure ALLOCATE(size,heap)
uncooperative

index← dlog2(size+displacement)e
current← index
block← ACQUIRE(current,heap)
while block = null do

current← current +1
block← ACQUIRE(current,heap)

while current 6= index do
current← current−1
RELEASE(block+2current ,current,heap)

block�index← index
return block+displacement

procedure DEALLOCATE(address,heap)
uncooperative

block← address−displacement
RELEASE(block,block�index,heap)

Listing 5.7: Lock-free heap allocation and deallocation.

As before, the top of the stack is marked as hazardous in order to protect
this operation from the ABA problem. If the buddy could be allocated, both
memory blocks are merged and the complete operation is repeated with
the coalesced block. If there are no more merges possible, the resulting
memory block is released by pushing it onto the corresponding free stack.
The push operation fails if another activity concurrently changed the stack
in which case the whole procedure starts anew.

Finally, the actual heap allocation and deallocation operations provided
to users of the heap are called ALLOCATE and DEALLOCATE and are shown
in Listing 5.7. A memory allocation takes an arbitrary size and returns the
first address of a memory area which can be deallocated once afterwards.
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The allocation consists of two consecutive loops. The first loop tries to
acquire a block with the required size by incrementing the index until a free
block is found. The second loop repeatedly releases the right half of the
acquired block as long as the required memory fits in the other half. The
returned value is the address of the block displaced by the size of the meta
data used for storing the index of the block. The deallocation on the other
hand subtracts this displacement from the address given as argument in
order to retrieve a pointer to the corresponding memory block which then
can just be released.

Our approach is lock-free as we only access lock-free stacks while
maintaining the set of free blocks. Aside from starvation issues, faulty
processes that allocate or deallocate memory do therefore not compromise
the progress of other processes performing the same operations. However, a
faulty process may cause acquired memory to get lost forever if that process
has the ownership over an acquired block. One can ignore this issue, since
the same applies also if the process fails to call the DEALLOCATE procedure
in the first place.

One drawback of our approach is that only the topmost block of the
free stack is considered while coalescing adjacent blocks. Therefore, the
probability that a block can be merged with its buddy correlates negatively
with the amount of free blocks in the stack for the corresponding size. A
solution to this issue is to temporarily get ownership over the complete
stack in order to search for the buddy in the linked list of free blocks.
The ownership can be granted by atomically exchanging the reference to
the first block in the linked list with an invalid reference. This allows to
traverse the list and remove the corresponding block without requiring any
protection from concurrent access. During this period, allocations with the
same block size will allocate bigger blocks and halve them as usual. In
order to compensate this overhead per deallocation, one can also create a
concurrent activity which periodically gets the ownership of one stack at a
time and coalesces all adjacent blocks in that list.

The heap management shown in this section is used by the runtime system
when it is deployed as a kernel of an operating system. In this case, the
managed heap consists of the complete main memory excluding the code
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and data of the statically linked kernel itself. However, the physical memory
layout of the underlying machine often consists of so-called memory holes
which describe areas in the physical address space that are not mapped to
main memory. In order to accommodate these memory holes, the runtime
system creates several individual heaps to cover all of the accessible main
memory. Another solution could use a single heap instead but extend its
implementation with a special-purpose operation that allows to exclude
certain memory areas from being allocated.

5.2 Stack Management

In a system capable of multithreading, each thread of execution typically
has its own contiguous stack memory it can operate on. In order to allow
a large number of concurrent threads, operating systems tend to minimise
the amount of memory set aside for each stack. A popular approach imple-
mented by A2 and other systems based on virtual memory management
is to reserve several consecutive pages of virtual memory for a stack but
only associate them with a few pages of physical memory [Mul02, RSI12].
This technique enables relative small initial stacks but allows to grow them
dynamically if threads require more stack memory later on. A request to
grow the stack dynamically is indicated when a memory access inside the
reserved virtual memory leads to a page fault. A further advantage of this
approach is the automatic check for stack overflows which is indicated by a
memory access outside the reserved virtual memory region.

Another solution consists of statically examining the call graph of a
thread and noting the maximal amount of required stack space [Die92].
This approach allows to allocate the exact amount of stack memory for
each individual thread which can be substantially smaller than the page
size of the underlying machine. This technique has the advantage that its
implementation is portable since it does not have to rely on virtual memory
because stack overflows cannot occur. In general however, it is impossible
to determine the actual call graph if the code makes use of recursion or
indirect function calls and corresponding runtime checks are still required.
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Alternatively, dynamic stack management can also be achieved using
compiler-instrumented procedures that allocate an additional block of stack
in their prologue whenever required [Blä07]. All heap-allocated stack
blocks form a linked list which is cleared when procedures return and
no longer use the surplus stack memory. This allows processes to begin
with a very small preallocated stack which grows as needed but still allows
a large amount of concurrent processes in the system.

Our approach aims at portability and is a mixture of all three ideas
discussed above. Instead of examining the complete call graph, it only relies
on the amount of required stack memory per procedure call. This number is
statically known by the compiler and already required when it generates
the code to create a new stack activation frame in a function prologue. Our
compiler adds a stack check at the beginning of each procedure similar
to checks generated for implicit cooperative multitasking as explained in
Section 4.2.4. We chose the stack check to be performed by the callee
because functions are usually called more than once.

Thanks to our approach to cooperative multitasking, the descriptor to
the currently running activity is handily available in a dedicated general-
purpose register. The descriptor contains a pointer to the beginning of the
stack as shown in Listing 4.1 on page 71. In addition, it also contains a
pointer to the stack limit which specifies the memory range within which
stack accesses are valid. A stack overflow is indicated when the creation of
a stack activation frame exceeds this limit. In this case, the generated check
calls a procedure provided by the runtime system to handle the overflow.

Listing 5.8 on the next page shows the corresponding instruction se-
quence of two sample stack frame creations as generated by the compiler
targeting the AMD64 hardware architecture [Adv13]. As shown on the
left hand side, the compiler normally activates a stack frame by storing
the former frame pointer on the stack and subtracting the size of the new
stack frame from the stack pointer. The stack check on the right hand side
uses a temporary register called rax instead and compares its value against
the limit stored in the descriptor referenced by rcx. If a stack overflow is
detected, the EXPANDSTACK procedure gets called which grows the stack
dynamically and returns the new stack pointer in rax.
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; default prologue
push rbp
mov rbp, rsp
sub rsp, 200

; checked prologue
push rbp
mov rbp, rsp
lea rax, [rsp - 200]
cmp rax, [rcx + 80]
jae skip
push rax
call ExpandStack

skip:
mov rsp, rax

Listing 5.8: Generated instruction sequence for default and checked func-
tion prologues requesting 200 bytes as stack activation frame.

The stack is expanded by allocating new stack memory from the heap
and copying the contents from the old stack to the new one. The size of
the new stack is determined by doubling the size of the old stack until the
requested stack pointer would be covered. This exponential growth allows
to compensate the overhead of allocating and copying the stack. If the new
size exceeds a predefined upper limit, the current activity aborts with a stack
overflow error. Otherwise, a new memory block of this size is allocated and
the complete contents of the old stack are copied over. This copy process
requires to adapt all references to local variables. Regarding Active Oberon,
this only affects variable parameters for which the compiler provides the
necessary meta data. The old stack is discarded after its complete contents
are copied into the new increased stack. Finally, the stack pointers of the
current activity are adapted to point into the new stack.

The actual stack limit is slightly less than the allocated stack in order to
reserve some guaranteed stack space that is always available. This allows a
procedure to elide the stack check completely if the compiler can statically
determine that a call of this procedure does not require more stack memory
than reserved. This is an optimisation in general, but is actually crucial
for all procedures involved in the actual expansion of the stack in order to
prevent an infinite recursion.
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The whole process of checking and expanding is lock-free because each
activity operates on its own local stack which does not affect the progress of
any other activity in the system. New stacks are created using the standard
lock-free memory allocation presented in the previous section.

5.3 Garbage Collection

Active Oberon and its ancestor Oberon both require automatic memory
management in the form of a garbage collector [WG92, Rea04]. In A2
as well as in the Oberon System, the garbage collector is a dedicated
process with first class citizen status [Mul02]. In both systems, processes
that change the object graph, so-called mutators, are not allowed to run
while the dedicated process, the collector, is retrieving unused memory.
This behaviour is generally known as stop-the-world garbage collection and
notorious for causing arbitrarily long and non-deterministic delays. This
affects all processes running on the system regardless of whether they are
currently allocating memory or not. In particular, the unpredictable delays
caused by the runtime system prevents any program running on top of it
from satisfying real-time constraints.

However, the most important issue of stop-the-world garbage collection
with respect to the topic of this thesis is its blocking behaviour. Since
mutators have to wait for collectors to complete their task, the exclusive
access to the object graph by the garbage collector is tantamount to a
global lock. As a result, this design inherits all the issues of blocking
synchronisation as described in Section 2.1. Most importantly, there is no
guaranteed progress of the system because a faulty collector could cause
mutators to wait forever.

An obvious improvement over this kind of blocking is to design the
garbage collector to perform its task incrementally. If the collector marks
and sweeps objects step by step rather than in one go, it basically cannot
cause arbitrary long delays [BA84]. Regarding the Oberon system, Bian-
chi has created an incremental garbage collector running on uniprocessor
systems [Bia98].
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A more robust solution however, is to design the automatic memory man-
agement to be lock-free which actually implies incremental operation and
provides even stronger guarantees. Herlihy and Moss were amongst the earli-
est researchers to pursue this approach [HM91]. However, their collector
relies heavily on copying for moving and updating objects which renders
their approach inappropriate for practical purposes. Gao et al. presented one
of the first lock-free garbage collectors based on mark and sweep [GGH07].
Other authors have focused their research on lock-free reference counting
instead [Val94, HG01, HLMM02, DMSJ02]. Gidenstam gives an excellent
overview over this topic [GPST09]. Reference counting seems to be appro-
priate and useful for managing the objects participating in lock-free data
structures. On the other hand, this mechanism is known to be vulnerable
to cyclic references which hinder objects from being reclaimed [MS95]
and therefore is not suited for a general-purpose memory management.
Unfortunately however, many authors based their work on atomic double
compare-and-swap operations which are not universally available on con-
temporary hardware [DMSJ02, HLMM02].

The main goal of our implementation of the garbage collection was to
guarantee the progress of mutators in a lock-free manner. Abolishing the
global lock implies that collectors lose their first class citizen status and
must be modelled like any other ordinary activity running concurrently in
the system. In fact, our design goes one step further by allowing the runtime
system to refrain from garbage collection altogether if desired, rendering
automatic memory management completely optional and independent. For
this reason, we introduced a new language feature for manual memory
deallocation in case a program does not want to rely on garbage collection,
see Section C.8 on page 210. The runtime system itself manages all of its
resources on its own by making use of this feature and does therefore not
require any automatic memory management at all. It is therefore very well
suited for execution environments where garbage collection might impose
an inappropriate overhead.

Enforcing that mutators never wait for collectors basically implies that
they have to be able to execute concurrently. Concerning our runtime system,
this requirement has two additional important implications:
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• Regarding a single-processor system, a collector must yield the con-
trol of execution to a mutator in a regular fashion in order to maintain
the illusion of parallelism. A garbage collection must therefore be
able to be paused and execute incrementally. In particular, a col-
lector has to be prepared for mutators to modify the object graph
concurrently.

• The set of objects that can be garbage collected consists of all objects
that are not reachable directly or indirectly from the root set. In the
case of Active Oberon, the root set consists of all objects referenced
directly by global and local variables. The set of global variables
is static and known in advance, whereas the set of local variables
depends on the number of running and suspended activities in the
system and their respective call stacks.

Disallowing a collector to temporarily suspend an activity while
traversing its call stack requires special attention when the activity
runs concurrently and constantly modifies the stack. The same applies
to suspended activities that resume their execution while the collector
is examining their stack in parallel.

Both issues are related and basically require mutators to cooperate with
the garbage collector. Our approach introduces so-called write barriers
which cause the compiler to instrument assignments to reference variables
with special code. In the case of our runtime support for Active Oberon, the
actual task of a write barrier is threefold:

1. The referenced object that is assigned to the variable gets marked
and is therefore not available for reclamation. A marked object is
added to a linked list of objects that need to be traced for outgoing
references. This is necessary if the garbage collector has already
visited the variable while marking the object graph but the object
becomes only reachable through this variable in the meantime. By
traversing the linked list of marked objects in the end, the garbage
collector still reaches objects which otherwise would have been be
collected.
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2. A processor-local flag is set temporarily in order to indicate that the
current processor is modifying a variable. The garbage collector has
to traverse the linked list of marked objects as long as concurrent
assignments are ongoing on other processors in order to ensure that all
marked objects are eventually traced for outgoing references. Thanks
to cooperative scheduling which enables processor-local storage, this
effectively synchronises collectors with mutators without requiring
the latter to wait for the former.

3. If the modified variable is on the stack of an activity, the write barrier
also updates a reference counter stored in the referenced object. This
counter keeps track of the number of local variables referring to the
object. A non-zero value of this counter indicates that an object is still
referenced by a running or suspended activity and therefore belongs
to the root set. Because only local variables are reference-counted,
there cannot be any reference cycles and what is more, collectors do
never have to inspect call stacks explicitly.

Write barriers naturally incur some overhead in execution time. However,
the implicit generation of write barriers can be disabled completely by using
a corresponding compiler flag. This is useful when targeting execution en-
vironments that do not provide a garbage collector and require applications
to manage memory on their own.

In cases where applications depend on garbage collection on the other
hand, the write barriers cannot be elided because they are imperative to
detect the set of objects that are still reachable. Since assignments imply
the marking of an object, write barriers require the garbage collector to
be present and to provide the corresponding functionality. The garbage
collector uses the following three lock-free data structures for this purpose:

• An atomic counter called cycle count is incremented at the beginning
of each garbage collection. In addition to this global counter, each
object stores its own copy of the cycle count which acts as the mark
bit. It identifies the garbage collection cycle which was the last one
that could reach the object while marking.
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A collector marks objects by updating their cycle count if it is less
than the current value of the global counter. In the end, it can safely
collect objects that have a cycle count that is not greater than the
value which the global counter had before is was incremented. By
using signed arithmetic, the garbage collector subtracts cycle counts
from each other while comparing them in order to deal with potential
increment overflows causing cycle counts to wrap around.

• A linked list called watched list contains all objects that are managed
by the garbage collector. Each object has a reference to its successor
in this list and gets automatically inserted by the runtime system
during its creation. The managed unit of the garbage collector are
therefore arbitrary objects in contrast to allocated memory blocks. In
principle, the garbage collector could thus not only manage memory
but also any other resource.

The main purpose of this data structure however, is the complete de-
tachment of the garbage collector from the underlying heap manager.
The garbage collector is therefore also able to handle objects that are
allocated by the heap manager of the underlying operating system if
the runtime system is deployed as an application library.

• A linked list called marked list contains all objects that have been
marked but not yet scanned for outgoing references. Each object has
an additional reference to its successor in this particular list. A mark
operation updates the cycle count of the object if necessary and puts it
into the list of marked objects. A subsequent trace operation traverses
the marked list and marks all outgoing references.

This data structure allows to break the implicit recursion while mark-
ing and tracing the object graph by splitting it into two separate
operations. The main advantage is that mutators can cooperate with
the garbage collector by marking objects during assignments without
having to trace them afterwards. In addition, several collectors can
help each other by concurrently tracing and marking the shared list
of marked objects.

120



5.3 Garbage Collection

procedure MARK(ob ject)
uncooperative

repeat
cycle← CAS(ob ject�cycle,0,0)
current← CAS(cycleCount,0,0)
if cycle− current ≥ 0 then

return
value← CAS(ob ject�cycle,cycle,current)

until value = cycle

loop
f irst← CAS( f irstMarked,null,null)
if CAS(ob ject�nextMarked,null, f irst) 6= null then

return
if CAS( f irstMarked, f irst,ob ject) = f irst then

return
CAS(ob ject�nextMarked, f irst,null)

Listing 5.9: Lock-free mark operation.

Furthermore, the marked list basically resembles a data structure
called mark stack known from traditional garbage collectors. This
representation of the mark stack however can grow arbitrarily without
ever requiring any additional memory and is even able to contain all
objects of the object graph in the worst case.

The actual lock-free MARK procedure is shown in Listing 5.9. It is
called concurrently by collectors marking the root set as well as by write
barriers of mutators modifying reference variables. The procedure first
tries to atomically update the cycle count of the object to the value of the
global counter. If the cycle count is greater or equal, the object has already
been marked either by the same collector or a younger one. Otherwise, the
procedure additionally tries to atomically insert its argument into the list of
marked objects if it is not part of that list yet.
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procedure TRACEMARKED( )
loop

repeat
f irst← CAS( f irstMarked,null,null)
if f irst = markedSentinel then

return
current← CAS( f irstMarked, f irst,markedSentinel)

until current = f irst

repeat
current�TRACE()
next← CAS(current�nextMarked,null,null)
current← CAS(current�nextMarked,next,null)

until current = markedSentinel

Listing 5.10: Tracing outgoing references of marked objects.

The insertion of an object to the marked list resembles a lock-free push
operation of a stack. This list begins with the object referenced by a global
variable galled f irstMarked and ends with a sentinel object referenced by
markedSentinel. The sentinel allows to distinguish objects that are already
part of the marked list from those that are not in which case their respective
successor called nextMarked is invalid.

The corresponding procedure for tracing and marking outgoing refer-
ences of marked object is called TRACEMARKED and is shown in List-
ing 5.10. This procedure is only called by the collectors and is not unco-
operative in order to explicitly allow cooperative task switches to mutators.
It first tries to get exclusive ownership over the linked list of marked ob-
jects by atomically exchanging the reference to the first object with the list
sentinel. This allows to traverse and trace the objects in the subsequent step
without having to synchronise with concurrent collectors. Replacing the list
with an empty one is semantically valid as it only contains objects that have
been marked but not yet traversed. At the same time, it also solves the ABA
problem as there is no need to remove single objects individually.
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For tracing outgoing references of an object, we implemented a somewhat
unusual approach. Instead of equipping objects with the required meta data
indicating which fields are references and must be marked, the compiler
implements an abstract method called TRACE for each object. The generated
code just calls the MARK procedure for each reference field or array of
references contained in the object. However, how references are identified
exactly is an implementation detail of the compiler and it is irrelevant for
the garbage collector as long as it is guaranteed that the MARK procedure
is called for each outgoing reference. Our design using an abstract method
does not pollute the implementation of the garbage collector with these
low-level details and allows it manage any other resource just as well.

Finally, the actual garbage collection is shown in Listing 5.11 on the next
page. It can be called by several activities concurrently and performs the
following steps:

1. Each garbage collection first increments the global cycle count called
cycleCount and remembers its previous value.

2. A global counter called oldestCycle stores the cycle count of the
oldest still running collector. If a collector as a higher number than
this global counter, it means that there are other collectors which have
not yet marked the complete object graph. In this case all younger
collectors help the oldest one to trace and mark the object graph
completely before it can sweep unreachable objects. Since the mark
phase uses always the most current value of the global cycle count,
all helping collectors do probably not have to do a lot of marking if
they become the oldest one.

3. At this step, the current collector is the oldest one and tries to get
exclusive ownership of the watched list which contains all managed
objects. This operation needs an atomic compare-and-swap operation
as this list is accessed concurrently by mutators which potentially cre-
ate and insert new objects in parallel. As before, the atomic emptying
of the complete watched list also solves the ABA problem.
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procedure COLLECT( )
cycle← INCREMENT(cycleCount) . (1)

while CAS(oldestCycle,0,0) 6= cycle do . (2)
TRACEMARKED()

repeat . (3)
f irst← CAS( f irstWatched,null,null)
current← CAS( f irstWatched, f irst,watchedSentinel)

until current = f irst

MARKGLOBALREFERENCES() . (4)
MARKLOCALREFERENCES( f irst)
TRACEMARKED()

while there are mutators assigning do . (5)
TRACEMARKED()

while there are collectors tracing do . (6)
TRACEMARKED()

INCREMENT(oldestCycle) . (7)

SWEEP( f irst,cycle) . (8)

Listing 5.11: The garbage collection cycle.

4. First, all global reference variables are marked using a call to the
MARKGLOBALREFERENCES procedure. Regarding Active Oberon,
the global root set consists of the variables associated with all cur-
rently loaded modules. The procedure just calls the MARK procedure
for all instances of a global reference variable.

In order to mark local references, the MARKLOCALREFERENCES

procedure traverses the exclusively owned watched list and calls
MARK whenever the local reference counter of an object is not zero.
Subsequently, a single call to the TRACEMARKED procedure marks
and traces the complete reachable object graph.
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5. At this point, the complete root set and all reachable objects have
been marked but concurrent mutators might have already modified the
object graph. If there are concurrent assignments, the corresponding
write barriers make sure that the respective objects are marked using
the MARK procedure. The loop in this step ensures that all marked
objects are also traced for outgoing pointers as long as there are other
processors executing assignments. As a result, all reference variables
modified before or after this step are guaranteed to be marked.

6. This step helps younger activities to finish marking the object graph
and effectively synchronises concurrent collectors with each other.
This is important for the oldest collector which is about to sweep
unreachable objects which otherwise might still be marked and traced
by younger collectors helping the oldest one.

7. At this point, all required objects have been definitely marked. By
incrementing the lowest cycle count, the next collector is able to
proceed which in turn will increment the counter as well.

8. A call to the SWEEP procedure finally deallocates all unreachable
objects in the private watched list. The corresponding procedure
traverses the linked list and removes all objects with a cycle count
not greater than the one remembered in the first step. The removed
objects are deallocated and the remaining list of still reachable objects
is pushed back to the global list of watched objects. As the collector
operates on a private watched list, all objects allocated after the
exclusive acquisition can only be deallocated by younger collectors.

Strictly speaking, the algorithm described above is not lock-free among
concurrent collectors because they have to wait for each other. If one of
them fails to make progress, all younger ones will be blocked forever. A
simple solution is to forbid concurrent collectors in which case steps 2 and 7
can be elided. If a collector aborts during the marking phase in this version,
it does not affect any subsequent collectors except that the objects in its
private watched list can no longer be reclaimed.
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Although our approach is not lock-free with respect to collectors among
themselves, it still allows to mark and sweep the object graph in a lock-free
manner in parallel to concurrent mutators. It relies only on lock-free data
structures which do not have any intrusive impact on concurrent mutators
except for negligible starvation issues. Apart from scheduling, any activity
that does neither mark objects nor trigger a garbage collection by itself, is
therefore guaranteed to be never affected by concurrent garbage collections.
This class of activities typically include device drivers which profit from
this important and practical real-time property.

In summary, the garbage collector presented in this section improves upon
existing solutions for the Active Oberon programming language in several
areas. First of all, our mark and sweep garbage collector is not bundled
with the underlying memory manager and is designed to be an optional and
non-integral process of the system just like any other activity. Its mark phase
is precise because the compiler provides all necessary meta data in the form
of write barriers and abstract methods for tracing objects. Furthermore, the
garbage collector applies only lock-free data structures which allows to
completely detach mutators from collectors. As a consequence, garbage
collections can be performed concurrently and incrementally and therefore
have a non-intrusive impact by design. In addition, lock-freedom also allows
reentrancy and implies that garbage collectors can be executed in parallel
in which case they help each other to distribute the load of marking the
object graph. In retrospect, all of these features have basically been enabled
thanks to our novel approach of combining lock-free programming with
cooperative multitasking.
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This chapter discusses all actions that had to be taken in order to achieve
a high portability of the runtime system. This does not only apply to the
design of its source code but also includes the implementation of the un-
derlying programming language as well as the abstractions required by the
corresponding development tools.

6.1 Introduction

One of the main purposes of an operating system is to provide a generic
runtime environment for application software. For this reason, an operating
system often incorporates a powerful abstraction layer for interfacing the
underlying hardware components in a portable manner. By limiting itself
to this high-level application programming interface, carefully designed
software does only require a recompilation in order to retarget a different
hardware architecture. In an ideal world, this form of software portability
should also be applicable to the operating system itself.

Due to the low-level nature of some components of operating systems
however, this goal can seldom be accomplished to the full extent. De-
pending on the architecture, there are many hardware components that
require special-purpose code for accessing their functionality. Examples in-
clude machine-dependent facilities provided by the central processing unit
and other integrated controllers for handling interrupts, managing virtual
memory, or interfacing peripheral devices. The corresponding source code
for controlling these low-level facilities is typically written in assembly
language because it usually requires special machine instructions. This is
aggravated by the fact that hardware manufactures often specify proprietary
and non-uniform protocols for accessing the respective hardware.
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One of the main goals of this thesis was to design a multiprocessor
runtime system that minimises the need for machine-dependent code. We
achieved this objective by following three fundamental design guidelines:

Prefer Alternatives: Machine-independent alternatives should be pre-
ferred to non-portable and hardware-specific solutions wherever pos-
sible. Interrupt-driven preemption for instance was abandoned in
favour of cooperative multitasking which can be implemented com-
pletely in software. Other examples include the runtime checks for
error conditions such as null pointer exceptions and stack overflows
which are typically implemented using virtual memory.

Unify Runtime Environments: The requirements of runtime environ-
ments must be unified to the lowest common denominator of hard-
ware features. The implementation of the runtime system may there-
fore only rely on hardware facilities which are uniformly provided by
each and every hardware architecture. Examples of facilities which
are not supported universally include the support for interrupt hand-
ling or virtual memory management. If a machine supports such
features, it must be set up beforehand in such a way that it can mimic
a machine that does not provide them.

Use Compiler Abstractions: Dependencies on the instruction set archi-
tecture shall be abstracted by the compiler wherever possible. The
implementation of task switches in the runtime system for instance re-
quires access to special-purpose registers like the stack pointer. It also
requires a uniform calling convention across different hardware archi-
tectures. The corresponding facilities are provided by the compiler in
the form of a generic and portable programming interface.

By design, the implementation of our runtime system does only require
hardware resources which are also available to ordinary applications running
on top of an operating system. As a consequence, we are able to bundle the
runtime system as an additional library linked into the binary executable
file of an application without requiring special hardware support.
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Concerning the kernel, the task of standardising the runtime environment
is inherently non-portable but can be completely arranged by an initial boot-
loader which is typically written in assembly language anyway. Regarding
the AMD64 architecture for example, our BIOS bootloader not only loads
the kernel image from disk to memory, but also switches the processor state
from 16-bit mode to 64-bit mode and identity maps all of the main memory.

Regarding the runtime environment established so far, additional hard-
ware support for facilities like interrupt handling or multiple processors is
completely optional. If its implementation is provided, it may differ from
one hardware architecture to another or depend on the underlying operat-
ing system. The corresponding programming interface consists of a thin
layer of abstractions provided by small and replaceable modules. The same
applies to substitutable functionality provided by the runtime environment
like allocating memory or accessing peripheral devices.

The following sections describe the application of the guidelines in a
variety of contexts concerning the development of the runtime system. The
key to achieve a high portability was to abstract the underlying execution
environment in terms of hardware as well as software.

6.2 Cross Compilation
Source code is usually considered portable when it can be made executable
on different hardware architectures or runtime environments without much
effort. Ideally, the source code must only be recompiled targeting the new
execution environment without having to modify it at all. This implies that
the compiler satisfies two different preconditions:

1. The compiler must provide programmers with an abstraction layer
for all hardware-dependent issues which may cause a program to be
implicitly restricted to one specific platform. Examples include pre-
defined machine peculiarities like the intrinsic bit-width of machine
words, alignment constraints, endianness specifications, or calling
conventions. Most of these issues can be abstracted by a proper
definition of a generic type system.
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2. The compiler must be able to translate the same source code for
different hardware architectures. It must therefore provide a powerful
abstraction of the target instruction set architecture which allows
to handle all machine-dependent compilation stages like register
allocation and code generation.

In accordance to our goal of implementing a portable runtime system,
we naturally wanted the source code of the compiler itself to be portable.
By design, the resulting compiler is able to translate source code written in
Active Oberon into machine code for any target it supports, regardless of
the host machine the compiler is running on. Compilers with this ability are
generally called cross compilers but we find the mere necessity for this term
unfortunate since all compilers should ideally be able to cross compile. The
lack of this capability implies nothing but a compiler that is not portable.

Concerning the original language definition of Active Oberon [Rea04],
we had to complement its already powerful feature set with several ab-
stractions in order to allow programmers to write more portable code.
Appendix C lists all modifications and enhancements and describes them
comprehensively. The most important extension was the introduction of a
memory model for lock-free programming as described in Section 2.2.2.
This includes the definition of a new built-in procedure implementing an
atomic compare-and-swap operation on arbitrary basic or reference types.
Other extensions include several new distinct integer types which allow
to properly represent addresses, length of arrays, and machine words on
architectures with different bit-widths. All of these additions allowed us
to write the runtime system in a completely portable manner, targeting a
variety of hardware architectures ranging from 8-bit to 64-bit machines.

The compiler is able to target a variety of hardware architectures by
utilising a powerful intermediate code representation of the translated source
code [Fri11]. This representation consists of a small instruction set and a
well-defined programming model for an abstract machine which is able to
conglomerate all differences of the supported hardware architectures. The
compiler first translates the source code into this representation and uses it
in a second step to generate the actual machine code.
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This design can be found in many modern compilers and offers several
advantages [Muc97]. The deliberately low-level nature of the intermediate
code allows a direct translation to machine code which is much simpler than
the actual translation from source code to intermediate code. Furthermore,
an intermediate code interpreter which emulates an execution environment
based on the abstract machine allows to verify the correctness of the trans-
lated code without having to rely on the generation and execution of the
actual machine code.

The instruction set of the intermediate code representation is listed in
Table 6.1 on the following page. The underlying abstract machine operates
on uniquely named sections, each storing a sequence of instructions for
representing executable code or global data. The corresponding program-
ming model includes a processor that executes instructions stored in code
sections and includes a set of typed registers and a stack for storing local
variables and parameters.

Our implementation improves on a similar intermediate code represent-
ation of the Active Oberon compiler by Reali by supplementing it with
portable type definitions [Rea03]. The fact that all of the hardware architec-
tures targeted by his compiler had the same bit-width led to a lot of implicit
assumptions in his definition of the intermediate code language which had
to be fixed accordingly [Neg06].

6.3 Generic Object Files

Having implemented a cross compiler that is able to generate machine code
for a variety of architectures, it was also desirable to have a common file
format to store the generated code. Files storing the binary representation
of machine code and global data are usually called object files. In addition,
they most often contain meta data like symbolic links which refer to code
and data stored in the same or other object files. Two of the most popular
object file formats are the portable executable file format (PE) used in
Windows systems [Mic10] and the executable and linking format (ELF)
used by Unix-like systems [Too95].
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Category Instruction Operation

Memory Layout data Datum Definition
reserve Space Reservation

Special Purpose nop No Operation
asm Inline Assembly

Data Management mov Datum Copy
conv Datum Conversion
copy Data Copy
fill Data Initialization
cas Atomic Compare-And-Swap

Arithmetic neg Negation
add Addition
sub Subtraction
mul Multiplication
div Division
mod Modulo

Logic not Logical NOT
and Logical AND
or Logical OR
xor Logical Exclusive OR
lsh Left Shift
rsh Right Shift

Procedure Call pop Pop from Stack
push Push onto Stack
call Procedure Call
return Return from Procedure

Branching br Unconditional Branch
breq Branch if Equal
brne Branch if Not Equal
brlt Branch if Less Than
brge Branch if Greater Than or Equal

Table 6.1: Instruction set of the intermediate code representation.
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Regarding Oberon and its predecessors, compiler writers implementing
these programming languages always defined their very own object file
format [WG92]. The original Active Oberon compiler by Reali for instance
uses an object file format which is tailored to the specifics of this particular
programming language [RG06]. Years of experience maintaining and ex-
tending this file format revealed that its design is based on many implicit
and unnecessary machine dependencies. The main issues with this object
file format are summarised below:

• A single object file stores the binary representation of one module
and contains all symbolic links to imported procedures and variables.
All references to the same procedure or variable are stored in a linked
list embodied in the binary code itself. During statically linking and
dynamically loading the module at runtime, the corresponding bit
pattern storing the offset of the next occurrence of the symbol gets
replaced by its actual address.

While this clever design is space-saving, it also assumes that the
bit pattern of each instruction referencing a symbol has always the
same format. This precondition was sufficient for the x86 and ARM
hardware architectures supported by the original compiler [Adv13,
ARM05]. However, there exist several other instruction set archi-
tectures that use not one but several different encoding formats for
instructions referencing an address. In some cases, the correspond-
ing bit pattern is even discontiguously spread within the instruction
format [Atm05].

Even if the issues about the bit pattern are ignored, the instruction
format still dictates how the address has to be patched regarding the
endianness and alignment constraints of the target machine. Addition-
ally, there are instructions like branch operations which require the
target address to be patched relatively to the address of the instruction
rather than absolutely. As a result, the linker and loader have to be
aware of the instruction encoding and must therefore be customised
anew for each hardware architecture.
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• In addition to the binary representation of code and data, object files
most often also contain meta data about their contents. In the simplest
case, this data just consists of information about the interconnections
of code and data stored in different object files as described above.

In the case of Active Oberon for example, the original object file
format contains additional meta data describing exported symbols,
executable commands, type descriptors, exception tables, and the
locations of outgoing references for precise garbage collection. Other
object files such as the PE and ELF file formats contain similar
information or a subset thereof [WG92, Too95, Mic10].

However, all of these object files have in common that the binary data
as well as all of the contained meta data are structurally on the same
level. This basically means that object file format specifications do
not only describe how the binary data is represented but also define
the layout and format of meta data. Consequently, any modification
on the set of information stored as meta data stringently requires
to change the specification of the object file format as well. The
corresponding modifications naturally affect all development tools
that generate or process object files.

In the case of Active Oberon for instance, the set of affected develop-
ment tools include the compiler, the static linker, the dynamic loader,
as well as the runtime system. Each time the object file format was
modified in order to contain different or additional meta data, all of
these components had to be changed correspondingly.

The static linker posed an additional problem because it tries to
emulate the operations of the dynamic loader. It combines object
files into a binary image on the host machine that looks exactly like
the memory layout of the target machine after dynamically loading
object files. This emulation is achieved by executing the same source
code as the loader but using a fake heap which directly maps to the
binary image. This idea fails completely during cross compiling for
architectures that have a differing address size or byte order.

134



6.3 Generic Object Files

Dissatisfied with the existing solution, we designed a new object file
format called generic object file. The main goal of generic object files is to
be completely machine-independent and to minimise the amount of meta
data in order to resolve all of the issues raised above. As a result, our object
file format is not bound to Active Oberon any more as it can contain binary
code and meta data for any compiled program. In addition, generic object
files contain all the information necessary in order to patch the addresses
of symbolic links in a portable manner which allows to unify static and
dynamic loading using the very same source code [FN11]. We achieved
this result by adhering to the following design guidelines:

Minimise Format: Generic object files contain only that information
which is strictly necessary for the loader and linker to arrange the
binary contents in memory while resolving the symbolic links.

Object files consist of binary sections which describe contiguous
sequences of binary code or data. A section is the main entity of
an object file and allows to represent a single global variable, con-
stant string, procedure, or any other language construct that occupies
contiguous memory. Each section has therefore a unique name and
carries additional meta data that specifies how its binary content has
to be arranged in memory.

For example, the type of a section describes the purpose of its binary
content which is either executable code or global data. This distinc-
tion is necessary for supporting Harvard architectures where sections
of different types are arranged in different address spaces. In addition,
a section contains a list of so-called fix-ups which reference other
sections by name and specify how and where the binary data has to
be patched in order to store the address of the referenced section.

For informational purposes, the complete definition of the generic
object file format is shown in Figure 6.1 on the next page. It is given
in extended Backus–Naur form since generic object files can also be
represented textually which demonstrates their simplicity, portability,
and maintainability [FN11].
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ObjectFile = {Section}.
Section = Type Name Unit Placement Fixups Bits

{Fixup} {Octet}.
Type = code | initcode | bodycode | data | const.
Name = string.
Unit = integer.
Placement = aligned Alignment | fixed Address.
Alignment = Unit.
Address = Unit.
Fixups = integer.
Bits = integer.
Fixup = Name Patches { Patch }.
Patches = integer.
Patch = Mode Displacement Scale Patterns {Pattern}

Offsets {Offset}.
Mode = abs | rel.
Displacement = Unit.
Scale = integer.
Patterns = integer.
Pattern = BitOffset Bits.
BitOffset = integer.
Offsets = integer.
Offset = Unit.
Octet = hexadecimal-digit hexadecimal-digit.

Figure 6.1: Generic object file format expressed in EBNF.
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A similar approach was pursued by Fraser and Hanson in order
to achieve a machine-independent linker [FH82]. But instead of
providing the static binary contents together with information about
how to patch resolved symbols, their linker is in fact an interpreter
which evaluates expressions stored in textual object files in order to
compute the value of each individual word while linking. However,
besides the substantial performance degradation, this approach does
not take machine-dependent issues like word size and endianness
into consideration.

Embed Meta Data: Any other meta data emitted by the compiler de-
scribes the compiled program and is therefore completely irrelevant
for linking and loading object files. As this kind of information is
only required by the runtime system, it can be directly represented
by the binary data embedded in additional sections.

This approach allows to circumvent encoding meta data in a propriet-
ary format while compiling in order to process this information and
building corresponding data structures while linking or loading. In-
stead, the compiler directly generates the data structures as expected
by the runtime system on the target machine and stores their contents
in corresponding data sections. Cross-references within these global
data structures are established using the usual fix-up mechanism
provided by the object file format.

In the case of Active Oberon, our new object file format turned
out to be generic enough to represent all the necessary meta data
like module descriptors, type descriptors, and command interfaces.
This even includes exception tables and the locations of outgoing
references for precise garbage collection which assures us that this
approach is feasible for other compiled languages as well.

As a result, any modification of the set of meta data never required
us to change the file format specification nor the static linker or
dynamic loader. This increased the maintainability and portability of
all development tools and the runtime system substantially.

137



6 Case Study: Software Portability

Another kind of meta data stored in the original object file formats for
Oberon and Active Oberon were fine-grained object fingerprints [Cre94].
Fingerprints encode information about the public interface of a module
in order to detect interface inconsistencies during compiling and loading
a module. As fingerprints are basically hash values of fixed size, it is not
guaranteed that two distinct entities always have different fingerprints. The
generic object format allows to represent fingerprints as variable sized
data sections which encode the public interface unambiguously. The sole
purpose of generating these otherwise unused sections is to allow the loader
to detect mismatching fingerprints by comparing the binary contents of
duplicated data sections.

Another proof of the generality of the new object file format is the fact
that it is also able to handle the meta data required to represent completely
different object file formats targeting platforms like Windows and Linux.
This is accomplished by introducing two or more additional sections that
mimic the binary contents of headers and footers of other file formats.
Regarding the actual binary file generated by the linker, the binary code and
data generated by the compiler are physically encompassed by the contents
of these format-specific sections. In order to be able to load the generated
binary file on a different runtime environment, only these sections have
to be replaced while linking because they completely capture all format-
specific information. As a result, the linker processes these sections as usual
generating a plain binary file as before and does therefore not have to know
anything about the actual object file format of the target platform.

6.4 Runtime System Structure

The runtime system consists of several relatively small and generic Active
Oberon modules. Table 6.2 on the facing page lists all modules responsible
for lock-free scheduling and memory management. It also references the
corresponding sections of this thesis that describe the abstract implement-
ation of each module. The references into Appendix B on the other hand
lead to the concrete module interfaces.
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Module Description See Sections

Queues Lock-Free Queues 3.5 (B.7)
Activities Basic Scheduling 4.2 (B.1)
ExclusiveBlocks Mutual Exclusion 4.3 (B.2)
Processors Multiprocessing 4.4 (B.6)
Interrupts Interrupt Handling 4.5 (B.5)
Heaps Heap Management 5.1 (B.4)
GarbageCollector Garbage Collection 5.3 (B.3)

Table 6.2: Modules with lock-free algorithms presented in this thesis.

The actual module structure of the runtime system is shown in Figure 6.2
on the next page. It depicts the generic layout and imports of the modules
responsible for the complete runtime support for the Active Oberon lan-
guage. Two of these modules are shaded grey in order to indicate that their
implementation depends on the actual target architecture or runtime envir-
onment. The runtime support can be decomposed into three different layers
where the bottom layer consists of the following four modules responsible
for scheduling and multiprocessing as described in Chapter 4:

Processors: This module provides the runtime support for managing mul-
tiple processors. As described in Section 4.4, we provide several
implementations of this module where all of them share the same
interface. If the runtime system is used as an application library, there
are two implementations targeted at Windows and Linux based sys-
tems which create threads for representing processors. In the native
case targeting x86 and AMD64 machines, we provide an implement-
ation which uses the advanced programmable interrupt controller
(APIC) in order to handle multiple processors.

Queues: Based on processor-local storage partially enabled by the previ-
ous module, this module provides the implementation of lock-free
queues as described in Section 3.5.
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Figure 6.2: Generic module structure of the runtime system.
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Activities: This module uses lock-free queues in order to represent activit-
ies which are associated with active objects and provides a framework
for the implementation of synchronisation primitives.

ExclusiveBlocks: This module makes use of the scheduler framework
provided by the previous module in order to implement object monit-
ors which are accessible in Active Oberon by the notion of exclusive
statement blocks.

The next layer contains the remaining runtime support which is required
for implementing the Active Oberon programming language:

Environment: This module contains a few wrapper procedures for the
required functionality provided by the actual execution environment.
This includes support for basic input and output as well as allocating
and deallocating memory blocks.

Modules: This module is responsible for representing modules and their
public interfaces as well as loading the modules in the correct order
as predefined by their import hierarchy.

Runtime: Based on all previous modules, this module subsumes all re-
maining runtime support for various built-in procedures provided by
the compiler.

The topmost layer consists of a single module which is not stringently re-
quired in order to implement Active Oberon and can therefore be excluded:

GarbageCollector: This module provides the complete functionality for
automatic memory management in the form of garbage collection as
described in Section 5.3.

If the runtime system is used as a kernel for standalone operating systems,
there is basically no underlying runtime environment. Therefore, none of
the functionality provided by the execution environment can be forwarded
and must be implemented from scratch for the corresponding machine.
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Targeting an execution environment based on the Basic Input / Output
System (BIOS) for example, the corresponding module has to be replaced
by a machine-dependent implementation making use of drivers in order
to access peripherals devices for input (PS2 keyboards) and output (serial
ports and VGA displays). Figure 6.3 on the next page shows the structure
of this particular module and its imports. Naturally, most of its imported
modules are machine specific and inherently non-portable. However, the
following two modules are still generic and completely portable and can
therefore be reused in kernels targeting different machines:

Interrupts: This module provides a synchronisation primitive that allows
to await the occurrence of interrupts in a high-level fashion as de-
scribed in Section 4.5. It makes use of a non-portable module re-
sponsible for abstracting the underlying central processing unit of the
target machine in order to handle low-level interrupts.

Heaps: This module manages heaps for allocating memory blocks from
contiguous memory regions as described in Section 5.1. During
booting, the BIOS based kernel performs interrupt calls in order to
detect unreserved chunks of memory and uses this module to manage
allocations therein.
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Figure 6.3: Kernel specific module structure of the runtime system target-
ing an execution environment based on BIOS.
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7 Evaluation

This chapter evaluates the performance of several components of our lock-
free runtime system and compares the results against related work. Although
our system is designed to be portable across hardware architectures, we do
not intend to contrast its performance on different machines.

Modern processors and memory hardware seem to apply more and more
sophisticated optimisation techniques in order to execute code more effi-
ciently. Some of the most elaborated inventions in this area include for
example caching, branch prediction, and out-of-order execution. We do
not delve into the details of these features since all of them are typically
implemented in hardware and are therefore completely transparent to the
programmer [Fog14]. Even though they do speed up the execution of code in
general, they often render the performance of processors non-deterministic
at the same time.

But even when considering only a single hardware architecture in isola-
tion, the performance of different implementations thereof may vary consid-
erably. In order to be able to minimise all of these effects and to concentrate
on the performance of the actual code, we conducted all of our experiments
on the very same hardware. This approach makes it difficult to reason
about the absolute execution time of our algorithms in general. Instead, our
focus is on relating our work to existing solutions if executed under high
contention.

We used an AMD64 server machine with 16 GB main memory and two
physical AMD Opteron 6272 G34 processors running in 64-bit mode and
featuring 16 cores each. For timing our experiments we make use of a built-
in high precision hardware timer which has an accuracy of at least 10 MHz.
This setup provides a total of 32 logical processors and allows us to the
evaluate and compare the performance of our system under increasingly
heavy contention.
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7.1 Contention Management

Atomic read-modify-write operations like compare-and-swap typically op-
erate on a single memory location. These operations are known to suffer
from performance degradation when several contending processors access
the same shared memory location concurrently. The compare-and-swap
operation for example allows only one processor to succeed while all other
contending accesses will fail. Since non-blocking algorithms are usually
designed to repeat the whole operation in case of failure, there is a poten-
tially high memory traffic surrounding the shared memory location. The
resulting memory congestion degrades the efficiency of cache coherency
protocols and may even have an impact on the performance of successful
compare-and-swap operations.

Figure 7.1 on the facing page shows the average number of successful
compare-and-swap operations while increasing the number of contending
logical processors on our server machine. Each participating processor
atomically increments a shared counter variable using the algorithm shown
in Listing 2.2 on page 26 in a tight loop for the duration of five seconds.
The graph shows the value of the counter after all processors have finished
which equals to the number of all successful compare-and-swap operations.
On this particular hardware, the total number of successful operations is
highest for four to nine processors but yields only a marginal speedup
with respect to the performance using a single processor. Starting with
twenty or more contending processors, the actual throughput of successful
compare-and-swap operations decreases significantly. Regarding the full
set of logical processors, the actual throughput of successful compare-and-
swap operations even drops to about one half of the initial performance.
As a result, atomic operations like compare-and-swap must be considered
inefficient and expensive under high contention in comparison to standard
instructions.

The actual variation of the throughput is shown by the grey box plots in
the background of Figure 7.1. It is triggered by the interaction of the varying
subset of executing processor cores in each of the twenty measurements
per data point. Our scheduler does not implement processor affinities and
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Figure 7.1: Throughput of contending compare-and-swap operations.

basically assigns tasks to those idle processor cores which are awaken
first by the hardware upon an interprocessor interrupt. Therefore, the actual
subset of running processor cores differs in each run and affects the physical
load of the two processor dies. Contending cores running on the same die
have different performance characteristics than cores distributed across the
physical processors. Therefore, the variation of the throughput correlates
with the actual number of all possible combinations to distribute running
cores among the dies. Regarding our purposes, this effect can be safely
neglected as we are interested only in the overall trends when increasing the
amount of logical processors that contend over the same shared variable.

The concept of contention management tries to improve the behaviour
of atomic memory operations under high contention. The usual approach
is to back off by delaying a contending processor if the atomic operation
failed in order to prevent memory devices from congesting. Although this
method causes failing processors to potentially wait longer than required, it
is capable of increasing the overall throughput of all contending processors.
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The same ideas are drawn from other fields with high potential for
contention like transactional memory [HM93], locking [And90], or net-
working [MB76]. Dice et al. provide an excellent overview over contention
management algorithms in the context of atomic compare-and-swap op-
erations [DHM13]. They have shown that two of the simplest algorithms
called constant backoff and exponential backoff are also the most efficient
particularly on the x86 architecture. Both approaches wait for a certain
amount of time before repeating a failed compare-and-swap operation. In
the case of exponential backoff this delay is not fixed but depends on the
number of times the operation has failed since the last successful attempt. A
sample implementation of this algorithm is shown in Listing 2.3 on page 32.

We utilise constant backoff instead because it is the simplest contention
algorithm but still promises high performance [DHM13]. It basically just
performs a busy wait for some platform dependent constant time whenever
a compare-and-swap operation fails. The key advantage of this very light-
weight implementation is that it does neither require any per thread context
information nor depend on the actual non-blocking algorithm.

Figure 7.2 on the next page shows the results of a similar experiment
as before which additionally uses constant backoff with varying waiting
times. It depicts the total number of successful compare-and-swap oper-
ations where failing operations are followed by an increasing number of
repetitions of an empty loop. A tight loop consisting of a thousand iterations
already helps to improve the vast performance degradation under high con-
gestion considerably. Starting at 10000 iterations, the overall throughput
has improved to such an extent that there is always some speedup with
respect to the single processor case. Of course, this number is hardware-
dependent but it seems to be a good indicator for other machines as well.
Tuning the number of iterations to 105 or 106 renders the throughput for
three or more processors close to constant and almost independent from the
actual contention. In both cases there is also hardly any variation any more
since the relative measurement error drops down to less than one percent.
All of the following experiments on our server machine use a constant
backoff along the lines of these results in order to minimise performance
penalties under high contention.
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Figure 7.2: Throughput of contending compare-and-swap operations with
different constant backoff.

Especially on this particular machine, we also observed that a naive
implementation of processor-local storage using arrays often caused false
sharing. False sharing describes situations when two or more processors
share the same cache line even though they intentionally read and write
distinct memory locations therein [TLH94]. As a consequence, any modific-
ation of a processor-local variable invalidates the corresponding cache lines
of other processors. This results in a cache miss and causes a significant
performance degradation each time one of these processors reads its own
processor-local variable.

A simple but very effective solution to this problem is to align the ele-
ments of the global array to the actual size of the cache lines. This may
introduce some spatial overhead but basically ensures that processor-local
storage is never shared amongst the caches of two different processors. The
same technique may also be beneficial for variables that are modified using
atomic compare-and-swap operations in lock-free algorithms.
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7.2 Performance Measurements

The main goals of our runtime system were to increase its correctness
and reliability by abolishing any kind of lock-based synchronisation while
striving at the same time for an uncompromising portability and simplicity
of its source code. But nevertheless, any system designed to run on shared-
memory processors should naturally also make the most out of the available
parallel processing power. In this section, we want to demonstrate that our
approach has indeed proven itself in practice and is sometimes even able to
compete to some extent with the performance of highly optimised operating
systems.

In order to quantitatively compare the performance of various parts of
our lock-free runtime system against the corresponding services provided
by established operating systems like Windows and Linux based systems,
we assembled a broad set of micro-benchmarks. In comparison to standard
benchmarks which are often complete applications that use several system-
specific features simultaneously, micro-benchmarks are simple programs
that allow to focus on a single feature in isolation in order to understand its
performance in the general case. For several reasons however, the results
presented in this section should be taken with a grain of salt:

First of all, micro-benchmarks in general measure the performance in
worst-case scenarios rather than the actual runtime behaviour of full-blown
applications and are therefore not very realistic [BDF92]. In absence of
a real-life workload, memory caches in particular are likely to behave
completely different and may cause the performance of memory-bound
micro-benchmarks to become distorted.

In addition, our runtime system follows a strictly machine-independent
design and has therefore a much smaller set of features than other systems.
For example, it deliberately abandons virtual memory management and does
therefore neither support memory swapping nor heavy-weight processes
with separate virtual address spaces. As a result, the micro-benchmarks
are only able to cover a small overlap of the functionality provided by the
other systems which may differ substantially in their implementation and
sophistication.
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Each micro-benchmark compares up to four different operating systems
running on the same machine. The first one is always the standalone version
of our lock-free runtime system called Native hereafter. The second one is
an Ubuntu Server operating system based on Linux version 3.13.0 and has
GNU libc version 2.19 installed. Where applicable, the benchmarks are also
executed on Windows 7 as well as the latest version of the A2 operating
system.

Unfortunately, A2 runs in protected mode instead of 64-bit mode and
can therefore only access about a quarter of the 16 GB main memory. In
addition, it requires to use another set of development tools which is why
the actually executed machine code is slightly different.

In order to focus on the actual performance of these four runtime environ-
ments, we tried to minimise the differences of the machine code generated
for each micro-benchmark. Therefore we developed a retargetable frame-
work that allows us to use the exact same source code as well as the same
64-bit compiler in order to create similar executable files for the different
systems. Except where otherwise noted, the generated binary code for the
benchmarks differs only with respect to the runtime calls for managing
threads and allocating memory. Targeting our own runtime system and
A2, we make use of the built-in language facilities implemented by the
respective compiler. In the case of Linux, we use the default C and PThread
libraries and call functions like pthread_create and malloc instead.
Executable files targeting Windows on the other hand make use of the
corresponding functions of the Windows API.

Each of the following micro-benchmarks is repeated 20 times in order to
compute the arithmetic mean and relative measurement error. Depending
on the actual benchmark, we measure either the wall-clock time using
the contention-less high-precision timer or the throughput of programs
running for a fixed amount of time. Where the behaviour under different
levels of contention is of interest, we created an increasing number of
contending threads on an otherwise completely idle machine. In order to
unify the hardware-specific behaviour of the two physical processors under
increasing workload, we also disabled all respective BIOS features like
power management and performance boosting.
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Environment System Call Time Error

Native Activities.GetCurrent 5.2ns 0.0%
A2 Objects.ActiveObject 12.7ns 0.0%
Linux sys_gettid 1115.3ns 0.1%
Windows GetCurrentThreadId 9.8ns 0.4%

Table 7.1: Duration of minimal system calls.

7.2.1 Minimal System Call

One of the simplest test cases for comparing the performance of operat-
ing systems is the evaluation of the actual overhead of calling a system
service in the first place. One of the cheapest system calls of Linux is
called sys_gettid which just returns the unique identification number
of the calling thread. On Windows, the same functionality is provided
by the GetCurrentThreadId function. The corresponding functions of
our runtime system and A2 are called Activities.GetCurrent and
Objects.ActiveObject respectively and return the unique descriptor
of the currently running activity.

Table 7.1 shows the average overhead of a system call when invoking
these functions 10 million times in a row. In Windows and our runtime
system the requested information is readily available using a dedicated
register and takes the least time. A2 needs to query the descriptor at a
location near the very beginning of the current call stack which must be
computed first. Linux essentially performs the same operation but has a
high overhead compared to the other systems because the system call first
jumps from user space to kernel space by issuing a software interrupt. This
jump is necessary to get access to internal data structures of the kernel
which are otherwise protected by hardware mechanisms from malicious
user code. In all other cases including Windows however, this particular
system call equals an ordinary function invocation which does not offer
this kind of protection. In A2 and our runtime system, all of the provided
system calls are in fact statically bound.
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7.2.2 Thread Creation Time

A further important performance characteristic of a multitasking operating
system is the overhead in terms of the time it takes to create and terminate
tasks. In A2 and our runtime system, tasks are called activities and are
equivalent to lightweight processes or threads known from other systems.
Since activities are associated with active objects, they are automatically
created by instantiating an active object. In order to create threads under
Windows and Linux on the other hand, we call the library and API func-
tions pthread_create and CreateThread respectively. All threads just
terminate their execution as soon as they are scheduled.

Figure 7.3 on the following page shows for each system the total time
it takes to create and wait for the termination of an increasing number of
threads. The benchmark and all of the created tasks run on the same core
in order to properly estimate the overall overhead per thread. The results
clearly show that A2 and especially our runtime system outperform the
other systems significantly.

In all four cases, the overhead of creating a thread consists at least of
reserving memory for the stack and registering the thread for scheduling.
A2, Windows, and Linux additionally append the reserved stack memory to
the page table of the virtual memory management. This technique allows to
detect and react to stack overflows which trigger a page fault if the accessed
memory location on the stack is not mapped. However, this approach also
implies that the systems have to reserve several consecutive virtual memory
pages per thread. The considerable overhead of Windows and Linux in
comparison to A2 suggests that there is some additional work involved.

Our runtime system relies on compiler-inserted checks rather than on vir-
tual memory management and increases a stack if necessary by copying its
contents into a larger memory block as described in Section 5.2. As a result,
the stack of newly created threads can have a much smaller granularity in
comparison to the other systems. This is the reason why our runtime system
is the only one that can handle more than one million threads at the same
time. A2 and Linux fail to create 100000 threads at once while Windows
struggles with one million.
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Figure 7.3: Thread creation time.

7.2.3 Context Switch Time

The next micro-benchmark tries to estimate the overhead of a single context
switch under high contention. The context switch time in this case describes
the time it takes the scheduler to select a new task to run and to give it the
control of execution. The corresponding functions to perform an explicit
context switch are called Activities.Switch in our runtime system,
Objects.Yield in A2 and pthread_yield under Linux. Windows does
not offer an API function that guarantees a context switch and is therefore
not considered in this benchmark.
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Figure 7.4: Context switch time.

Figure 7.4 shows for each system the average cost of a context switch
under increasing contention. We measured the time it takes all threads to
perform 10000 context switches in a tight loop and divided it by the total
number of context switches. A2 and our runtime system perform essentially
the same operations but A2 protects its ready queue using a global spinlock.
Regarding 1 to 32 threads, there is in both cases hardly any context switch
necessary because the ready queue is empty most of the time. The increasing
time difference however stems from the spinlock which forces contending
threads to wait for each other.

From 32 threads onwards, the ready queue starts to get filled and context
switches become necessary. The overhead of our runtime system is mainly
due to the increasing memory contention on the global ready queue but it
still performs several times better than A2. Starting at 64 threads which
are permanently task switching, there is at least one item per processor in
the ready queue and the overhead per context switch becomes more or less
constant in both cases.
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The results for Linux on the other hand expose a radically different
performance in comparison to A2 and our runtime system. According to
the source code of Linux and libc, a call to the pthread_yield function
eventually triggers the sched_yield system call which uses a dedicated
ready queue per processor. For performance reasons, these queues are
infrequently load balanced and therefore require hardly any synchronisation
amongst each other which effectively prevents memory contention. Contrary
to its specification however, this optimisation implies that the pthread_-
yield function can therefore not guarantee that another thread which is
ready to run actually gets executed. This is why the authors of the Linux
kernel strictly forbid users of the sched_yield system call to misuse it to
synchronise threads with each other.

It is important to keep in mind that this micro-benchmark tests the
performance of the system in the absolute worst case where threads perform
nothing else but context switches. As soon as there is some additional
workload, there is much less memory contention and the switches are
bound to perform better in our runtime system. This is not the case for
Linux as can be seen by the context switch time for a single thread which is
higher than the worst-case overhead of our runtime system.

7.2.4 Matrix Multiplication

Whereas the previous benchmark measured the time of synchronous task
switches, the following one tries to estimate the relative cost of asynchron-
ous task switches. This benchmark measures the overall time required to
multiply two 1024 by 1024 matrices with several threads as an example of
a simple yet non-trivial concurrent program. It distributes the workload to
an increasing number of threads where each thread computes distinct rows
of the result matrix.

Since this partitioning does not require any synchronisation of the threads,
the actual speedup of the multiplication should be close to optimal. However,
because each thread executes exactly the same code on each system, the
actual difference in time must originate from the overhead of performing
task switches as well as creating and terminating the threads.
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Figure 7.5: Time for multiplying two 1024×1024 matrices concurrently.

Figure 7.5 depicts the overall time for multiplying both matrices using an
increasing number of threads on each system. Except for A2, the benchmark
yields approximately the same performance on each system. During the
computation using a single thread which takes about 19 seconds, Linux
performs nearly 1800 asynchronous task switches. A2 interrupts the com-
putation exactly once per millisecond and therefore requires about 24000
asynchronous task switches.

Our runtime system on the other hand performs almost as many syn-
chronous task switches instead. In addition to the actual task switches, the
implicitly generated machine code at the end of each nested loop of the mat-
rix multiplication executes a total number of about 10243 quantum checks.
Compared to a variant of this benchmark that uses an uncooperative block
in order to completely prevent implicit cooperative multitasking, the impact
on the performance is about 2%. The results shown above indicate however,
that the overall overhead of implicit cooperative multitasking is on a par
with preemptive scheduling as implemented by Linux and Windows.
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Figure 7.6: Speedup of multiplying two 1024×1024 matrices.

The actual speedup of the concurrent matrix multiplication regarding
each system in isolation is shown in Figure 7.6. Under high contention, our
runtime system exhibits the highest speedup which is close to linear. The
other systems behave similarly but their relative performance drops earlier
on when increasing the utilisation of the 32 cores.

7.2.5 Locking

This micro-benchmark was designed to measure the average locking over-
head for critical sections if there is none or heavy lock contention. It creates
an increasing number of threads that repeatedly enter and exit either the
same or their own critical section. The benchmark measures the time it
takes all threads to execute 10000 pairs of lock operations in order to com-
pute the average overhead per critical section. In the case of A2 and our
runtime system, the benchmark enters critical sections using the built-in
object monitor associated with active objects. Under Linux and Windows,
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Figure 7.7: Average cost of locking operations with no lock contention.

mutex objects like the pthread_mutex_t type from the PThread library
and the CRITICAL_SECTION provided by the Windows API are used to
enter a critical section. These are fast user-space objects since they only
require a system call if the mutex is contended.

Figure 7.7 shows the average overhead of entering independent critical
sections resulting in no lock contention. As expected, the performance of
all systems scales nicely since no contention is involved. A2 reveals a much
higher overhead per critical section while all other systems approximately
perform the same.

Figure 7.8 on the next page shows the result of increasing the lock
contention by entering always the same critical section. A2 reveals an
exceptionally high cost under increasing contention which might be caused
by the spinlock used to protect the monitor itself from concurrent access
while acquiring it. Our runtime system performs much better in this respect
but in comparison to Windows and Linux still suffers from some overhead
caused by the memory contention.
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Figure 7.8: Average cost of locking operations with heavy lock contention.

7.2.6 Thread Synchronisation

The following micro-benchmark was designed to evaluate the cost of syn-
chronising several threads with each other under increasing contention.
For this purpose, it simulates an increasing number of concurrent runs of
independent games. Each game consists of ten players passing a token
around in a round robin fashion for a total of 10000 rounds. Each player is
represented by a thread that waits until it receives a token from the previous
player. It immediately passes the token on to the next player and waits for
it to arrive again in the next round.

In A2 and our runtime system, the wait for the token is implemented
using the AWAIT statement provided by the Active Oberon programming
language. In Linux and Windows on the other hand, the library types
pthread_cond_t and CONDITION_VARIABLE are used instead. In either
case, a thread receiving the token will be resumed by another thread which
immediately suspends itself again.
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Figure 7.9: Duration of several concurrent games featuring ten players
passing a token 10000 times around.

Figure 7.9 shows the total elapsed time to run up to 32 concurrent games
on each of the four systems. Since in each game only one player at a time
is running in principle, each game could in theory run on its own processor
and the total time should therefore always be about the same.

However, all systems reveal a more or less drastic deviation from the
ideal speedup when simulating a lot of games which we attribute to the
increased memory contention. The contention is due to awoken players
which get enqueued into the ready queue and might continue their execution
on a different processor.

As explained above, Linux dedicates a ready queue to each processor and
has therefore the smallest overhead. A2 as well as our runtime system use
shared ready queues instead which naturally causes more contention. The
growing difference in the overall running time of the two systems however
is due to the fact that our runtime system does not use a global lock to
protect the ready queues from concurrent access.
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7.2.7 Memory Allocation

The memory allocation micro-benchmark was designed to assess and com-
pare the performance of the heap managers of all considered systems under
high contention. The benchmark creates an increasing number of threads
which allocate and deallocate memory blocks in the following intricate way
in order to stress the memory managers as much as possible.

Each thread allocates a total number of 100000 memory blocks of ran-
dom size by performing 10000 pairs of alternating allocation and dealloc-
ation operations ten times in a row. This interleaving ensures an evenly
distributed load of the two operations independent from the number of con-
current threads. The sizes of the allocated memory are chosen randomly in
order to strain data structures like free lists equally. The resulting addresses
of the 10000 allocations are stored in a buffer which is thereafter inserted
in a global lock-free pool of buffers. Each thread retrieves one buffer from
this pool in order to perform the 10000 memory deallocations in reverse
order. The usage of these buffers guarantees that memory blocks are never
allocated and deallocated by the same thread which places an additional
burden on the memory manager.

Benchmarking our native runtime system, we use the built-in NEW and
DISPOSE functions provided by the programming language which map
onto the operations of the lock-free heap manager presented in Section 5.1.
Unfortunately, this micro-benchmark cannot be executed under A2 since
this system relies heavily on the garbage collector and does not allow its
users to deallocate memory explicitly. In order to allocate and deallocate
memory in Linux, we call the libc functions malloc and free which are
based on ptmalloc2 by Doug Lea and Wolfram Gloger [Glo06]. Under
Windows we use the API functions HeapAlloc and HeapFree instead.

Figure 7.10 on the facing page shows the results of running the bench-
marks on all three systems with three different upper limits for the random
sizes of the memory blocks. In comparison to the other systems, the res-
ults of all measurements clearly indicate that the performance of our heap
manager stays the same regardless of the actual block size. The overhead
per thread grows more or less linearly in each case and is mainly due to
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Figure 7.10: Allocating memory with varying maximal block sizes.
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the heavy memory contention surrounding the lock-free heap operations.
Linux and Windows on the other hand pursue different allocation strategies
depending on the size of the memory allocation. For small memory blocks,
both systems optimise the synchronisation overhead of concurrent access
by allocating memory blocks from preallocated superblocks dedicated to
each processor [Glo06, RSI12]. This is demonstrated by the respective
measurement results for a maximal block size of 100 bytes indicating no
memory contention whatsoever. Increasing the maximal block size reduces
the efficiency of using superblocks since they themselves have to be alloc-
ated using a different strategy. This is for example shown by the increased
overhead of Windows when allocating memory blocks with maximal size
of 1000 bytes. The length of superblocks usually equals the page size of the
machine which is often exceeded when allocating random sized memory
blocks of up to 10000 bytes. In this case, both systems presumably use
locks to protect the heap from concurrent access which is clearly indicated
by their exponentially growing run time.

This benchmark shows that our heap manager scales well regarding the
size of the requested memory and clearly outperforms implementations
based on locking synchronisation. This certainly includes A2 which always
allocates memory under mutual exclusion. However, the results also reveal
that there is much room for improvement for example by using processor-
local memory arenas in order to prevent memory contention altogether.

7.2.8 Memory Management

Automatic memory management in the form of the garbage collector is
optional in our runtime system and can be replaced by a manual memory
deallocation if desired. The following benchmark tries to compare the
performance of programs that either rely on the garbage collector or free
their allocated memory by hand. For this purpose, three different exemplary
data structures are used to store a total of 222 allocated objects called nodes.
The data structures in question are a contiguous array storing references
to the nodes, a singly linked list chaining the nodes, and a fully populated
binary tree of nodes.
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Figure 7.11: Comparison of manual and automatic memory management.

Figure 7.11 shows the total running time of allocating and deallocating
the nodes and storing them in one of the three different data structures.
For each data structure, the nodes are deallocated either manually or using
the garbage collector by invalidating the reference to the root node or the
array and performing a complete garbage collection cycle afterwards. The
benchmark measures the time for allocating the nodes as well because each
allocation includes the insertion of the node into the watched list in the
cases where the garbage collector is used.

Regarding the manual deallocation of the array which can be traversed
most efficiently out of the three data structures, the overhead of using an
automatic memory management corresponds to about 26%. In order to
deallocate the nodes stored in the linked list, the manual deallocation must
traverse the successor of each node. The binary tree on the other hand is
explicitly deallocated using a recursive function. In both cases, the actual
traversal of the data structure takes therefore more time than iterating over
an array and the overhead introduced by the garbage collector reduces to
approximately 17%.
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Because this benchmark does not require the garbage collector to mark
any objects, the overhead consists only of adding newly created nodes into
the linked list of watched objects and traversing them sequentially while
sweeping. As described in Section 5.3, the runtime system itself does not
rely on the garbage collector and deallocates all of its resources manually.

7.2.9 Garbage Collection Latency

An important characteristic of a runtime system with automatic memory
management is the latency caused by the garbage collector. The following
micro-benchmark tries to measure the impact of garbage collections on
concurrently running threads. For this purpose, the benchmark creates 32
threads in order to keep all cores of the server machine busy for ten minutes.
One of these threads repeatedly pauses for a short while and measures the
actual wall-clock time it was delayed. All other threads allocate objects of
1000 bytes in a tight loop and store the references to the last 5000 most
recent allocations in a buffer. The idea is to continuously trigger the garbage
collector with a realistic workload of alive objects and measure its impact
on the one thread that does not perform any memory allocations at all.

Windows and Linux being operating systems rather than runtime systems
for programming languages do not offer the functionality of automatic
memory management. Therefore, we compared the performance of A2
and our runtime system with the Java virtual machine provided by Open-
JDK version 7 running on top of Linux. As this Java platform allows its
users to select one of several different garbage collectors, we executed the
benchmark once for each available option. In order to achieve a runtime
environment comparable to the native case, we additionally configured the
initial and maximal heap size to compromise all of the 16 GB of main
memory where applicable.

Figure 7.12 on the next page shows the percentile distribution of the
latencies of all considered runtime systems and their garbage collectors. In
98% of all cases, none of the garbage collectors causes any considerable
delay on the measuring thread. Regarding higher percentiles however, the
various garbage collectors of the Java virtual machine one after another
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Figure 7.12: Percentile distribution of garbage collectors latencies.

begin to reveal latencies of up to 200 milliseconds and more. This even
applies to the concurrent mark sweep collector (CMS) and its successor
called G1, both of which are concurrent as well as incremental and designed
to decrease garbage collection pauses.

In contrast, the automatic memory management of A2 employs a mono-
lithic stop-the-world garbage collector which causes a maximal latency of
about 60 milliseconds. This relatively low duration stays almost constant
because it consists only of the time required to mark the object graph which
always contains the same amount of objects in this benchmark. The actual
sweep phase of the garbage collection does not cause any delay on the
measuring thread as it is lazily deferred to the object allocation performed
by the other threads.

The garbage collector of our runtime system on the other hand has no
intrusive impact whatsoever. This behaviour is to be expected as each thread
which detects an out of memory situation executes a garbage collection
cycle on its own. Since our garbage collector by design never interferes

167



7 Evaluation

with concurrent mutators or independent activities, there cannot be any
observable latency apart from scheduling. This would even apply to more
realistic settings where garbage collection cycles are usually also performed
periodically by dedicated activities.

7.3 Portability and Flexibility

In this last section of the evaluation of our runtime system we try to qualitat-
ively evaluate its portability and flexibility in comparison to other systems.

First of all, the design goals of achieving an uncompromising portability
and simplicity of the runtime system are directly reflected by the relative
shortness of its source code. Table 7.2 on the facing page for example
shows the complexity of the complete runtime system in terms of lines of
code in comparison to the equivalent source code of A2. The numbers have
been generated using cloc, a program that counts physical lines of source
code by removing blank lines and all comments. Although both systems
provide a similar set of features regarding the runtime support for Active
Oberon, our complete runtime system amounts to about 27% of the source
code of the A2 kernel. A notable component is the memory management
which requires only 357 physical lines of code for the implementation of
the complete heap manager including the garbage collector.

Comparing A2 and our runtime system with other systems is in most
cases either not feasible or unfair as they differ significantly in their design
and implementation. The scheduler of Linux for example provides a myriad
of additional features in direct comparison with our simplistic cooperative
scheduler. The corresponding C source code files named core.c, fair.c, and
wait.c implement basic scheduling primitives as well as the completely fair
scheduler [Mol07] and require almost twenty times more physical lines of
source code. The libc memory manager provided in the files malloc.c and
arena.c on the other hand needs about ten times more code. In general how-
ever, comparisons based on lines of code highly depend on the underlying
programming language as well as coding styles and must therefore always
be taken with a grain of salt.
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Component Lines Ratio

Interrupt Handling 299 75%
Memory Management 357 20%
Modules 82 17%
Multiprocessing 215 37%
Runtime Support 174 12%
Scheduler 547 37%

Total 1674 27%

Table 7.2: Size of various components of the runtime system in terms of
physical lines of code and its ratio in comparison to A2.

The relative shortness of its source code also automatically increases the
maintainability of the system. This asset is boosted by the fact that most
of the source code is completely portable and thus a simple recompilation
suffices to target a different machine. Only a total of six different functions
have to be rewritten in order to support memory allocations, high-level
interrupt handling, and multiple processors on a new target. For this reason,
the runtime system executes most of the time the same source code and
therefore behaves reliably and predictably on each machine it has been
ported to. This includes a broad range of platforms like tiny 8-bit AVR
microchips with only two kilobytes of SRAM, popular 32-bit ARM-based
boards like the Raspberry Pi, as well as powerful AMD64 server machines
with 64 cores and 128 GB of main memory.

Its low consumption of resources and its high platform independence
even render our runtime system interesting for architectures without shared
memory. In multiprocessing systems which use message passing instead,
the runtime system can be applied to provide lightweight multitasking on
a single processing unit. This is made possible for the most part by using
cooperative multitasking instead of preemption which allows the runtime
system to be even used on architectures that do not support interrupts or
hardware timers.
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8 Conclusion

This final chapter concludes this thesis by summarising our work and giving
various directions for possible improvements in the future. A comprehensive
list of the main contributions of this work can be found in Section 1.4 on
page 9.

8.1 Summary

In this dissertation we explored the synergy of lock-free programming
and cooperative multitasking in order to create a lock-free and portable
runtime system for modern object-oriented programming languages with
support for multithreading. Although both techniques have been investig-
ated intensively in isolation, their combination presents a novel and hardly
researched approach to lock-free programming. The capability of hindering
a non-blocking algorithm from involuntarily losing the control of execu-
tion renders several beneficial programming techniques possible. Besides
enabling practical progress guarantees for instance, this approach most
notably allows non-blocking algorithms to replace thread-local storage
with processor-local storage. We showed how this programming technique
facilitates lock-free algorithms to be bound only on the static number of
processors rather than the dynamic set of threads. The maximal number
of processors is always known in advance for any hardware architecture,
which allows to implement processor-local storage efficiently and also
readily accessible for inspection by any other processor.

One particular lock-free data structure that profits from this programming
technique are queues which employ the notion of hazard pointers in order
to guard intermediate nodes from unsafe reclamation. We explained how
our approach reduces the complexity of identifying hazardous nodes from
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linear time in the number of threads to constant time. This enabled us to
provide a memory-efficient implementation of a lock-free queue that reuses
intermediate nodes if the same elements are enqueued several times. Queue
operations do therefore not constantly allocate memory any more, an issue
that seems to be taken as granted in the standard literature but has never
been addressed before.

We used this improved lock-free queue extensively for the implement-
ation of the cooperative task scheduler because tasks qualify as elements
that are potentially enqueued and dequeued a lot during their lifetime. The
queues are part of a framework provided by the scheduler to implement vari-
ous synchronisation primitives in a lock-free manner. We explored simple
constructs like mutexes and events but also showed the implementation of a
full-featured object monitor. All of these synchronisation primitives make
use of the notion of task switch finalisers which are essential to recheck
synchronisation conditions in a non-blocking context.

In addition, we also provided a lock-free synchronisation primitive for
handling interrupts by awaiting their occurrence in a high-level fashion.
The design goal of implementing all components of the runtime system
in a lock-free manner has especially paid off in the context of implement-
ing low-level interrupt handlers. Since lock-free algorithms are inherently
reentrant, the complete set of data structures and operations of the runtime
system are available for use in interrupt handlers without further precaution.
Consequently, it is never necessary to disable interrupts which renders the
system as responsive as possible.

By replacing preemption with cooperative multitasking, the implementa-
tion of the scheduler and the runtime system has basically become machine-
independent and its source code is therefore highly portable. In order to
port the system to different architectures, only a small set of half a dozen
functions have to be adapted. While the runtime system can be used as a
kernel providing the essential service routines, its machine independence
also allows it to be linked as a library for applications running on top of
existing operating systems. The cooperativeness of the tasks created by
these applications are enforced by the compiler which supplements the
generated machine code with implicit cooperative task switches.
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In order to close the circle of the non-blocking runtime support for object-
oriented programming languages we also designed and implemented a
lock-free memory management. It consists of a lock-free memory allocator
that is capable of managing the complete main memory using one or more
distinct heaps represented as buddy systems. The memory associated with
the call stacks of activities is also represented using ordinary heap blocks.
This representation is enabled by runtime checks provided by the compiler
which render virtual memory management unnecessary in order to detect
stack overflows. Last but not least, we also devised a completely optional
garbage collector based on a lock-free mark and sweep algorithm which
naturally implies concurrent and incremental garbage collection cycles.

Our lock-free runtime system is based on the kernel of the A2 operating
system and designed to serve as an in-place replacement. The source code
of the runtime system is much smaller and therefore more maintainable in
comparison to the A2 kernel which is based on blocking synchronisation.
The evaluation also revealed that our runtime system outperforms A2 in
various aspects because of its non-blocking nature. Regarding other systems
like Windows and the Linux kernel, our work demonstrated comparable
performance in several cases although it provides a much different feature
set and abandons optimisations in favour of clarity and simplicity.

However, all of our measurements have shown that the naive percep-
tion that lock-free algorithms must by design be more efficient than their
blocking counterparts is misguided at best. With an increasing level of
contention, several hardware-dependent facilities transparent to the pro-
grammer like memory caches become a bottleneck for the throughput of
atomic operations and the overall performance of the system. In practice,
the introduction of some sort of contention management is indispensable
but only allows to absorb the performance impact to some degree.

The real worth of lock-freedom therefore rather lies in its progress guar-
antees and its implicit solution for all problems usually associated with
blocking synchronisation techniques. This includes issues like deadlocks,
priority inversion, convoying, and the disastrous consequences of failing
to release locks, which all completely vanish by design when using non-
blocking algorithms instead.

173



8 Conclusion

8.2 Future Work

Our evaluation has identified several aspects where our runtime system
could be improved in order to increase its performance. This basically
includes all data structures that are prone to high memory contention like the
ready queues of the scheduler or the free lists of the heap manager. Although
contention management techniques like constant backoff and aligning data
to the size of the cache line helped to reduce hardware inefficiencies, the
results as well as the comparison with long standing systems indicate that
memory contention should be avoided whenever possible.

A simple solution is duplicating all global data structures using processor-
local storage such that each processor can naturally access its dedicated
portion of the workload without any contention. Examples of this tech-
nique include the Linux kernel which uses ready queues dedicated to each
processor, or the Hoard memory allocator which allocates memory from su-
perblocks associated with individual processors [BMBW00]. The challenge
of this approach lies within the lock-free synchronisation of the processors
amongst each other in order to guarantee an evenly distributed workload.
Regarding an improved version of the heap manager applying this technique,
it is important to ensure that memory always stays available for further
allocation if its freed by a different processor than the one that allocated
it. A solution to this problem might also improve the currently suboptimal
implementation of the coalescing of adjacent free memory blocks.

Another approach to minimise the overall contention programmatically
is to extend the task selection model of the scheduler which is currently
practically sufficient but rather simplistic in comparison to the feature set
provided by schedulers of other operating systems. The introduction of
processor affinities for example would allow programmers to explicitly
assign tasks with a high potential for memory contention to a small set
of dedicated processors. Regarding the targeted simplicity of the runtime
system however, it is questionable whether these two approaches discussed
above are worth the effort since they presumably would require to replace
the comparatively simple ready queues by much more sophisticated lock-
free data structures.
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Another area needing improvement are the implicit cooperative task
switches generated by the non-optimising compiler. Although our measure-
ments have shown that the overhead of the instrumented machine code is
in general on par with alternatives based on preemption, we are convinced
that an optimising compiler could completely elide the checks in several
situations and reduce the overhead even further. The same applies also to
other implicitly generated runtime checks like the stack overflow check
presented in Section 5.2.

Since there is a relatively strong bond between the runtime system and
the compiler, other system components could profit from an optimising
compiler as well. For example, an analysing compiler could detect that a
reference to an object allocated in one particular procedure never leaves
the scope of that procedure. In this case, the allocated object does not need
to be registered in the watched list of the garbage collector as it can be
deallocated at the exit of the procedure. In fact, the corresponding local
variable holding the reference could be treated as untraced and does not
require to change the local reference counter of the object.

Conceptually, it would be worthwhile investigating whether our approach
of combining cooperative multitasking with lock-free programming also im-
proves the implementation of wait-free algorithms. By solving the problem
of potential starvation, wait-freedom would finally allow us to supplement
all operations of the runtime system with real-time guarantees.

On a more personal note, it would be interesting to evaluate the com-
parably high portability of the runtime system even more by bringing it to
a plethora of different platforms and embedded systems. Several popular
hardware architectures like MIPS and PowerPC based systems come to
mind, but also architectures based on message passing like XCore XS1 or
even microcontrollers like MicroBlaze which are available exclusively in
field-programmable gate arrays.
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A Digital Material

This dissertation includes a compact disk medium which provides the
following digital material:

• The binary code of the runtime system and the compiler targeting
AMD64 machines including detailed instructions for installation.

• The complete source code of the runtime system and the compiler
including an interactive demo program which offers the following
command interface to showcase our runtime system:

Demo.Line: Moves a random character across the screen.

Demo.Lines count: Executes the above command several times at
once by creating count threads as a stress test for the scheduler
presented in Chapter 4.

Demo.Allocate count size: Allocates and ignores count memory
blocks containing size bytes as a stress test for the heap manager
presented in Section 5.1. The resulting memory is deallocated
automatically by the garbage collector which is executed at
every full minute, if the free memory is exhausted, or by invok-
ing the command GarbageCollector.Collect.

Demo.Insert count: Adds count elements to a linked list in order
to stress the garbage collector while marking the object graph.

Demo.Clear: Invalidates the reference to the first element of the
global list causing all elements to be collected at the next cycle.

Demo.Recurse: Expands the stack several times as presented in
Section 5.2 by performing an infinite recursion causing a trap.

• The source code of all micro-benchmarks evaluated in Chapter 7.
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B Module Reference

This appendix describes the interface of all modules shown in Table 6.2
on page 139 and lists their contents in alphabetical order. All information
given hereafter was automatically extracted and generated from the source
files and is mainly intended for programmers maintaining the system.

B.1 Activities Module
The Activities module provides the runtime support for activities associ-
ated with active objects. It implements a basic task scheduler that distributes
the work of concurrent activities to logical processors. In addition, it also
provides a framework for implementing synchronisation primitives.

Interface Summary

Compiler Call Activities.Create
Activities.ExpandStack
Activities.Switch
Activities.Wait

Constant Activities.DefaultPriority
Activities.HighPriority
Activities.IdlePriority
Activities.RealtimePriority

Garbage Collection Activities.AssignmentsInProgress
Activities.IsLocalVariable

Interrupt Handling Activities.CallVirtual
Activities.CreateVirtualProcessor
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Activities.VirtualProcessor
Activities.awaiting

Procedure Activities.Call
Activities.GetCurrentProcessorIndex
Activities.SetCurrentPriority
Activities.TerminateCurrentActivity

Runtime Call Activities.Execute
Activities.Idle
Activities.Terminate

Scheduling Activities.Activity
Activities.FinalizeSwitch
Activities.GetCurrentActivity
Activities.Priority
Activities.Resume
Activities.Select
Activities.SwitchFinalizer
Activities.SwitchTo

B.1.1 Activities.Activity Object

Represents the handler identifying activities that are currently either running
or suspended.

TYPE Activity* = OBJECT (VirtualProcessor)
END Activity;

B.1.2 Activities.AssignmentsInProgress Procedure

Returns whether any activity is currently executing an assignment statement.

PROCEDURE AssignmentsInProgress- (): BOOLEAN;

B.1.3 Activities.Call Procedure

Creates a new activity that calls the specified procedure.
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PROCEDURE Call- (
procedure: PROCEDURE

);

B.1.4 Activities.CallVirtual Procedure

Temporarily exchanges the currently running activity with a virtual pro-
cessor in order to call the specified procedure in a different context.

PROCEDURE CallVirtual- (
procedure: PROCEDURE (value: ADDRESS);
value: ADDRESS;
processor: VirtualProcessor

);

B.1.5 Activities.Create Procedure

This procedure is called by the compiler for each NEW statement that creates
an active object. It associates an active object with a new activity that begins
its execution with the specified body procedure.

PROCEDURE Create- (
body: PROCEDURE;
priority: Priority;
object: BaseTypes.Object

);

B.1.6 Activities.CreateVirtualProcessor Procedure

Creates an activity that pretends to be executed on a distinct processor.

PROCEDURE CreateVirtualProcessor- (): VirtualProcessor;

B.1.7 Activities.DefaultPriority Constant

Indicates the default priority of new activities.

CONST DefaultPriority* = (* integer value *);
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B.1.8 Activities.Execute Procedure

Starts the scheduler on the current processor by creating a new activity
that calls the specified procedure. This procedure is called by the runtime
system once during the initialization of each processor.

PROCEDURE Execute- (
procedure: PROCEDURE

);

B.1.9 Activities.ExpandStack Procedure

Expands the stack memory of the current activity to include the specified
stack address and returns the corresponding address on the expanded stack.

PROCEDURE ExpandStack- (
address: ADDRESS

): ADDRESS;

B.1.10 Activities.FinalizeSwitch Procedure

Finalizes a task switch performed by calling the switch finalizer of the
previously suspended activity. This procedure must be called after each
invocation of the Activities.SwitchTo procedure.

PROCEDURE FinalizeSwitch-;

B.1.11 Activities.GetCurrentActivity Procedure

Returns the handler of the current activity executing this procedure call.

PROCEDURE GetCurrentActivity- (): Activity;

B.1.12 Activities.GetCurrentProcessorIndex Procedure

Returns the unique index of the processor executing this procedure call.

PROCEDURE GetCurrentProcessorIndex- (): SIZE;
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B.1.13 Activities.HighPriority Constant

Indicates a higher priority than the default.

CONST HighPriority* = (* integer value *);

B.1.14 Activities.Idle Procedure

This is the default procedure for initially idle processors starting the sched-
uler using the Activities.Execute procedure.

PROCEDURE Idle-;

B.1.15 Activities.IdlePriority Constant

Indicates the lowest priority used for idle processors.

CONST IdlePriority* = (* integer value *);

B.1.16 Activities.IsLocalVariable Procedure

Returns whether the specified address corresponds to a local variable that
resides on the stack of the current activity calling this procedure.

PROCEDURE IsLocalVariable- (
address: ADDRESS

): BOOLEAN;

B.1.17 Activities.Priority Type

Represents one of four different priorities of an activity.

TYPE Priority* = SIZE;

B.1.18 Activities.RealtimePriority Constant

Indicates the highest of all priorities.

CONST RealtimePriority* = (* integer value *);
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B.1.19 Activities.Resume Procedure

Resumes the execution of an activity that was suspended by a call to the
Activities.SwitchTo procedure beforehand.

PROCEDURE Resume- (
activity: Activity

);

B.1.20 Activities.Select Procedure

Returns whether there is an activity that is ready to run and has at least the
specified priority.

PROCEDURE Select- (
VAR activity: Activity;
minimum: Priority

): BOOLEAN;

B.1.21 Activities.SetCurrentPriority Procedure

Sets the priority of the current activity calling this procedure and returns
the previous value.

PROCEDURE SetCurrentPriority- (
priority: Priority

): Priority;

B.1.22 Activities.Switch Procedure

Performs a cooperative task switch by suspending the execution of the
current activity and resuming the execution of any other activity that is
ready to continue. This procedure is called by the compiler whenever it
detects that the time quantum of the current activity has expired.

PROCEDURE Switch-;

186



B.1 Activities Module

B.1.23 Activities.SwitchFinalizer Procedure Type

Represents a procedure that is called after the execution of an activity has
been suspended by the Activities.SwitchTo procedure.

TYPE SwitchFinalizer* = PROCEDURE (
previous: Activity;
value: ADDRESS

);

B.1.24 Activities.SwitchTo Procedure

Performs a synchronous task switch. The resumed activity continues its
execution by first calling the specified finalizer procedure with the given
argument. Each invocation of this procedure must be directly followed by a
call to the Activities.FinalizeSwitch procedure.

PROCEDURE SwitchTo- (
VAR activity: Activity;
finalizer: SwitchFinalizer;
argument: ADDRESS

);

B.1.25 Activities.Terminate Procedure

Terminates the module and disposes all of its resources.

PROCEDURE Terminate-;

B.1.26 Activities.TerminateCurrentActivity Procedure

Terminates the execution of the current activity calling this procedure. This
procedure is also invoked at the end of the body of an active object.

PROCEDURE {NORETURN} TerminateCurrentActivity-;
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B.1.27 Activities.VirtualProcessor Object

Represents the handler of an activity that resembles a virtual processor.

TYPE VirtualProcessor* = OBJECT (Queues.Item)
END VirtualProcessor;

B.1.28 Activities.Wait Procedure

This procedure is called by the compiler while executing a WAIT statement.
It awaits the termination of all activities associated with an active object.

PROCEDURE Wait- (
object: BaseTypes.Object

);

B.1.29 Activities.awaiting Variable

Stores an atomic counter indicating the number of activities that are awaiting
interrupts to occur. The scheduler stops its execution if all processors are
idle, unless there are activities waiting for interrupts.

VAR awaiting*: Counters.AlignedCounter;

B.2 ExclusiveBlocks Module
The ExclusiveBlocks module implements object monitors and provides
runtime support for block statements marked as exclusive.

Interface Summary

Compiler Call ExclusiveBlocks.Await
ExclusiveBlocks.Enter
ExclusiveBlocks.Exit
ExclusiveBlocks.FinalizeAwait

188



B.2 ExclusiveBlocks Module

B.2.1 ExclusiveBlocks.Await Procedure

Temporarily releases an acquired monitor and waits for other activities to
modify the object by entering and exiting an exclusive region. The compiler
calls this procedure whenever the repeated evaluation of an AWAIT statement
yields an unsatisfied condition.

PROCEDURE Await- (
object: BaseTypes.Object

);

B.2.2 ExclusiveBlocks.Enter Procedure

Enters an exclusive region by acquiring the monitor of the corresponding
object. If the monitor is currently acquired by another activity, this pro-
cedure waits until it gets exclusive access to it. The compiler calls this
procedure at the beginning of each block statement marked as exclusive.
The specified nesting level keeps track of how many times the same activity
has acquired the monitor.

PROCEDURE Enter- (
object: BaseTypes.Object;
nestingLevel: SIZE

);

B.2.3 ExclusiveBlocks.Exit Procedure

Exits an exclusive region by releasing the monitor of the corresponding
object if its nesting level reaches zero. The compiler calls this procedure at
the end of each block statement marked as exclusive or during the execution
of a RETURN statement inside such blocks. A monitor may not be released
if it was not acquired by the same activity beforehand.

PROCEDURE Exit- (
object: BaseTypes.Object;
nestingLevel: SIZE

);
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B.2.4 ExclusiveBlocks.FinalizeAwait Procedure

Guarantees that all other activities awaiting a condition will evaluate it
again when the current activity leaves the exclusive region. The compiler
calls this procedure after the evaluation of an AWAIT statement has yielded
a satisfied condition.

PROCEDURE FinalizeAwait- (
object: BaseTypes.Object

);

B.3 GarbageCollector Module
The GarbageCollector module provides an automatic memory man-
agement for pointers allocated using the NEW statement. It implements a
concurrent and interruptible mark and sweep garbage collection.

Interface Summary

Compiler Call GarbageCollector.Assign
GarbageCollector.AssignArray
GarbageCollector.CompareAndSwap
GarbageCollector.Mark
GarbageCollector.MarkArray
GarbageCollector.Reset
GarbageCollector.ResetArray
GarbageCollector.Watch

Procedure GarbageCollector.Collect
Runtime Call GarbageCollector.Initialize

GarbageCollector.Terminate
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B.3.1 GarbageCollector.Assign Procedure

Performs the assignment of a pointer variable. This procedure is called by
the compiler when assigning variables of pointer type.

PROCEDURE Assign- (
VAR pointer: BaseTypes.Pointer;
value: BaseTypes.Pointer

);

B.3.2 GarbageCollector.AssignArray Procedure

Performs the assignment of an array containing pointers. This procedure is
called by the compiler when assigning arrays of pointer type.

PROCEDURE AssignArray- (
VAR target: ARRAY OF BaseTypes.Pointer;
CONST source: ARRAY OF BaseTypes.Pointer

);

B.3.3 GarbageCollector.Collect Procedure

Performs a complete garbage collection cycle by marking the object graph
and disposing all unreachable objects. Garbage can be collected concur-
rently if necessary.

PROCEDURE Collect*;

B.3.4 GarbageCollector.CompareAndSwap Procedure

Executes an atomic compare-and-swap operation on a pointer variable. This
procedure is called by the compiler when executing CAS expressions.

PROCEDURE CompareAndSwap- (
VAR pointer: BaseTypes.Pointer;
previousValue: BaseTypes.Pointer;
value: BaseTypes.Pointer

): BaseTypes.Pointer;
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B.3.5 GarbageCollector.Initialize Procedure

Initializes the module and its resources.

PROCEDURE Initialize-;

B.3.6 GarbageCollector.Mark Procedure

Marks the specified pointer as reachable. This procedure is called by the
compiler while tracing outgoing pointers of marked objects.

PROCEDURE Mark- (
pointer: BaseTypes.Pointer

);

B.3.7 GarbageCollector.MarkArray Procedure

Marks an array of pointers. This procedure is called by the compiler while
tracing arrays of pointer type.

PROCEDURE MarkArray- (
CONST pointers: ARRAY OF BaseTypes.Pointer

);

B.3.8 GarbageCollector.Reset Procedure

Resets a pointer variable. This procedure is called by the compiler when
assigning NIL to variables of pointer type.

PROCEDURE Reset- (
VAR pointer: BaseTypes.Pointer

);

B.3.9 GarbageCollector.ResetArray Procedure

Resets an array of pointers. This procedure is called by the compiler for
resetting all elements of array variables containing pointers.
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PROCEDURE ResetArray- (
VAR pointers: ARRAY OF BaseTypes.Pointer

);

B.3.10 GarbageCollector.Terminate Procedure

Terminates the module and disposes its resources and all remaining pointers
that have been registered using the GarbageCollector.Watch procedure.

PROCEDURE Terminate-;

B.3.11 GarbageCollector.Watch Procedure

Registers the specified pointer for automatic memory management. This
procedure is called by the compiler when a pointer or object type is allocated
using the NEW statement.

PROCEDURE Watch- (
pointer: BaseTypes.Pointer

);

B.4 Heaps Module
The Heaps module provides a lock-free data structure called Heap that
handles memory management. A heap manages the allocation and dealloca-
tion of blocks of various sizes within a contiguous memory region.

Interface Summary

Procedure Heaps.Allocate
Heaps.Deallocate
Heaps.GetSize
Heaps.Initialize
Heaps.IsValid

Record Heaps.Heap
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B.4.1 Heaps.Allocate Procedure

Allocates a block of memory with the requested size from the specified
heap. The return value is the first address of the allocated memory, or NIL
if the heap as no more free memory.

PROCEDURE Allocate- (
size: SIZE;
VAR heap: Heap

): ADDRESS;

B.4.2 Heaps.Deallocate Procedure

Deallocates a memory block that was previously allocated using a call to
the Heaps.Allocate procedure.

PROCEDURE Deallocate- (
address: ADDRESS;
VAR heap: Heap

);

B.4.3 Heaps.GetSize Procedure

Returns the size of an allocated block of memory.

PROCEDURE GetSize- (
address: ADDRESS;
CONST heap: Heap

): SIZE;

B.4.4 Heaps.Heap Record

Represents a heap which manages a contiguous memory region. Heaps
have to be initialised using the Heaps.Initialize procedure before they
are available for memory allocations.

TYPE Heap* = RECORD END;
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B.4.5 Heaps.Initialize Procedure

Initializes a heap that manages the memory region encompassed by the
specified address range. The memory area must be owned by the caller
and may not overlap with other heaps. This procedure must be called once
before memory can be allocated from the corresponding heap.

PROCEDURE Initialize- (
VAR heap: Heap;
begin: ADDRESS;
end: ADDRESS

);

B.4.6 Heaps.IsValid Procedure

Checks whether an address is a valid heap address.

PROCEDURE IsValid- (
address: ADDRESS;
CONST heap: Heap

): BOOLEAN;

B.5 Interrupts Module
The Interrupts module provides a hardware-independent synchronisation
primitive for awaiting the occurrence of interrupts. Activities waiting for an
interrupt are suspended and resumed as soon as the interrupt occurred.

Interface Summary

Procedure Interrupts.Await
Interrupts.Cancel
Interrupts.Install

Record Interrupts.Interrupt
Runtime Call Interrupts.Terminate
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B.5.1 Interrupts.Await Procedure

Waits for the specified interrupt to occur. This procedure returns as soon as
the interrupt has to be handled, or if the wait was cancelled by a call to the
Interrupts.Cancel procedure.

PROCEDURE Await- (
VAR interrupt: Interrupt

);

B.5.2 Interrupts.Cancel Procedure

Resume all activities that are waiting for the specified interrupt.

PROCEDURE Cancel- (
VAR interrupt: Interrupt

);

B.5.3 Interrupts.Install Procedure

Installs an interrupt to wait for. The actual meaning of the specified interrupt
number identifying the interrupt depends on the hardware.

PROCEDURE Install- (
VAR interrupt: Interrupt;
index: SIZE

);

B.5.4 Interrupts.Interrupt Record

Represents an interrupt.

TYPE Interrupt* = RECORD END;

B.5.5 Interrupts.Terminate Procedure

Terminates the module and disposes all resources associated with interrupts.

PROCEDURE Terminate-;
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B.6 Processors Module
The Processors module represents all logical processors of the system.

Interface Summary

Constant Processors.Maximum
Procedure Processors.GetCurrentIndex
Runtime Call Processors.Initialize

Processors.Terminate
Scheduling Processors.ResumeAnyProcessor

Processors.StartAll
Processors.SuspendCurrentProcessor

Variable Processors.count

B.6.1 Processors.GetCurrentIndex Procedure

Returns the unique index of the processor executing this procedure call.

PROCEDURE GetCurrentIndex- (): SIZE;

B.6.2 Processors.Initialize Procedure

Initializes the module by enumerating all available processors.

PROCEDURE Initialize-;

B.6.3 Processors.Maximum Constant

Indicates the maximal number of logical processors that are supported by
the system.

CONST Maximum* = (* integer value *);
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B.6.4 Processors.ResumeAnyProcessor Procedure

Resumes the execution of a single suspended processor. This procedure
may not be called if there is only one processor in the system.

PROCEDURE ResumeAnyProcessor-;

B.6.5 Processors.StartAll Procedure

Starts the execution of all available processors. This procedure may not be
called if there is only one processor in the system.

PROCEDURE StartAll-;

B.6.6 Processors.SuspendCurrentProcessor Procedure

Suspends the execution of the current processor. A suspended processor
must be resumed by a call to the Processors.ResumeAnyProcessor
procedure. This procedure may not be called if there is only one processor
in the system.

PROCEDURE SuspendCurrentProcessor-;

B.6.7 Processors.Terminate Procedure

Terminates the module and waits for all other processors to stop their
execution.

PROCEDURE Terminate-;

B.6.8 Processors.count Variable

Holds the actual number of processors in the system.

VAR count-: SIZE;
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B.7 Queues Module
The Queues module provides a lock-free data structure called Queue. A
queue is a sequential container which allows to append elements at the back
of it and to remove the elements at its front.

Interface Summary

Object Queues.Item
Procedure Queues.Dequeue

Queues.Dispose
Queues.Enqueue

Record Queues.AlignedQueue
Queues.Queue

Runtime Call Queues.Terminate

B.7.1 Queues.AlignedQueue Record

Represents a first-in first-out data structure which is aligned for optimal
cache behavior.

TYPE AlignedQueue* = RECORD (Queue) END;

B.7.2 Queues.Dequeue Procedure

Removes the first element at the front of a queue and returns it in a variable
parameter. If there are no elements in the queue, the procedure returns
FALSE and sets the variable parameter to NIL.

PROCEDURE Dequeue- (
VAR item: Item;
VAR queue: Queue

): BOOLEAN;
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B.7.3 Queues.Dispose Procedure

Disposes the elements of a queue.

PROCEDURE Dispose- (
VAR queue: Queue

);

B.7.4 Queues.Enqueue Procedure

Appends an element at the back of a queue.

PROCEDURE Enqueue- (
item: Item;
VAR queue: Queue

);

B.7.5 Queues.Item Object

Represents an abstract element of a queue.

TYPE Item* = OBJECT
END Item;

Procedure Item.Finalize

Queues.Item.Finalize Procedure

Finalizes the element by disposing any resources associated with it.

PROCEDURE Finalize-;

B.7.6 Queues.Queue Record

Represents a first-in first-out data structure.

TYPE Queue* = RECORD END;
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B.7.7 Queues.Terminate Procedure

Terminates the module and disposes all of its resources.

PROCEDURE Terminate-;
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C Enhancements to the Active Oberon
Programming Language

Any implementation of an operating system that targets multiprocessing
environments requires some sort of specialised hardware support. However,
one of the most important objectives of this thesis was to maximise the
portability of its source code across different hardware architectures. The
use of a high-level programming language allows to access the necessary
hardware features in a portable way. By this means, the corresponding
hardware abstraction layer can be provided by the implementation of the
programming language and related software development tools.

The current implementation of the lock-free runtime system presen-
ted in this thesis was written using the Active Oberon programming lan-
guage [Rea04]. Although this language provides a simple yet powerful
base for the necessary hardware abstraction, some important features have
still been missing. This appendix summarises all changes and additions
to the Active Oberon programming language that were necessary in order
to achieve full machine independence. It therefore assumes some basic
familiarity with Active Oberon and its development tools. Most of the
modifications address portability issues that hindered the same source code
from being compilable for different targets. Other enhancements concern
inconvenient shortcomings or minor oversights in the initial design of the
programming language.

Each issue listed in the following sections is accompanied by a short
rationale for the modification and provides informative examples for the
enhanced syntax or semantics where possible. However, the information in
this appendix is not intended to replace the original language specification.
The issues raised hereafter are rather suggestions to take into consideration
in a potential future rendition of the Active Oberon report.
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C.1 Atomic Compare-And-Swap

All data structures and algorithms employed in this thesis are based on the
atomic compare-and-swap operation. It is the only atomic operation that
has to be provided by the hardware architecture.

Change: Added a new built-in CAS procedure for atomically comparing
and exchanging the values of shared variables.

Syntax: PROCEDURE CAS (VAR variable: T; old, new: T): T;

Semantics: This procedure compares the value of the variable named in
the first argument with the value of the second argument. If the two
values of basic or reference type match, the variable is overwritten
with the value of the third argument. The result is equal to the original
value of the variable. The whole operation is executed atomically
and never interrupted by any other activity. If the second and third
argument are the same, the whole operation effectively equals to an
atomic read of a shared variable.

Example: Other atomic operations like test-and-set can be implemented
on top of the CAS procedure:

PROCEDURE TAS* (VAR value: BOOLEAN): BOOLEAN;
BEGIN RETURN CAS (value, FALSE, TRUE);
END TAS;

C.2 Memory Model

The original Active Oberon report does not specify how concurrent activities
interact when operating on shared variables without proper synchronisa-
tion. A memory model defines how shared memory behaves in this case
and is crucial for lock-free programming. Having no guarantees for non-
blocking algorithms, programmers often made implicit assumptions about
the implementation chosen by their particular compiler.
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Change: Added the definition of a simple memory model which provides
basic guarantees required by portable non-blocking programs.

Semantics: The memory model requires that concurrent access to shared
data must be either protected by exclusive blocks or performed by an
atomic compare-and-swap operation. The detailed rules are specified
in Section 2.2.2.

C.3 Variable Initialisation

The original language specification assures a default value of NIL for all
local variables of reference type. This hinders pointers from referencing
arbitrary memory and thus allows effective NIL pointer checks. However,
all other variables have no default value and store an arbitrary value if not
initialised properly.

Change: Variables in modules, procedures, records, and objects can be
automatically initialised with a constant expression.

Syntax: IdentDef = ident ["*"|"-"] [":=" ConstExpr].

Semantics: The optional constant initialiser of a variable works as if there
was an assignment to that variable at the beginning of the body of the
corresponding scope. The value has therefore to be compatible with
the type of the variable. Fields of records can be initialised the same
way. Variables of objects are initialised before the execution of their
initialiser. The original rule for variables of reference type still holds
because they have an implicit := NIL initialiser.

Example: Initialisers for variables of record types often spare an explicit
call to a corresponding procedure that ensures a proper initialisation
and make the code shorter and safer:

TYPE Counter* = RECORD value := 0: INTEGER END;
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C.4 Accessing Externally Defined Symbols

Sometimes it is necessary to access data or procedures that are provided by
a different software development tools. This includes external application
programming interfaces or low-level functionality written in assembly code
or other programming languages.

Change: Global variables and procedures may be declared as EXTERN.

Syntax: IdentDef = ident ["*"|"-"] ["EXTERN" string].

An external procedure does not have a procedure body or a declara-
tion sequence. Its syntactical definition is completed after the semi-
colon delimiting the procedure signature.

Semantics: The declaration of an external variable or procedure does not
generate any actual data or code. Accessing the value of an external
variable or calling an external procedure actually refers to the symbol
named in the string literal following the EXTERN keyword.

Example: Low-level code often needs access to data structures which are
initialised by assembly programs. An interrupt vector table provided
by a low-level bootloader serves well as an illustrative example:

MODULE CPU;
TYPE Vector = ARRAY 32 OF PROCEDURE;
VAR interrupts* EXTERN "vector_table": Vector;
END CPU.

C.5 Portable Integer Types

Active Oberon provides four integer types: SHORTINT, INTEGER, LONGINT,
and HUGEINT. All of them are signed and represent integral values with
preassigned bit widths of 8, 16, 32, and 64 respectively. However, there is
no notion of an integral type that has the default integer bit width of the
target hardware architecture.
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In the course of time, the lack of such a distinguished type led to an
overuse of the LONGINT type. Depending on context, this may be acceptable
for code that runs on 32-bit machines. But regarding machines with a default
word size of 16 bits, LONGINT type could be excessive. On architectures
with 64 bits words on the other hand, it may be misrepresentative.

Change: Complemented the integral types with two new integer types
called WORD and LONGWORD which have a machine-dependent bit
width.

Syntax: Type = ... | WORD | LONGWORD.

Semantics: The type WORD is merely a synonym for an existing integral
type that fits best to the default word size of the target machine. On
8-bit and 16-bit machines, the type typically equals the INTEGER type.
On 32-bit and 64-bit machines, the type is often equal to LONGINT.
The type LONGWORD is a synonym for an existing integral type that
fits best to the default address size of the target machine.

Example: The new types are very useful when accessing functionality
that is provided by a different software environment like for example
assembly code or application programming interfaces:

PROCEDURE {NORETURN} Exit EXTERN "exit" (status: WORD);

For the very same reason as above, the type LONGINT was also abused
for representing addresses and memory ranges in low-level code. This is
obviously only valid for hardware architectures with a 32-bit address space.
Without a proper type for representing memory addresses with differing
bit widths, the corresponding source code cannot be ported easily to other
architectures. Additionally, the signed nature of the integral types render
comparison operations on memory addresses highly questionable. In cases
where memory ranges are represented in a high-level fashion using arrays,
the same issues also arise concerning the type of the array length and the
indices used to access individual elements.
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Change: Added the unsigned types ADDRESS and SIZE for representing
addresses and array lengths with the proper bit width.

Syntax: Type = ... | ADDRESS | SIZE.

Semantics: Both types are distinct integral types that are not compatible
with any other basic type. Signed integral types are compatible with
both types if they have the same or lower bit width.

The SIZE type allows all integral operations and is necessary for
specifying array lengths and indices. The unary SIZE OF operator re-
turns the size of any basic or reference type and is useful to determine
the word or address size of the machine.

The type ADDRESS only allows comparison operations as well as
addition with a SIZE type yielding another address, while the dif-
ference of two addresses yields a SIZE type. All reference types are
implicitly convertible to the ADDRESS type and yield the address of
the referenced object. The address of a variable or procedure can be
determined using the unary ADDRESS OF operator.

Example: The new SIZE type allows to represent all kinds of lengths:

PROCEDURE GetLength (CONST string: ARRAY OF CHAR): SIZE;
VAR length := 0: SIZE;
BEGIN

WHILE string[length] # 0X DO INC (length) END;
RETURN length;

END GetLength;

C.6 Unified Debugging Facilities
The only built-in debugging facilities of Active Oberon are the ASSERT and
HALT statements. They allow to check whether preconditions of procedures
or other invariants are satisfied at runtime. However, in order to print values
of expressions for debugging purposes, programmers often use various and
inconsistent output methods which have a typically cumbersome interface.
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C.7 Unsafe Pointers

Change: Added a new built-in TRACE procedure for convenient debugging.

Syntax: PROCEDURE TRACE (expr1: T1 {; exprN: TN});

Semantics: The TRACE procedure prints arbitrary expressions, the value
thereof, as well as the corresponding location in the source code to
the standard output. If an expression is of basic or reference type, the
TRACE procedure prints a textual representation of the corresponding
value. For structured types, the printed value is equal to the address
of the first element. Concurrent calls to the TRACE procedure are
sequentialised yielding a consistent view on the data.

Example: The TRACE procedure is easy to use, unifies the format of all
debugging outputs, and is highly recognisable in code reviews. A
call to the Add procedure defined below generates the following
diagnostic message:

module ‘Test’ procedure ‘Add’ line 6:
‘x’ = 4, ‘y’ = 8, ‘result’ = 12, ‘result = x + y’ = TRUE

MODULE Test;
PROCEDURE Add* (x, y: WORD): WORD;
VAR result: WORD;
BEGIN

result := x + y;
TRACE (x, y, result, result = x + y);
RETURN result;

END Add;
END Test.

C.7 Unsafe Pointers
Typically, low-level Active Oberon code makes heavy use of the built-in
procedures SYSTEM.PUT, SYSTEM.GET, and variations thereof. The goal is
most often to manipulate data structures which cannot be accessed directly
using standard language features. Examples include meta data generated by
the compiler or data structures defined by the hardware.
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Change: Pointer types can be annotated as UNSAFE in order to access
arbitrary memory using default language features.

Syntax: Type = ... | "POINTER" ["{" "UNSAFE" "}"] TO Type.

Semantics: A variable of type ADDRESS can be assigned to a variable
of pointer type annotated as UNSAFE. The referenced memory can
therefore be accessed as if it was mapped as a record or an array.
Unsafe pointers are not compatible with default pointer types.

Example: The stack frames of a call stack can be portably accessed by an
unsafe pointer to record:

PROCEDURE TraceCallStack*;
TYPE StackFrame = RECORD previous, caller: ADDRESS END;
VAR frame: POINTER {UNSAFE} TO StackFrame;
BEGIN

frame := ADDRESS OF frame + SIZE OF ADDRESS;
REPEAT

TRACE (frame.caller);
frame := frame.previous;

UNTIL frame = NIL;
END TraceCallStack;

C.8 Manual Memory Deallocation
Active Oberon as specified in its original report relies on a garbage collector
that manages all resources allocated from free storage. However, garbage
collection may be unsuitable for software like real-time applications because
of its non-deterministic delays and execution overhead. In order to provide
an execution environment for this kind of software, our runtime system was
designed to be able to optionally omit the automatic memory management
completely. It is therefore necessary to extend the programming language
to allow programmers to deallocate resources by hand. The runtime system
itself always manages all of its resources manually and does hence not rely
on garbage collection.
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C.9 Object Finalizers

Change: Added a new built-in DISPOSE procedure that deallocates an
object from free storage.

Syntax: PROCEDURE DISPOSE (VAR variable: PTR);

Semantics: The value passed to this procedure must be an object or a
pointer to an array or record that was previously allocated using
the NEW procedure. The variable is reset to the value NIL after the
memory is released to free storage. The reference type has to be
marked explicitly with the DISPOSABLE modifier in order to enable
manual memory deallocation on instances of this type.

Example: Garbage collection spares the developer from manual memory
deallocation but can still suffer from memory leaks if unused ob-
jects stay reachable long enough. If applied properly, the DISPOSE
procedure does not leak memory and releases it immediately:

PROCEDURE Free (VAR tree: POINTER {DISPOSABLE} TO Node);
BEGIN

IF tree.left # NIL THEN Free (tree.left) END;
IF tree.right # NIL THEN Free (tree.right) END;
DISPOSE (tree);

END Free;

C.9 Object Finalizers

The Active Oberon report defines object initialisers which are procedures
that are automatically called whenever an object is created. Regarding
the symmetry of object allocation and deallocation, the language lacks an
equivalent mechanism for automatically calling a procedure whenever an
object is destroyed.

Change: Methods tagged with a tilde are object finalisers.

Syntax: ProcHead = ["&" | "~"] IdentDef [FormalPars].
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Semantics: Object finalisers are automatically called once when an object
instance is deallocated using the built-in DISPOSE procedure. They
follow the same set of rules defined for object initialisers except that
they may not have any parameters in their signature.

Example: Object finalisers allow to deallocate resources managed by act-
ive objects whose lifetime is non-deterministic:

TYPE Driver* = OBJECT
VAR buffer: POINTER {DISPOSABLE} TO ARRAY OF CHAR;

PROCEDURE &Initialize*;
BEGIN NEW (buffer, 1024);
END Initialize;

PROCEDURE ~Finalize*;
BEGIN DISPOSE (buffer);
END Finalize;

BEGIN {ACTIVE}
...

END Driver;

C.10 Proper Synchronisation of Active Objects
Sometimes it is necessary to wait for an active object to complete its active
body. This kind of synchronisation is achieved by using the monitor of the
active object to await a condition that is only satisfied at the very end of the
active body. Although this technique is often sufficient in practice, it does
strictly speaking not guarantee that the activity has actually completed its
execution. This deficiency becomes apparent when resources like the call
stack are released because the active object is erroneously assumed to have
completed its active body.

Change: Added a new built-in WAIT procedure for waiting on the termina-
tion of active objects.
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C.11 Improved Handling of Runtime Errors

Syntax: PROCEDURE WAIT (object: OBJECT);

Semantics: A call to this procedure awaits the termination of all activities
associated with an active object. An activity terminates, if it success-
fully completes its execution or aborts it because of an exception.
This procedure effectively guarantees that an object is passive. It may
not be called within the initialiser or body of an active object because
the active body can never run to completion.

Example: An active object can be safely deallocated after its termination:

PROCEDURE Work;
VAR object: OBJECT {DISPOSABLE} BEGIN {ACTIVE} ... END;
BEGIN

NEW (object);
...
WAIT (object);
DISPOSE (object);

END Work;

C.11 Improved Handling of Runtime Errors
Recent implementations of Active Oberon added a simplistic form of excep-
tion handling in the form of the FINALLY statement [Sze05]. It allows to
catch and react properly to traps generated by the runtime system. Examples
of such failures include unsatisfied assertions, referencing a NIL pointer, or
using an array index that is out of range. However, all of these traps indicate
programming errors and it is highly questionable whether they should be
handled at all.

Change: Dropped the support for the FINALLY statement.

Semantics: Without loss of generality, any code protected by a FINALLY
statement can be executed by a special-purpose active object. The
original code including the FINALLY statement can then be replaced
by code that creates that active object and waits for it to terminate.
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Example: The following procedure calls a procedure variable and returns
whether the call succeeded or resulted in a runtime failure:

PROCEDURE CallSafely* (procedure: PROCEDURE): BOOLEAN;
VAR caller: Caller; result: BOOLEAN;
BEGIN

NEW (caller, procedure); WAIT (caller);
result := caller.succeeded;
DISPOSE (caller); RETURN result;

END CallSafely;

TYPE Caller = OBJECT {DISPOSABLE}
VAR procedure: PROCEDURE;
VAR succeeded := FALSE: BOOLEAN;

PROCEDURE &Initialize (procedure: PROCEDURE);
BEGIN SELF.procedure := procedure;
END Initialize;

BEGIN {ACTIVE}
procedure; (* this procedure may fail *)
succeeded := TRUE;

END Caller;

C.12 Uncooperative Blocks

The implementation of the scheduler is based on implicit cooperative task
scheduling. Task switches are emitted by the compiler at various places
in the compiled code as described in Section 4.2.4. In order to implement
the task switches themselves using the very same software development
tools, it is necessary to be able to temporarily disable the emission of task
switches.

Change: Introduced the UNCOOPERATIVE modifier for statement blocks.

Syntax: StatBlock = "BEGIN" ["{" "UNCOOPERATIVE" "}"] ...
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C.13 Unchecked Blocks

Semantics: The compiler omits all implicit task switches in a statement
block annotated with the UNCOOPERATIVE modifier. This has the
effect that the executed code does never voluntarily give up the
control nor cooperatively pass it to another activity.

Example: All lock-free algorithms profit from uncooperative blocks be-
cause they limit the maximal number of activities that concurrently
execute the code. This offers several advantages which are described
in detail in Section 2.3.1. The following atomic increment operation
for instance is based on the algorithm shown in Listing 2.2 on page 26
and cannot be executed by more concurrent activities than there are
processors in the system:

PROCEDURE Increment* (VAR counter: Counter): INTEGER;
VAR previous, value: INTEGER;
BEGIN {UNCOOPERATIVE}

REPEAT
previous := CAS (counter.value, 0, 0);
value := CAS (counter.value, previous, previous + 1);

UNTIL value = previous;
RETURN previous;

END Increment;

C.13 Unchecked Blocks
The compiler generates several different implicit runtime checks that pre-
vent programs from corrupting or accessing invalid memory. This most
prominently includes null pointer and array bound checks as well as stack
overflow checking as described in Section 5.2. In order to be able to imple-
ment these runtime checks using the same compiler without causing infinite
recursion, it is necessary to temporarily disable their generation similar to
uncooperative blocks.

Change: Introduced the UNCHECKED modifier for statement blocks.

Syntax: StatBlock = "BEGIN" ["{" "UNCHECKED "}"] ...
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Semantics: The compiler does not generate any runtime checks inside an
unchecked statement block and completely relies on the programmer
to provide correct code. Explicit checking for erroneous conditions
in an unchecked block remains possible using the ASSERT statement.

Example: Any procedure called while expanding an exceeded stack must
be unchecked in order to prevent the compiler from expanding the
stack recursively. One important operation thereof is copying the
contents of the old stack into the new and enlarged stack memory as
described in Section 5.2. The following type represents individual
stack frames in the new stack memory which can be used to adapt
all pointers into the old stack. The compiler provides extensions of
this type for procedures with variable parameters and overwrites the
Move method accordingly:

TYPE StackFrame* = OBJECT {UNSAFE}

VAR descriptor-: ADDRESS;
VAR previous-: ADDRESS;
VAR caller-: PROCEDURE;

PROCEDURE Move* (offset: SIZE);
BEGIN {UNCOOPERATIVE, UNCHECKED}

IF previous # NIL THEN INC (previous, offset) END;
END Move;

END StackFrame;

C.14 Reentrant Exclusive Regions

The original Active Oberon report states that an activity cannot enter an ex-
clusive region more than once. Experience with existing Active Oberon pro-
grams has shown however, that this artificial restriction misled developers
into duplicating a lot of protected procedures. The only difference of the
duplicated code is the omission of the exclusive block modifier.
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C.14 Reentrant Exclusive Regions

Change: Explicitly allow reentrancy into exclusive regions.

Semantics: The same activity may enter an exclusive region more than
once. The corresponding protected object is locked until the activity
leaves the outermost exclusive block. If the condition of an AWAIT
statement is not satisfied, the lock on the protected object is released
completely.

Example: Whether or not a supercall to an overridden method is actually
valid according to the old semantics, depends on whether the over-
riding as well as the overridden procedures enter an exclusive region
simultaneously. With the relaxed rule, the developer of an overriding
method can always enter an exclusive region if necessary regardless
of whether a subsequent supercall might do the same. It is therefore
not required to know the actual implementation of the overridden
procedure any more:

TYPE Base = OBJECT

PROCEDURE Method*;
BEGIN {EXCLUSIVE}

...
END Method;

END Base;

TYPE Extension = OBJECT (Base)

PROCEDURE Method*;
BEGIN {EXCLUSIVE}

...
Method^;
...

END Method;

END Extension;
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