
Dynamic Operator Overloading in a Statically

Typed Language

Olivier L. Clerc and Felix O. Friedrich

Computer Systems Institute, ETH Zürich, Switzerland
olivier.clerc@alumni.ethz.ch, felix.friedrich@inf.ethz.ch

October 31, 2011

Abstract

Dynamic operator overloading provides a means to declare operators
that are dispatched according to the runtime types of the operands. It
allows to formulate abstract algorithms operating on user-defined data
types using an algebraic notation, as it is typically found in mathematical
languages.

We present the design and implementation of a dynamic operator over-
loading mechanism in a statically-typed object-oriented programming lan-
guage. Our approach allows operator declarations to be loaded dynam-
ically into a running system, at any time. We provide semantical rules
that not only ensure compile-time type safety, but also facilitate the im-
plementation. The spatial requirements of our approach scale well with a
large number of types, because we use an adaptive runtime system that
only stores dispatch information for type combinations that were encoun-
tered previously at runtime. On average, dispatching can be performed
in constant time.

1 Introduction

Almost all programming languages have a built-in set of operators, such
as +, -, * or /, that perform primitive arithmetic operations on basic data
types. Operator overloading is a feature that allows the programmer to
redefine the semantics of such operators in the context of custom data
types. For that purpose, a set of operator implementations distinguished
by their signatures has to be declared. Accordingly, each operator call
on one or more custom-typed arguments will be dispatched to one of the
implementations whose signature matches the operator’s name and actual
operand types.

For certain target domains, operator overloading allows to express al-
gorithms in a more natural form, particularly when dealing with mathe-
matical objects. Overloading also adds a level of abstraction, as it makes
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it possible to refer to a specific operation by the same symbol, irrespective
of the data type. For some matrix-valued variables, the mathematical ex-
pression -(a + b * c) is obviously much more natural than some nested
function calls MatrixNegation(MatrixSum(a, MatrixProduct(b, c)) or
chained method calls a.Plus(b.Times(c)).Negative(), as some object-
oriented languages allow.

1.1 Static vs. Dynamic Operator Overloading

In statically-typed languages, operators are typically also dispatched in
a static fashion, which is also known as ad-hoc polymorphism. That is,
the static types of the arguments determine which implementation is to
be called 1. Since all of the static types are resolved by the compiler, the
whole operation can be performed at compile-time without any impact on
the runtime performance.

Whereas static overloading can be seen as a mere naming convenience,
dynamic operator overloading truly adds new expressivity to a language.
Dynamically overloaded operators are a special case of what is also known
as multi-methods, i.e., methods that are dispatched with respect to the
runtime types of multiple arguments. For example, when the expression
(a * b) / (c * d) is evaluated, it may depend on the concrete runtime
types the two products evaluate to, what implementation is selected to
perform the division. Because a dynamic dispatch generally has to be
deferred until runtime, it consequently introduces an additional runtime
overhead.

1.2 Motivation

Late-binding of operators opens the door for new optimizations. One
can express how an operation is performed in general, and then provide
additional, more efficient implementations for data of certain subtypes.
Naturally, this can also be achieved for operations on single arguments by
using ordinary virtual methods, which are overridden by the relevant sub-
types. However, methods are not suitable to refine operations on multiple
arguments, such as a multiplication.

For instance, the * operator may be used to define a general matrix
multiplication on the type pair 〈Matrix, Matrix〉. With the introduction of
a subtype SparseMatrix that represents sparse matrices 2, more efficient
implementations may be provided for three different scenarios:

1. The case where the sparse matrix is multiplied from the left hand
side: 〈SparseMatrix, Matrix〉.

2. The same for the right hand side: 〈Matrix, SparseMatrix〉.
3. And also, when both operands are known to be sparse:
〈SparseMatrix, SparseMatrix〉.

A possible application of this is a software library for linear algebra
in which mathematical objects, such as vectors, matrices and tensors,

1The static return type might possibly also be included.
2That is, matrices that contain mostly zeros.
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are modeled as object types. Algorithms on those object types could
be written in an abstract form using ordinary mathematical notation.
The same algorithms would then automatically be executed differently,
depending on the type of data they are applied on.

In our preceding work, the need for dynamic operators originated dur-
ing the development of so called Array-Structured Object Types (cf. [5]),
which are a special kind of object types that implement the interface of an
array. For instance, they allow to implement a sparse matrix, such that it
can be referred to as a regular 2-dimensional array in spite of the fact that
a compressed storage scheme is used. However, as soon as an instance of
such a type is passed to a procedure that accepts any array, only the dy-
namic type of the parameter tells its dedicated storage scheme apart from
a regular one. Without looking at the runtime type, operations on such
objects can only access the data elements through the general array in-
terface, i.e., sparse matrices would have to be treated as normal matrices
when arithmetic operations are performed on them.

1.3 Our Vision

The goal of this work was to integrate dynamic operator overloading
into an object-oriented and statically-typed language without abandoning
type-safty. We wanted to have a clear and coherent language design that
allows static and dynamic operators to coexist. Both operands of a binary
operator should be treated equally, which implies that binary operators
should not be members of either of the two object types 3.

Runtime errors due to operator overloading should be ruled out by a
strict set of semantical rules to be enforced by the compiler. The return
types of operators should be forced to be non-contradictory, such that each
operator call is handled by an implementation that returns a compatible
value.

As with multi-methods, an operator call should be dispatched to the
implementation that has the highest specificity. This measure should be
defined according to a clearly-defined concept of type-distance.

Furthermore, the runtime overhead of the dynamic dispatch should
not compromise the performance of a statically-typed compiled language.
(1) The implementation should be time-efficient, i.e., perform a dynamic
double dispatch in amortized constant time. Morever, (2) it should also
be space-efficient, which excludes compiler-generated lookup-tables for all
possible type combinations 4.

In addition to that, (3) we wanted our implementation to support
dynamic module loading. That is, it should be possible to load new mod-
ules containing additional operator declarations into a running system
such that the new sub-operators are immediately incorporated, without
recompilation of the existing modules.

3Conceptually, binary operators reside in the Cartesian product of two types.
4Unless some form of compression is adopted.
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1.4 Related Work

The Common Lisp language is probably the most famous example of a
language whose object system natively supports multi-methods [3].

The Python language does not have this feature, however, multi-
dispatching capabilities can be added by means of libraries [7].

In Microsoft’s C# language, dynamic overloading capabilities were
introduced with the advent of a special dynamic type that acts as a place-
holder for types that are only resolved at runtime [2]. However, since
static type checking is bypassed for expressions of this type, no guaran-
tees can be given for a dynamic operator call as to whether it will be
handled successfully. The same applies to the type id of the Objective-C
language [1].

A sophisticated mechanism for dynamic multi-dispatching is presented
in [4], which is both time- and space-efficient. In this approach, the com-
piler generates a lookup automaton that takes the sequence of runtime pa-
rameter types one after the other as input. A limitation of this approach
is that the generated transition-arrays, which represent the automaton,
have to be regenerated from scratch if a new multi-method (e.g., dynamic
operator) or subtype is introduced. Therefore, this approach is not suit-
able for a system in which modules containing new types and operators
are added incrementally by means of separate compilation and dynamic
module loading.

In [8] and [9], a language called Delta is presented that accommodates
a multitude of dynamic features, amongst others dynamic operator over-
loading. In this language overloaded operators constitute normal mem-
bers of an object type. The operator call a x b is evaluated as a member
function call a.x(b). Whereas a’s dynamic type is automatically incor-
porated in the dispatch to the corresponding member function, the type
of b is not. A second dispatch on the type of this parameter has to be
programmed manually within the function. In [8] a Delta-specific design
pattern is provided, which achieves this. It requires the programmer to
list all possible right operand types along with an implementation in a
table. The problem with this is that operator calls can only be handled
if the right operand type matches exactly with one that was listed in the
table.

2 Background

2.1 Subtype Polymorphism

In an object-oriented environment, operator overloading should respect
subtype polymorphism. That is, the fact that an instance of a type can
be also treated the same way as the ones of the type it was derived from.
In the context of operators, this means that an operator implementation
should not only be applicable to objects of the types it was directly de-
clared for, but also to any of their subtypes. For example, an operator
defined on the type Matrix should also be applicable to instances of the
subtype SparseMatrix. As a consequence, there is generally more than
one operator declaration whose signature is compatible to some actual
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operands. This ambiguity can be seen in the motivational example in
Section 1.2. Due to subtype polymorphism, any of the provided opera-
tor implementations could handle a multiplication of two sparse matri-
ces. However, an implementation that is defined defined for the type pair
〈SparseMatrix, SparseMatrix〉 is the most preferable one.

2.2 Sub-Operator Relationship

Similar to the sub-type relation on single object types, a sub-operator
relationship can be established between operators. A sub-operator pro-
vides the implementation of an operation in a more special case than its
super-operators do. Formally, we define an operator O1 to be a direct
sub-operator of O2 if, and only if, both share the same name and if one of
O1’s operand types is a direct subtype of its counterpart in O2. Accord-
ingly, O2 then is a super-operator of O1. The sub-operator relationship is
transitive and defines a partial order on the set of operators. Note that the
sub-operator relation between two equally named unary operators directly
corresponds to the subtype relation of the operands.

Let L and R be some object types, L′ and R′ their direct subtypes, and
finally, L” and R” some second order descendants. Furthermore, let us
assume that there are no other types in the system. For a binary operator
× that is defined on the pair 〈L,R〉, the graph in Figure 1 contains a node
for all possible sub-operators.

L' × R' 

L" × R" 

L × R 

L' × R L × R' 

L" × R' L' × R" 

L × R" L" × R 

implemented 

unimplemented 

is sub-operator of 

is handled by 

Figure 1: Sub-operator graph for an operator × on 〈L,R〉.

In this graph, a directed edge is present if the first node represents a
direct sub-operator of the second one.
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2.3 Type-Distance and Specificity

A concept of type-distance between operators can established to express
their similarity. More precisely, we define the type-distance of two op-
erators as the number of direct sub-operator relations between them.
This corresponds to the length of the path between their nodes along
the directed edges in the sub-operator graph. E.g., the distance between
〈L”, R”〉 and 〈L,R〉 in Figure 1 is 4. Unrelated operators, such as 〈L”, R′〉
and 〈L,R”〉, have an infinite distance.

In particular, the measure of type-distance can be used to describe the
specificity of an operator declaration with respect to a concrete operator
call. That is, how closely the declaration’s signature matches the call.
However, on its own, it is not suitable to determine which operator dec-
laration should be picked, as there generally is more than one declaration
at the shortest type-distance. For instance, the nodes 〈L′, R′〉 and 〈L,R”〉
both have the shortest type-distance to 〈L′, R”〉. In order to resolve this
ambiguity, we decided that the operator whose first formal operand has a
more concrete type should be given precedence. According to this, 〈L′, R′〉
would have a higher specificity than 〈L,R”〉, because L′ is a subtype of
L.

3 The Language

We demonstrate our concept on the basis of a language named Math
Oberon (cf. [6]), which is a mathematical extension of Active Oberon and
thus a descendant of the language Pascal.

3.1 Declaration of Operators

An implementation of an operator for some formal operand types is pro-
vided by the programmer in an operator declaration, which looks much
like the definition of a procedure. Listing 1 shows the exemplary module
M containing two declarations of this kind 5.

module M;
type
Super∗ = object ... end Super;
Middle∗ = object(Super) ... end Middle;

(∗ M.+ [1] ∗)
operator "+"∗(left, right: Super): Super;
begin ...
end "+";

(∗ M.+ [2] ∗)
operator {dynamic} "+"∗(left, right: Middle): Middle;
begin ...
end "+";

end M.

Listing 1: Module M.

5The asterisks in the code have the effect that the declared types and operators are acces-
sible from other modules.
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Note that the actual code of the implementations was omitted. Be-
cause the object type Middle is defined as a subtype of Super, the first
operator declaration defines a super-operator of the second one.

Listing 2 illustrates a second module called N, which imports M. Ad-
ditionally, Sub is introduced as a subtype of Middle, along with two new
operators that are defined on this type. Both of them are sub-operators
of the ones that are imported from the other module.

module N;
import M;
type
Sub∗ = object(M.Middle) ... end Sub;

(∗ N.+ [1] ∗)
operator {dynamic} "+"∗(left: Sub; right: M.Middle): M.Middle;
begin ...
end "+";

(∗ N.+ [2] ∗)
operator {dynamic} "+"∗(left, right: Sub): Sub;
begin ...
end "+";

...
var
a, b, c: M.Middle

begin
a := ...;
b := ...;
c := a + b

end N.

Listing 2: Module N.

By default, operators are overloaded statically, as it would be the case
for the first one declared in module M (cf. Listing 1). The presence of
the dynamic modifier instructs the compiler that dispatching is performed
dynamically.

3.1.1 Scope of Operators

In our design, an operator declaration does neither reside in a global scope
nor in the scope of one of its operand types. Instead, operators belong to
the scope of a module that...

• has access to the types of both operands;

• contains the declaration of one of the two formal operand types.

For some formal operand types, there is at most one module that
fulfills the two conditions in a given import hierarchy. Note that there are
constellations that prohibit operators on certain type combinations.

3.1.2 Co-variance

The return types that the programmer specifies do not affect how an
operator is dispatched. The reason is that they cannot be incorporated
in a dynamic dispatch, as this would require access to a result’s runtime
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type, in advance. However, in our design, return types have to be co-
variant with the operand types. For instance, a sub-operator can only
return a type that is compatible to the ones being returned by all of it
super-operators. Moreover, the absence of any return type in an operator
prevents all of its sub-operators from having one.

Return type co-variance ensures type-safety, and forces the program-
mer to define operators in a coherent and non-contradictory fashion. For
instance, the operators declared in module N (cf. Listing 2) must return
instances of Middle or subtypes thereof, as it has already been established
by the second declaration in module M.

In addition to that, the property of being dynamic also has to be co-
variant with the sub-operator relation. A dynamic operator can be seen as
special case of a static operator. Hence, a static operator is allowed to have
both static and dynamic sub-operators. However, all sub-operators of a
dynamic operator must be dynamic. As a consequence, for any dynamic
operator, all of its loaded sub-operators are considered for a dynamic
dispatch.

3.2 Usage of Operators

The programmer may use an operator, i.e., apply it on some operands, if
there is a reference operator declaration for the scenario. That is, there
must be a declared operator with the same name that is defined on the
static types of the operands or supertypes thereof. Out of all declarations
that fulfill this condition the one with the highest specificity (according
to the definition in Section 2.3) is considered to be the reference.

The reference declaration also determines whether the call will be han-
dled dynamically or not. For instance, the operator call a + b near the
end of module N (cf. Listing 2) is valid, because module M contains a + op-
erator declaration defined on pairs of Middle, which acts as the reference.
As dictated by this declaration, the call will be handled dynamically.

4 Implementation

Our implementation relies on a runtime system (or runtime for short)
that keeps track of the mappings between operator signatures and imple-
mentations. Internally, the runtime uses a hash table to map a numerical
representation of a signature to the address of the associated implemen-
tation. The signature of a binary operator is comprised of an operator
name and the two operand types. By using a special pseudotype that
marks the absence of any type, unary operators can also be represented
as binary ones. As there are currently no operators supported in Math
Oberon with more than two operands, only the case of dynamic binary
operators had to be implemented. The hash h of an operator’s signature
is calculated by bitwise shifting (�) and xoring (⊕) the numerical values
that are assigned to the name and operand types T (·).

h(name, T (left), T (right)) = name ⊕ (T (left)� n) ⊕ (T (right)� m)
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In order to get a numerical representation for an object type, the type
descriptor’s address is used. Different shift amounts for n and m ensure
that operators on the type pair 〈A,B〉 are not being assigned the same
hash as for 〈B,A〉. In theory, this method allows to calculate a hash for
an arbitrary amount of operands. The pseudotype that is used on the
right hand side for unary operators, always evaluates to 0.

An important principle of our approach is that the runtime does not
contain an exhaustive list of all possible call scenarios. Instead, the table
of mappings starts out as being empty, and only contains entries for the
scenarios that have been registered, so far.

4.1 Operator Registration

The runtime provides the procedure OperatorRuntime.Register(...) to
register an operator implementation under a certain signature. In order
that all of the declared operators in a module are registered, the compiler
performs some code instrumentalization at the beginning of the module’s
body. For each operator declaration in the module’s scope that happens
to be dynamic, a call to the above-mentioned procedure is inserted that
registers the declared implementation precisely under the signature spec-
ified in the declaration. Listing 3 depicts in pseudocode how this would
look like for the two modules in Listing 1 and 2. Note that there is no
such call for topmost declaration in module M, as it is static. The body of
a module is a piece of code that is automatically executed as soon as the
module is loaded for the first time. Therefore, operators are not registered
before load-time.

module M
import OperatorRuntime;
...
begin
OperatorRuntime.Register("+", <Middle>, <Middle>, <AddressOf(M.+ [2])>);
...

end M.

module N;
import M, OperatorRuntime;
...
begin
OperatorRuntime.Register("+", <Sub>, <Middle>, <AddressOf(N.+ [1])>);
OperatorRuntime.Register("+", <Sub>, <Sub>, <AddressOf(N.+ [2])>);
...

end N.

Listing 3: The bodies of modules M and N after instrumentalization.

4.2 Operator Selection

In order to dispatch a dynamic operator call to the operator implemen-
tation with the highest specificity, the runtime is consulted. More pre-
cisely, the procedure OperatorRuntime.Select(...), which the runtime
provides, is used to look-up the implementation that is associated with a
certain call scenario. For each operator call whose reference declaration
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happens to be dynamic, the compiler emits a call to this procedure, with a
subsequent call to the address that is returned. For instance, the dynamic
call c := a + b, at the end of module N in Listing 2, would conceptually
be handled as illustrated in the pseudocode of Listing 4.

implementation := OperatorRuntime.Select("+", a, <Middle>, b, <Middle>);
c := implementation(a, b)

Listing 4: Handling of a dynamic operator call using runtime system.

Note that it is also necessary to pass the static types to the selection
procedure. This information is required to handle the case of NIL values,
for which we decided that the selection should resort to the static type.

Inside the selection procedure, there are two cases that can occur:

1. There is an entry in the hash table that exactly matches the call
scenario. In this case, the selection procedure simply returns the
address of the implementation.

2. There is none. The runtime then has to conduct a breadth-first
search in the space of super-operators in order to find a suitable
implementation among the already registered ones. This polymor-
phic search should result in the implementation that has the highest
specificity with respect to the call (cf. Section 2.3).

The graph in Figure 1, illustrate an exemplary state of the runtime
system. The dark nodes indicate call scenarios for which an implementa-
tion already has been registered, whereas bright nodes represent the ones
that do not yet have an entry in the hash table. The curved arrows in
the same figure show for all unimplemented nodes, which node the poly-
morphic search would result in. Note that the existence of at least one
compatible implementation is guaranteed, since each operator call must
be accompanied by a reference declaration.

After the implementation is found, it is registered under the signature
that precisely matches the actual operator call. This means that there
will be an additional signature in the hash table that is mapped to the
implementation.

In the example presented in Listing 1 and 2, the first call on the type
pair 〈Middle, Sub〉 would result in a polymorphic search that would yield
the implementation declared on the pair 〈Middle, Middle〉.

The polymorphic search, being a more costly operation, will not have
a substantial impact on the performance, as it is never repeated for a
scenario. Each subsequent operator call with the same operand types will
be immediately handled by the hash lookup. On average, the runtime
performance of the double dispatch remains constant.

5 Conclusion

We presented the syntax and semantics of a language that integrates
both static and dynamic operator overloading in a statically-typed object-
oriented programming environment. In this design, operators are not
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members of one of its operand types, but reside in the scope of a clearly-
determined module, instead. The semantical rules that are enforced by
the compiler, such as co-variance of return types with the sub-operator
relationship, or the existence of reference declarations, prevent runtime
errors due to operator overloading from occurring.

The mechanism that we propose for dynamic multi-dispatching is
based on a runtime system, which maintains a table that maps operator
signatures to operator implementations. By using code instrumentaliza-
tion, all the operators declared by the programmer are registered as soon
as the owner module is loaded. A dynamic dispatch is either handled di-
rectly by a table lookup, or in the other case, requires a search that yields
the implementation with the highest specificity among the already regis-
tered ones. The resulting implementation is immediately registered under
the signature of the new actual operand types. Hence, each subsequent
operator call on the same argument types will not require a computation-
intensive search for an implementation.

• On average, a dynamic multi-dispatch can be handled by a simple
table look-up, i.e., in constant time.

• The required space is only in the order of relevant type scenarios.
Thus, the memory usage of our approach scales very well with a large
number of object types, compared to precomputed look-up tables for
all possible operand type combinations.

• By means of dynamic module loading, new types and operators can
be added incrementally, such that they are immediately incorporated
into a running system, without recompilation of the existing code.
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