
A Compiler-Supported Unification of Static and

Dynamic Loading

Felix Friedrich and Florian Negele
Computer Systems Institute, ETH Zürich, Switzerland

{felix.friedrich,negelef}@inf.ethz.ch

Abstract

In order to provide certain dynamic inference methods such as type
tests, garbage collection or method dispatch, metadata for the runtime
system of a programming language have to be made available. Such data
structures are usually represented using a specific format in object files
and are generated during load time. On the way to a particularly simple
to understand object file format we found an approach that renders the
separation of data and metadata unnecessary. This permits a unification
and simplification of static and dynamic loading and makes it possible to
concentrate modifications of a system to compiler and runtime. It thus
increases the maintainability of a system substantially.

1 Introduction

Nearly all modern programming languages are at runtime supported by a run-
time system that provides metadata necessary for the provision of dynamic
inference methods, such as method dispatch, type tests, garbage collection, ex-
ception handling, module loading and unloading etc. Such data structures are
usually represented using a specific format in object files and are generated when
an object file is loaded.

Additions and modifications of runtime features of our programming lan-
guage led to a modification of the relevant runtime data structures. Therefore
the object file format became increasingly complex over time. Also the involved
tools such as the compiler, loader, linker and decoder had to be adapted ac-
cordingly and everything became hard to maintain and understand. We had
the idea to exploit the co-design of language, compiler and runtime system to
define a new object file format that is particularly simple to understand, easily
maintainable and expandable, can be statically linked and dynamically loaded
with the same tools and makes it possible to concentrate modifications of the
system to as little parts of the code as possible, i.e. to runtime and compiler but
not to loader and linker.

Although our ideas are universal and do not depend on a special imple-
mentation, we will describe and explicate the new approach with the runtime

support of the programming language Active Oberon, a modular programming
language in the tradition of Pascal and Modula.

2 Common Object File Formats

This section discusses the features of some popular object file formats with
respect to the metadata contained therein. Although all of them do feature
portability across different environments, they incorporate metadata in a pro-
prietary format.

• Portable Executable [2]

The Portable Executable (PE) file format subdivides the metadata stored
therein into two distinct categories. First of all, the headers of the file
format describe the physical contents of the file in terms of sections that
are loaded into memory by a linker. All data and code that must be
loaded can be described using different sections with different settings. On
the other hand, there is a so called image data directory which describes
metadata that is to be used from within the loaded code itself. This
data structure stores various tables with information for exporting and
importing symbols, exception handling, debugging and other architecture-
specific issues. Each of the 16 tables has its own distinct format and is
represented differently in the object file.

When a Portable Executable file is loaded, the whole contents of the image
data directory is directly copied into memory. After that all file offsets
of referenced elements within this data structure are replaced by corre-
sponding memory addresses. This way, the data structure is ready to be
examined by the runtime system without further transformations.

• Executable and Linkable Format [5]

The Executable and Linkable Format (ELF) consists of various headers
which describe the contents of the rest of the file. This content is parti-
tioned into sections which are used to represent all binary code and data
in memory at runtime. Metadata is mostly stored within sections rather
than taking over a distinct place in the object file. However, the meaning
of the binary content of each section depends on its type and differs for
every form of metadata stored therein.

The reason why metadata is represented using a special format that differs
from the binary contents of the object file is mainly twofold. On the one hand,
the metadata may have to be checked before it is transformed and represented in
memory. Secondly, the linker process may be the only one that has the necessary
access rights to data structures that have to be updated by the metadata.

However, this design suffers from the following problems. Both cases imply
that the linking process itself may be more complex than just loading the binary
contents and resolving references therein. In addition to this increased cost of

Feature Meta-Data
Type test Type descriptor
Method dispatch Type descriptor
Dynamic module loading List of loaded modules
Command execution List of commands in module
Garbage collection Pointer offsets in heap and stack frames
Exception handling Handled code areas and handlers
(Post mortem) debugging Symbol information for stack frames

Table 1: Features and corresponding metadata for Active Oberon.

loading at run-time, the generated metadata has also to be stored in a specific
format at compile-time. This means that the original metadata of the tool-chain
may be transformed twice or even more times into a special format, before it
can be actually used at run-time. Furthermore, if the designer of the tool-chain
or runtime system modifies some characteristics of the metadata, the object file
format as well as the linker have to be adapted accordingly. One goal of the
design of the new object file format was to overcome all of these problems while
still providing the performance of data structures that are directly loaded into
memory.

3 Metadata of Active Oberon

In this section we describe the runtime components of a system that supports
dynamic module loading. As indicated in the introduction, we use the runtime
structures supporting the programming language Active Oberon (cf. [6], [3], [4])
as an example. Active Oberon is a type-safe, object oriented, modular program-
ming language in the tradition of Pascal and Modula. It is garbage collected and
features mechanisms for the creation and synchronization of multiple threads
using monitors.

Table 1 provides a list of features that are supported by Active Oberon
and that require that compiler and runtime system establish a reference to the
relevant metadata.

To support the features listed in Table 1 the object files evidently have to
comprise the relevant metadata in one form or the other. The binary object
file format of Active Oberon adopted prior to this work consisted of sections
that provided metadata in a proprietary format that all tools such as compiler
and loader had to be able to understand. Table 2 lists the sections of this old
object file format and indicates the storage data for each section. Naturally
we do not go into details of the storage format here, we only make the remark
that sections and data records were tagged with sentinels to find inconsistencies
of the format in a reliable way. Moreover, hash values representing the inter-
face of the imported and exported symbols were (and still are) used to detect
inconsistencies during loading of object files (admitting so called ‘fine grained
fingerprinting’, cf. [1]).

Section Name Purpose Data Stored
Code executable code sequence of bytes
Constants constant data sequence of bytes
Commands Commands list of: name, arg type, ret type, code

offset
Pointers Addresses of global

pointer variables
list of pointer offsets

PtrsInProcs pointers in procedures list of: code offset, begin offset, end off-
set, number pointers, list of pointers.

Imports imported modules list of module names
Links fixup lists code and data offsets of fixup queues

and case tables
Exports exported symbols list of: code offset, fingerprint, entry, ex-

port type
Use references to imported

modules and system
calls

module name, scope, entry, fingerprint

Types description of types list of: name, base module, base name,
methods (etc.)

Refs debugging (long proprietary format)
ExceptionTable exception handling ta-

ble
list of: pc from, pc to, pc handler refer-
ence

Table 2: Sections of a traditional object file of Active Oberon.

4 The Linking Process: Static vs. Dynamic Link-
ing

In the following, by (dynamic) loading we denote the loading of object files
together with the subsequent preparation of runtime data structures in a running
system. By (static) linking we mean the loading of object files together with the
subsequent preparation of a (kernel-)image that, once loaded to a fixed address,
is intended to be running on bare hardware.

The way modules are integrated into a system or kernel from object files in
a system with static and dynamic loading is slightly different. However, any
linker or loader must provide at least a mechanism to patch fixups (i.e. resolve
symbols) when arranging sections in memory or in a binary boot image. In the
conventional setup, metadata are generated from designated parts of the object
file stored in a proprietary format.

We first consider the process of dynamically loading a module into a run-
ning system. For gaining a shallow understanding, Listing 1 contains the run-
time data structures representing loaded modules in the Active Oberon runtime
system. It is the job of the loader to

• recursively load all imported modules that are not yet loaded,

• allocate a module data structure,

• load and allocate code and data sections,

• parse metadata from the object file to create and fill in all runtime data
structures (such as type descriptors, pointer offset, exception handlers
etc.)

• patch all fixups to symbols located in the module and in imported modules.

The Previous Approach: Static Linking using a Simulated Heap

Surprisingly, static linking is conceptually even more complicated than dynamic
loading in this context. This is due to the fact that the runtime system relies
on the consistency of its static and dynamic components, i.e. the modules in
the statically linked kernel and the dynamically loaded modules on top must be
represented in the same way. It is thus important that a statically linked kernel
reflects a system that behaves as if its modules had been loaded (and allocated)
by a loader at runtime. One way to solve this hen and egg problem is to use a
simulated heap.

The idea is to allocate a pseudo-heap and adopt a simulated module loading
to place all modules and required data structures in this heap. Then store the
heap as an array of bytes. Therefore a working simulation of the loading and
allocating functionalities of the runtime system has to be provided. In essence,
this means that a substantial part of the runtime system has to be cloned and
slightly modified, for example to protect data structures from being garbage

Module= object
var

next∗: Module; (∗ modules are queued in a global list ∗)
name∗: Name; (∗ name of this module ∗)
init , published: boolean;
refcnt ∗: longint (∗ #modules importing this module ∗)
modules∗: pointer to array of Module; (∗ imported modules ∗)
data∗, code∗, staticTypeDescs∗, refs∗: Bytes; (∗ code, data, debugging info ∗)
command∗: pointer to array of Command; (∗ commands ∗)
ptrAdr∗: pointer to array of address; (∗ pointer offsets in global variables∗)
typeInfo∗: pointer to array of TypeDesc; (∗ type descriptors ∗)
procTable∗: ProcTable; (∗ table containing procedure layout information ∗)
ptrTable∗: PtrTable; (∗ table containing pointers in procedures ∗)
export∗: ExportDesc; (∗ export descriptors ∗)
term∗: procedure; (∗ termination procedure ∗)
exTable∗: ExceptionTable; (∗ exception handling ∗)

end Module;

Listing 1: Runtime data structures of modules

collected by the runtime system. The so modified loader has to imitate the
functionality of the dynamic loader and to patch addresses in the pseudo-heap.
The advantage of this approach is that the linker indeed imitates the behavior
of the runtime system and thus generates an image ‘as if the loader has always
been there’.

However this approach has also disadvantages: The loader and all relevant
data structures (such as the module displayed in Listing 1) are duplicated. A
modification of the kernel implies a lot of work and is error-prone. A reduction
of the complexity is hardly possible. Moreover, cross-linking to other platforms
is impossible, providing a real show-killer for this approach.

5 The New Approach

As indicated in the previous sections, it was our goal to come up with an ap-
proach that provides a unification of loading and linking. Moreover, modifi-
cations of the language and runtime system should be reflected only in the
compiler and the runtime system but not in all other tools dealing with object
files. Recall that the linker and the loader have to provide at least a facility to
patch fixups.

Of course it is necessary that metadata are made available in the runtime
after load- and boot time. Our trick is that the compiler generates all metadata
in ordinary data sections and uses the fixup mechanism to ensure that the
necessary links are established by loader and linker. This has the following
implications:

• The object file consists of code and data sections only. No further section

module M;
import Trace;

type
A = object end A;
B = object (A) end B;

procedure TypeTest(a: A);
begin

if a is B then Trace.String(”a IS B”); end;
end TypeTest

end M.

Listing 2: A sample module M

types have to be introduced.

• For a modification of the runtime structures only the compiler and little
parts of the runtime modules have to be adapted.

• Loader and linker do only need to arrange data in memory / kernel image
and patch the fixups.

• Loader and linker are nearly identical and can use the same code base for
patching fixups.

Optimizations, such as sorting and generation of hash-tables for symbols, can
still be performed by the loader. We do not have to sacrifice performance.

An Example

For an illustration of the new approach Listing 2 displays a very small module.
To illustrate how meta data are generated and referenced in the generated object
file it contains a simple type test. During loading of module M, the runtime
data as displayed in Listing 1 have to be generated from the object file by the
loader.

A part of the object file generated from module N is displayed in Listing 3 in
a textual format. The object file format is described in detail in the appendix
of this paper. However, without looking into any details, the reader can gain
a rough understanding how the fixup mechanism of the linker will provide the
referencing of the module data structure to procedure TypeTest and to the type
descriptor of B.

Metadata Registration

The linker does not have any knowledge about the metadata contained in an
object file. The registration of the metadata into the runtime system conse-

const M.@Module −533068328 8 aligned 4 12 220
(∗ fixups ∗)
Modules.Module 1561901731 1 abs 76 0 1 0 32 1 84
M.@CommandArray −877097149 1 abs 32 0 1 0 32 1 144
M.@PointerArray 1604245058 1 abs 32 0 1 0 32 1 148
M.@TypeInfoArray 1732675305 1 abs 32 0 1 0 32 1 152
M.@ProcTable 1783720974 1 abs 32 0 1 0 32 1 160
...

const M.B 287569012 8 aligned 4 3 96
(∗ fixups ∗)
M.B 287569012 2 abs 72 0 1 0 32 1 60 abs 80 0 1 0 32 1 76
M.A 2028155916 1 abs 72 0 1 0 32 1 64
M.B@Info −796607100 1 abs 0 0 1 0 32 1 68
....

code M.TypeTest −2126198741 8 aligned 1 3 45
(∗ fixups ∗)
M.B 287569012 1 abs 72 0 1 0 32 1 12
M.@const0 −380732481 1 abs 0 0 1 0 32 1 30
Trace.String −696762289 1 rel −4 0 1 0 32 1 35
(∗ code ∗)
55985EB8D780B877CF18E74F00000000F048500000009EC0000000A670860000
00008E9DFFFFFF98CED52C4000

const M.@ProcTable 1783720974 8 aligned 4 4 88
(∗ fixups ∗)
Heaps.SystemBlockDesc −88187294 1 abs 72 0 1 0 32 1 4
M.@ProcTable 1783720974 1 abs 32 0 1 0 32 1 12
M.TypeTest −2126198741 4 abs 0 0 1 0 32 1 48 abs 45 0 1 0 32 1 52 ...
M.@Body −509539564 4 abs 0 0 1 0 32 1 68 abs 38 0 1 0 32 1 72 ...
...

Listing 3: Part of the object file of sample module N

module N;

procedure P;
begin ... end P;

begin P
end N.

Listing 4: A sample module N

. initcode N.$$BODYSTUB // guaranteed to be executed if statically linked
0: call u32 Test.$$Body:0,0

.bodycode N.$$Body // called by loader or from initcode
0: enter 0,0
1: push u32 N.@Module:21
2: call u32 Modules.PublishThis:0,4 // try registration of module
3: brne u32 N.$$Body:7, u8 $RES, 1 // if not successful then escape
4: call u32 N.P:0,0 // otherwise execute body (call P)
5: push uew N.@Module:21
6: call u32 Modules.SetInitialized :0,4 // .. and mark module initialized
7: leave 0
8: return 0

Listing 5: Part of the intermediate code of the sample module N

quently has to take place in the code that is executed. Therefore the linker has
to make sure that the registering code gets executed.

In the modular programming language Active Oberon, the body of a module
provides the initialization code of a module. It has to be executed at module
load time and therefore provides the ideal place for metadata registration. Thus,
our compiler instruments the code for module registration in the body. This is
illustrated with the sample code provided in Listings 4 and 5 in source code and
intermediate code, respectively.

6 Evaluation

To be able to judge the benefit of the new approach, we measured the complexity
of the implementations very roughly by code size. Tables 3 and 4 comprise the
lines of code and number of characters of the source code and the size of the
compiled modules for all components necessary to compile, link and load an
object file using the old and new approach, respectively. The sizes of the new
approach are substantially smaller than those of the old one. In addition, the
new object file approach allows the addition of more supported targets without
major modifications and any change in the kernel do only imply modifications

Module Lines Of Code Characters Code Size
Linker0 1554 57k 26k
Linker1 887 28k 17k
Linker 95 3k 3k
Loader 891 28k 18k
Object File Writer 2009 71k 37k
Sum 5456 187k 101k

Table 3: Numbers for the old approach

Module Lines Of Code Characters Code Size
Generic Object File Writer 278 8k 6k
Compiler Object File Writer 135 5k 6k
Generic Linker 238 8k 8k
Static Linker 400 16k 10k
Loader 380 12k 6k
Sum 1427 49k 36 k

Table 4: Numbers for the unified approach

of the compiler and runtime system, not the loader and linker.

7 Conclusion

The increasingly complex format of the previously used object files of our op-
erating system, also had dramatic impact on the complexity of the loader and
linker. One of the goals of the development of a new object file format was to
reduce the complexity of the format and therefore also of the tools that generate
and process object files. The search for a simple format fulfilling these goals led
to interesting observations.

First of all, there was the idea to treat metadata differently from the way
most of currently used object file formats do. We instead proposed to unify
binary data as well as metadata using the same representation for both. Not
having to distinguish between the two automatically reduced the complexity of
the object file, since everything that has to be stored can be represented as plain
binary content. The duty of both the linker and the loader therefore boiled down
to the two fundamental functions of arranging the binary content in memory
and resolving inter-references therein. Both tools could therefore be unified
and are essentially the same. Together with the carefully chosen fixup format,
the linker and loader gained full cross-linking capabilities. Finally, all phases
during compilation, linking and loading that process object files do not depend
on the actual content or layout of the metadata stored therein any longer. This
naturally decreased the code size of the tool-chain and the runtime system while
increasing the maintainability of them substantially.

A Object File Representation

Object files are represented as a set of uniquely identified sections. Each section
contains the binary data of code or global data that naturally maps to an entity
of the programming language like procedures or global variables. Sections may
contain information about how this binary data has to be placed in memory
by a linker. In addition each section contains a list of fixups that refer to
other sections. Fixups specify how the linker has to modify the binary data
with the unique address of the referenced section once it has been placed. The
remainder of this section describes the information stored in section in more
detail and shows how it is used during linking.

A.1 Section Types

Each section has a specific section type which describes the content and the
role of the binary data stored within the section. It can be one of the following
types.

• Standard Code Sections

Standard code sections contain ordinary code and are usually used to
model procedures. They are typically called from within other code sec-
tions. Standard code sections have no special requirements for their place-
ment in memory other than an optional alignment.

• Initializing Code Sections

Initializing code sections are special code sections that are placed by linkers
at the very beginning of a statically linked image. This guarantees that
all initializing code sections are executed automatically before any other
code section when the execution control is transferred to the image. This
is used to generate all necessary calls to the procedure bodies of Active
Oberon modules in a platform-independent way.

• Body Code Sections

Body code sections are just standard code sections used to identify the
bodies of Active Oberon modules. This is used while dynamically loading
the module where the runtime system instead of the code itself has to call
the procedure body of the module.

• Standard Data Sections

Standard data sections provide the space and contents of global data. This
data is usually modified during the execution of a program by the code
within code sections. Data sections may contain predefined data that is
initialized accordingly by the linker.

• Constant Data Sections

Constant data sections are data sections that are not supposed to change
their contents during the execution of the program. They are used to
model global constant data like strings.

A.2 Section Fixups

The sections in an object file refer to each other on various occasions. The
binary code in code sections usually needs the relative address of a procedure
when calling it. Data sections on the other hand are oftentimes used to store
the absolute address of other data or code sections. This interconnection of
sections is provided by section fixups that are contained within sections.

Each section fixup refers to a single section by name. The name has to
be resolved by a linker and is replaced by the corresponding memory address.
Section fixups additionally store a list of patches which specify how this memory
address has to be patched within the binary contents of the section. A patch
stores information that allows to specify whether the address has to be patched
relative or absolute with respect to the address of the binary data where the
patch happens. This place is specified by an offset relatively to the beginning of
the binary contents. In addition, the address can be displaced as well as shifted
before it is finally written to binary data.

A list of patch patterns specifies how the patched address is actually written
to the binary data. A pattern consists of an offset relative to the patch offset
as well as a signed number of bits that specifies the size of the pattern and its
direction. For each pattern in the list, the specified amount of bits are taken
from the patched address and written at the specified offset. The direction of the
pattern specifies whether the offset increases or decreases during this process,
and allows therefore to conform to endianness constraints. Before continuing
with the next pattern, the patched address is shifted accordingly by the size of
the pattern.

A.3 Linking Phases

The linker processes object files in several phases which are described below.

1. Reading

All object files are read from disk. Besides the binary format that is used
for fast input, there exists also a human readable text format to represent
object files as shown in Figure 1 in this appendix.

2. Resolving

The fixup list of each section is traversed and their names are resolved in
order to remove unreferenced sections.

3. Arranging

All referenced sections are placed in memory adjacent to each other ac-
cording to their section type and optional alignment constraints. The

binary contents of the section is copied to the resulting unique address.
A section may be fixed in which case the object file dictates the memory
address where the section has to be placed.

4. Fixup Patching

The fixup list of each section is traversed again in order to get the addresses
of the resolved sections. For each patch of a single pattern the address is
patched as specified and written to the memory according to the list of
patch patterns.

The actual bit size of the unit of some quantities used during linking is config-
urable and stored separately for each section. This link mechanism as described
above is generic enough to allow to conform to any possible bitmask predefined
by any instruction set architecture. Therefore, object files as presented here
allow to store any binary code and data for any hardware architecture.

References

[1] R. B. J. Crelier. Separate compilation and module extension. Phd thesis,
ETH Zürich, 1994.

[2] Microsoft Corporation. Microsoft Portable Executable and Common Object
File Format Specification, 2010. Revision 8.2.

[3] P. J. Muller. The Active Object System Design and Multiprocessor Imple-
mentation. PhD thesis, ETH Zrich, 2002.

[4] P. R. C. Reali. Using Oberon’s active objects for language interoperability
and compilation. PhD thesis, ETH Zrich, 2003.

[5] A. Telephone and T. Company. System V application binary interface:
UNIX System V. UNIX software operation. Prentice-Hall, 1990.

[6] N. Wirth and J. Gutknecht. Project Oberon : the design of an operating
system and compiler. ACM Press, New York etc., 1992.

ObjectFile = {Section}.

Section = Type Name Unit Relocatability

NumberOfFixups NumberOfBits

{Fixup} {Octet} [Sentinel].

Type = "code" | "initcode" | "bodycode" |

"data" | "const".

Name = identifier Fingerprint.

Fingerprint = integer.

Unit = integer.

Relocatability = "aligned" Alignment | "fixed" Address.

Alignment = Unit.

Address = Unit.

NumberOfFixups = integer.

Fixup = Name NumberOfPatches {Patch}.

NumberOfPatches = integer.

Patch = Mode Displacement ShiftScale

NumberOfPatterns {Pattern}

NumberOfOffsets {Offset}.

Mode = "abs" | "rel".

Displacement = Unit.

ShiftScale = integer.

NumberOfPatterns = integer.

Pattern = BitOffset NumberOfBits.

BitOffset = integer.

NumberOfBits = integer.

NumberOfOffsets = integer.

Offset = Unit.

Octet = hexadecimal-digit hexadecimal-hexdigit.

Sentinel = "n".

Figure 1: Textual object file format expressed in EBNF

