
1

USB Overview

This course serves as an introduction to USB.

2

2

Agenda

 USB overview

 USB low level data transfer

 USB protocol structure

 USB chapter 9 structure

 Enumeration

 Standard classes

 Firmware example

 Silicon Labs solutions

 Where to get more information

We are going to cover fairly in depth overview of USB, the device families that
support USB connectivity, and some of the tools available to the support customer
designs. At then end we will illustrate how Silicon Labs supports USB efforts and
can abstract all of what you are about to learn.

3

3

Advantages of USB

Type A/B Mini

Micro

 Ease of Use
 One interface for many devices
 Hot pluggable
 Automatic configuration
 No power supply required

 Devices can pull up to 500 mA from the bus

 Reliability
 Lossless data transfers

 Speed
 Three transfer speeds

 Low Speed – 1.5 Mbps (USB 1.1 and 2.0)
 Full Speed – 12 Mbps (USB 1.1 and 2.0)
 Hi-Speed – 480 Mbps (USB 2.0 only)

 Low Power Consumption
 Suspend mode

 Devices consume 500 uA or less (USB 2.0)
 Devices consume 2.5 mA or less (USB 3.0)

 Availability
 Microsoft and Intel’s PC 2001 System Design

Guide requires that all new PC’s have two user-
accessible USB ports

USB is proliferating due to the fact that RS232 is disappearing and that the end user’s experience is very simple.
Everything is strictly specified. The USB cable and connector have been defined by the USB consortium all the
way down to the USB symbol dimensions. This provides confidence that any device will connect to another
device.

Hot pluggable/Automatic configuration – Enumeration (which we will get into detail later) enables a device to
be plugged in and its operating parameters communicated to the host. Also, the USB spec takes into account
inrush currents for devices that are going to draw their power from the bus.

When we refer to lossless data transfers we are referring to the fact that the protocol provides a mechanism to
retransmit data if required in all but one transfer type. This enables the data transfers to be reliable and we will
go over that later in the course. There are three transfer speeds for USB 2.0. The transfer speed number listed
here is the bandwidth on the bus. This is not directly equal to data throughput. The throughput is less than these
numbers for any USB device due to USB overhead. Later in the presentation we will show some numbers for
actual throughput.

The USB 2.0 protocol is fully backwards compliant. This is why the C8051F32x and 34x devices are full speed
devices and also USB 2.0 compliant.

The 500 uA listed here applies to devices that are consuming power from the USB host. If a device is fully self-
powered, the Suspend mode current is not applicable because it is not drawing power from the USB host. Note
that the USB 3.0 specification allows for 2.5mA suspend current. Another aspect of the newer specification is
that the micro connectors are now the preferred connector solution. The USB implementers forum deprecated
the use of the mini-A and mini-AB (May 23, 2007).

The benefit of this aspect of the System Design Guide means that user’s don’t need to buy external hardware and
developers know that USB is an interface their customers will definitely have.

USB3.0 Notes:
Existing USB root hubs and external hubs in the field (and still manufactured by most companies) that are USB
2.0 compliant based on the pre-ECN spec will still enforce the 500 uA limitation. Only newly certified hubs
would need to comply with the post-ECN spec. In summary, it is best to make your product obey the stricter rule
of 500 uA for the widest compatibility with existing PCs and hubs.

4

4

Some USB Terms

Host — computer that controls the interface

Function — device that provides a capability to the host

Hub — device with one or more connections to USB devices plus hardware to enable
communications with each device

Device — something that attaches to a USB port (sometimes synonymous with a function)

Port — a connector on the USB Host bus

Suspend — Device enters Suspend after 3mS of inactivity on the bus to minimize power
consumption. Host uses timing packet to keep Peripherals active.

Enumeration — Initialization sequence to inform the host what device was attached to the
bus. Device parameters are conveyed at this point.

Descriptors — List of tables that identify the capabilities of the device

Endpoint — All transmissions travel to/from and endpoint which is just a block of memory or a
register. Endpoint 0 is the control endpoint which is the only bi-directional endpoint typically
used for enumeration.

Descriptors — List of tables that identify the capabilities of the device

USB Ports

Here are some common terms when discussing USB. Take a moment to familiarize
yourself with these terms.

5

5

What is USB?

 Serial protocol—strictly defined frame and
packet based protocol with error checking and
handshaking. LSB in first, MSB last.

 Half Duplex—all transactions initiated by the
host with data carried by the D+ and D- signals
in both directions

 Device Management—host assigns addresses
to newly attached devices and removes support
for detached devices. Host also manages
bandwidth.

 Power Management—use of Suspend mode
to conserve power on the bus. Vbus sourced
by host is +5V ±5%.

 Direction—all transactions are directed with
respect to the host. IN transactions send data
from the peripheral to the host. OUT
transactions send data from the host to the
peripheral.

Host Controller
Root Hub

Peripheral Hub

PeripheralHub

Peripheral Peripheral

The USB protocol is a packet based architecture with start frame, transactions, and handshaking with
ack and nak controls. These will be covered later. Within the host there is the USB controller and
the root hub. The Host controller formats the data for the OS on read and write as well as manages
communications on the bus. The Root Hub provides the connection point to the host for peripheral
devices as well as detects attach/removal events, carries out requests from the host and is the means
to pass data. USB is a half duplex protocol where all data is passed via a two wire interface called
D+ (D plus) and D- (D minus). The host processor is responsible for all communications on the bus
including device addressing and bus bandwidth. It is also responsible for determining and
conserving the power requirements for the bus. If devices do not meet the requirements for all of the
above conditions then the host can refuse to enumerate. When we discuss data transfer across the
USB we always use the vantage point of the host for reference. For example, if there is an IN
transfer that means the host is going to receive the data. An OUT transfer means the host is going to
transmit data.

Before proceeding let’s quickly discuss the data transfer hierarchy. The term “pipe” is used to define
a logical association between the host and the endpoint device and is the connection point for the
host software and the device. There are two types of pipes identified in the USB specification. The
stream pipe is used for unidirectional communications and comprises most of the transfer types
defined. The Message pipe is a bidirectional pipe and is typically used only for control transfers or
the transfers that the USB uses for configuring devices and the bus. The control transfer is a transfer
using endpoint 0 which is the only bidirectional transfer and therefore a message pipe. There are
IN/OUT transfers, however each endpoint is either an IN or an OUT transfer. This is where the
unidirectional stream pipes come into play. The transfer is the highest level of the USB protocol and
is used to define the structure of the information that is sent across the wires. The transfer is broken
up into a set of transactions. These transactions are then subdivided into a set of packets that are the
lowest level defined in the USB specification. The following slides build the data from when we
plug in the cable all the way up to the transfer format. This will become more evident as we progress
through the course.

6

USB Lower Layer

In this course serves as an introduction to USB.

7

7

Attach Event

 Plugging in a USB device to the host root hub or external hub is considered an attach
event. The device has a 1.5 KΩ pull-up resistor to the USB supply (VBUS). Pull-up to D+
signals a full speed device. D- is for low speed devices.

Host or Hub Port

Transceiver

15KΩ 15KΩ Device

Transceiver

D+

D-

VBUS

1.5KΩ

Host or Hub Port

Transceiver

15KΩ 15KΩ Device

Transceiver

D+

D-

VBUS

1.5KΩ

D+

D-

D-

D+

Low Speed Attach Event

Full Speed Attach Event

When no device is connected D+ and D- are at 0 V

So we have a USB device, a host and a USB cable. How does all of this
communication work? We have to first connect everything together. When we
plug the device together with the host it is called an Attach Event (similarly, when
we disconnect it is called a detach event). If you look at the initial condition for the
bus with no devices attached you will notice that the D+ and D- are at the same 0 V
potential because of the 15 Kohm resistors found on the host side. When the cable
is plugged in an endpoint device will provide a pull up resistor on either D+ or D-
depending on its speed capabilities. For a full speed device, the pull-up is attached
to the D+ signal. When the host detects this voltage change it will begin what is
called enumeration process at the full speed rate. If the voltage change is detected
on the D- line, then the enumeration happens at low speed. This attach event is
what signals the host that there is a new device attached to the bus. In MCU devices
the pull-up resistor should be integrated and it is just a matter of setting the bit in a
control register (i.e. the Pull-up Resistor Enable or PREN bit in the USB0XCN
register for the Silicon Labs USB family of MCUs). This is what gets everything
started.

8

8

Packet Identifiers (PID)

 The PID signals to the receiver that what the packet structure and content will be
and how the receiver has to respond

0010b

1010b

1110b

ACK

NAK

STALL

Handshake

0011b

1011b

DATA0

DATA1
Data

0001b

1001b

0101b

1101b

OUT

IN

SOF

SETUP

Token

PID Value <3:0>PID NamePID Type PID - indicates transaction type and has different
meaning based on the transaction. Lower nibble is the
inversion of the upper nibble provided for error
checking.

Data – any information for the application

Handshake – status information

Start of Frame Marker (SOF) – Host can send this
marker at 1 mS intervals as a time base for peripherals

PID0 PID1 PID2 PID3 PID0 PID1 PID2 PID3

PID Format

IN – data transfers to the host
OUT – data transfers from the host
SOF – Timing marker at 1mS
Setup – Specifies control transfers

Data0 – data transfer with data toggle clear
Data1 – data transfer with data toggle set

ACK – data received without error
NAK – Device busy or no data available
Stall – Unsupported control request, control
request failed, or endpoint failed

Here we see the Packet Identifier (PID) structure. Be aware that “PID” is used for
two different things in USB (the second reference we will discuss later). The PID
we refer to here is what is sent out on the USB to define the transaction type. An
example PID, the Start of Frame (SOF) PID, is sent to provide a 1ms time base and
tells the receiving devices that the frame number associated with the current 1ms
timer marker follows the PID. The Data PID tells the system that the data for the
associated transfer is located in this transaction. Remember in USB the host always
initiates the transfer and data direction is with respect to the host. IN transfers data
from a peripheral device to the host. OUT transfers data from the host to the device.
From the table we can see that there are separate PID values associated with each of
the transaction types, IN or OUT and we can write the firmware to respond
accordingly based on the token that we receive. Do we need to be concerned with
the PID at the firmware level? No, as the hardware engine manages moving the
data between the FIFOs and the USB.

We mentioned the that the host in a USB system is responsible for power
management. The host sends the SOF every 1ms as mentioned. Devices are
required to enter a Suspend state after 3mS of inactivity per the USB specification.
Since there is constant activity on the bus when sending SOF PIDs, the peripheral
devices will stay out of suspend mode as the spec states that there is a 3mS
inactivity window before peripherals should enter suspend.

The Setup transaction specifies a control transfer. Control transfers MUST be
supported by all devices and their functions are defined by the USB spec. With
these, the host can gather data about the endpoint, set addresses etc. We get into
control transfers in detail later in the class.

9

9

Packets
 Packets—block of information with a defined data structure. The packet is the

lowest level of the USB transfer hierarchy describing the physical layer of the
interface. If you were to monitor D+ and D- you would see the packet fields:
 Packet identifier
 Address
 Endpoint
 Data
 Frame number
 CRC

5478Bits

CRCEndpointAddressPIDField

Token Packet format:

5118Bits

CRCFrame NumberPIDField
SOF Packet format:

160-10238Bits

CRCDataPIDField
Data Packet format:

8Bits

PIDField
Handshake Packet format:

CRC covers everything in the packet with the exception of the PID which
has its own error checking mechanism

The Packet Identifiers we just reviewed are actually used to identify the packet type
being transmitted on the USB. We can see from the diagram above that the
packet format is defined by the PID we have outlined on the previous slide. For
example, if we see a PID of 0101b then we know to expect the data format of
the SOF packet. From that we know that the USB frame number will follow
the PID. The frame number is just a rolling count that will rollover on overflow.
If we were to see a PID of 1101b then we would expect a completely different
transfer type and there may be additional packets associated with the complete
data transfer. So we can see that the packet structure is a subset of the entire
transfer protocol defined by the USB. There are 4 packet types defined.

1) The token packet would be used to identify the transfer (setup, IN, OUT).

2) The SOF packet is sent on the frame boundaries to provide timing and frame
counts.

3) Data packet is the payload.

4) Handshake packets provide for comms robustness to verify that the data was
receive/transmitted properly.

10

10

Transactions

 A transaction allows a set of operations to be grouped in such a way that
they either all succeed or all fail; further, the operations in the set appear
from outside the transaction to occur simultaneously. If the transaction
is unsuccessful then the host/device ignores any data that was received.

Transaction Types
SETUP:

Specifies a control transfer.
Setup transactions are always targeted to Endpoint 0 and are bi-directional (IN and OUT endpoint).
Has token and handshake phases with an optional data phase.
All USB devices must support setup transactions.

DATA:
The host is requesting to send(receive) data to(from) an endpoint.
IN – Responsible for sending data from the endpoint to the host.
OUT – Responsible for sending data from the host to the endpoint.

STATUS:
During control transfers the STATUS transaction uses the IN or OUT data phase to convey
success or failure of a transaction.

Take a moment to read the text in this slide as it conveys the key message regarding
transactions. A transaction is a combination of packets. For example, the Setup
transaction contains the Token packet we saw from the previous slide. With the
Token packet the host is transmitting the PID, the address and the endpoint number
of the device it wants to communicate with. The next packet it sends is the Data
Packet which tells the device that it wants to get/set some information from/to the
device. Next there is a handshake packet to signify a success or failure of the
transaction. So to review, the transaction is made up of multiple packets. In the
example provided, the setup transaction had 3 packets associated with it: token, data
and handshake.

There are three transaction types as listed in the slide. The Setup, Data and Status
transactions. Setup is used during the configuration process after a device reset.
The Data phase is used to transfer data to/from the device as requested by the host.
Taking the example we just gave with the Setup transaction it could be followed by
a Data transaction where the device can receive data that will set its address or it
could send data that tells the host what its vendor ID is. The Status transaction
identifies to the USB at a higher level than the handshake packet that a complete
transfer (multiple structured transactions) was successful. We will look at transfers
next.

After the device has been powered, it must not respond to any bus transactions until
it has received a reset from the bus. After receiving a reset, the device is then
addressable at the default address. The default address is address 0 and is termed
the Control Pipe.

11

11

What is a Transfer?

 The transfer is the process of
making a communications request
with an endpoint. Transfers
determine aspects of the
communications flow such as:
 Data format imposed by the USB
 Direction of communication flow
 Packet size constraints
 Bus access constraints
 Latency constraints
 Required data sequences
 Error Handling

 A transfer has one or more
transactions which then has one,
two or three packets •Transfers are divided into transactions.

•Transactions are made up of packets.

•The host controls transfers by allocating transactions
to a frame.

•Transfers may span multiple frames.

TransferTransfer TransferTransfer

TransactionTransaction TransactionTransaction

Token PacketToken Packet

Data PacketData Packet

Handshake
Packet

Handshake
Packet

Token PacketToken Packet

Data PacketData Packet

Handshake
Packet

Handshake
Packet

…

We previously discussed how transactions are formed using multiple packets. Well
transfers are formed using multiple transactions. You can see from the slide that
hierarchy of the Transfer-Transaction-Packet relationship. The transfer is the
highest level followed by the transaction and then at the lowest level is the packet.
The red denotes the top level or Transfer, the yellow denotes the Transaction and
the green represents the actual packets. Both the transfer and the transaction are
logical implementations whereas the packets denote what you actually transmit
across the bus. A transfer is comprised of one or more transactions. Our example
from the previous slide showed three packets forming a single transaction. Lets
take that a step further. The example we gave is actually one transaction of what is
called a Control transfer that is formed by a total of three transactions. That first
transaction made up the Setup phase of the transfer. This is the phase that told the
device that the host is getting or sending configuration information and what that
information is going to be. A Data transaction then follows whereby the host either
sends the data it wants the device to use in order to configure certain parameters
(like its USB address) or it receives configuration data from the device that tells
how the device is set up to communicate. We would then have another transaction
to complete what is called the Status phase. This is a transaction that validates the
complete transfer (all three transactions).

12

12

Transfer Format

Data

Token

Handshake

Data

Token

Handshake

Data

Token

Handshake

Data

Token

Handshake

Data

Token

Handshake

Data

Token

Phases (Packets)

Guaranteed delivery time of packets for data streaming

No-retransmitting of data allowed

Periodic transfers on the time base conveyed during
enumeration

Host guarantees attention before this elapsed time

Non-critical data transfers

Bandwidth allocated to the host

Good for file transfer where time critical data is not required

Enables host to read configuration information, set addresses
and select configurations

Only transfer that is required to be supported by peripherals

Has both IN and OUT transfers to a single endpoint

Comments

Data (IN or
OUT)Isochronous

Data (IN or
OUT)

Interrupt

Data (IN or
OUT)

Bulk

Status (IN or
OUT)

Data (IN or
OUT)

(optional)

Setup

Control

Stages
(Transactions)

Transfer Type

Now that we have discussed the hierarchy of the USB protocol lets take a look at the different
transfer types. Remember, that these transfers are made up of transaction which are made up of
packets. Each of the transfer types is listed in the table along with the associated transaction and
packet types supported. The control transfer is the only bidirectional transfer allowed by the USB. It
is the transfer type used to communicate all of the configuration information between the host and a
device. Our example we provide on the previous slides illustrated the control transfer. It had the
three transactions associated with it. All devices on the bus MUST support control transfers to
endpoint 0. This is the default endpoint after reset and is at address 0. For Control transfers the status
phase is a zero length packet in the opposite direction of the transfer. For example, let’s say the host
is going to request a device descriptor which is a table we have loaded in flash. The direction of the
transfer would be IN since the data flows to the host. The status phase in this example would be a
zero length packet with an OUT token to terminate the transfer. Control transfers are used for things
like setting the device address to a value other than 0 for subsequent accesses, getting configuration
information on how the device wants to communicate using the other transfer types like Bulk.
Remembering our original example, we can see here that there are three transactions (Setup, Data,
and Status) comprised of nine packets (Token, Data, Handshake – three times) that make up the
Control transfer. The Bulk transfer uses three packets for the single transaction.

The Bulk transfer is used for non-critical data meaning data that is not required to be transferred on
any time base. It provides the highest data throughput as well so it is useful for applications like
printers, scanners or even USB to UART bridges. Remember that the host is responsible for
managing the bandwidth of the USB. One aspect of the Bulk transfer is that the host schedules
bandwidth as it becomes available, hence the non-critical nature of this type of transfer.

The interrupt transfer is used for periodic transfers where a time period is requested by the device
and the host will guarantee that the data transfer will be scheduled within that time period. It does
not guarantee that the data is transferred on a consistent time basis all the time, just that it will
schedule the transfer prior to the time period expiration. The data throughput is lower for interrupt
transfers and is useful for applications like mice, keyboards where user input is continually needing
to be sent to the host.

13

13

USB Transfers—A Closer Look

 Control Write Transfers (OUT)—contains Setup, Data (optional), and
handshake transactions

SETUP
PID=1101

DATA0
PID=0011

ACK
PID=0010

OUT
PID=0001

DATA1/0
PID=1011

ACK
PID=0010

NAK
PID=1010

STALL
PID=1110

IN
PID=1001

0-LENGTH
DATA1

PID=1011

ACK
PID=0010

NAK
PID=1010

STALL
PID=1110

Host sends Setup Packet followed by 8 bytes of data for
the request. The device must return an ACK.

Setup Transaction

Data Transaction

Status Transaction

Host sends OUT Packet along with the data for writes.
Device responds with handshake. No response indicates
a data error. DATA1 is first and alternates DATA0 and
DATA1.

Data error

Data error

Host sends IN Packet for Status phase. Device responds
with a 0 length packet to indicate the success or failure
of the transfer. Host ACK the status. No response
indicates a data error.

Data error

Host → Device

Device → Host

In the next set of slides we are taking a look at the transactions and packets that
make up the different transfers and this slide shows the Control Transfer that is
sending data to the device. The colored boxes denote which direction the data is
flowing, whether it is from the host or the device. Keep in mind the host initiates all
transfers so the first box will always be yellow. The first transaction is the Setup
which is defined by the setup packet. Next we see the data that is sent in the request
from the host. The data sent in this phase is 8 bytes long and contains info about the
request, for example, if the host wants a device’s configuration or to set the device
address. After the data transaction the device ACKs the transaction. Next is the
data phase. Since this is an OUT control transfer the Data is yellow. The device
can either ACK, NAK or Stall the request. The ACK signifies that the transaction
was successful, the NAK means that the data either was not received correctly or
the device is not ready for the data. A Stall would mean that the device does not
support the requested feature. The Status phase for control transfers is just a 0
length packet in the opposite direction of the data phase. In this diagram the host
was sending the device information (OUT transfer) in the data transaction,
therefore, the in the status phase the host sends an IN token and the device responds
with a 0 length packet. These diagrams and the following flow diagrams like it can
be found in the book from Jan Axelson titled, “USB Complete.”

14

14

USB Transfers—Closer Look at a Control Transfer

 Control Read Transfers (IN)—contains Setup, Data (optional), and
handshake transactions

SETUP
PID=1101

DATA0
PID=0011

ACK
PID=0010

IN
PID=1001

DATA1/0
PID=1011

ACK
PID=0010

NAK
PID=1010

STALL
PID=1110

OUT
PID=0001

0-LENGTH
DATA1

PID=1011

ACK
PID=0010

NAK
PID=1010

STALL
PID=1110

Host sends setup packet followed by 8 bytes of data for
the request. The device must return an ACK.

Setup Transaction

Data Transaction

Status Transaction

Host sends IN packet and the device responds with the
data requested. Host responds with handshake. No
response indicates a data error. DATA1 is first and
alternates DATA0 and DATA1.

Data error

Data error

Host sends OUT packet for status phase. Host responds
with a 0 length packet to indicate the success or failure
of the transfer. Device ACK the status. No response
indicates a data error.

Data error

Host → Device

Device → Host

Here we have the same transfer type as the previous slide except that the host is now
requesting data from the device. Therefore, the data direction for the Data
transaction and the Status transaction are reversed.

15

15

USB Transfers—Actual Control Transfer

 Control Transfer Read Example — GET_STATUS command from Host

Transfer
Transaction

Packet
Hierarchy SETUP Phase

DATA Phase

Status Phase
0 length field

Here is an actual USB analyzer capture of data traffic for a control transfer. This is a
control transfer (Get_Status) that a host has sent out to a device. Keeping in mind
our packet formats we can see the token packet identifies the first transaction as the
setup providing us with the device address and endpoint information. The second
transaction is the data phase using the address and endpoint and then the device
adds the data requested. The final transaction is the status phase using a 0-length
data packet to signify that the transfer completed successfully.

Note: Not all USB tools provide the data in the same format.

16

16

USB Transfers—Closer Look at Bulk/Interrupt Transfers

 Bulk and interrupt transfers
 Contains IN/OUT, Data, and handshake transactions
 Bulk schedules transfers as bus bandwidth permits
 Interrupt schedules transfers on regular intervals. Data may be delivered at a faster rate than the

endpoint descriptor value.

IN
PID=1001

DATA
PID=1011

ACK
PID=0010

NAK
PID=1010

STALL
PID=1110

OUT
PID=0001

DATA
PID=0011

ACK
PID=0010

NAK
PID=1010

STALL
PID=1110

Data IN Transaction

Data OUT Transaction

Data error

Data error

Data Size:
Bulk: 8, 16, 32, or 64 bytes
Interrupt: 1 to 64 bytes FS

1 to 8 bytes LS

Host sends IN packet and the device responds with the
data requested. Host responds with handshake. No
response indicates a data error.

Host sends OUT packet and then continues with the data.
Device responds with handshake. No response indicates
a data error.

Data transfer continues until the complete length of
data has been sent or a packet less than the minimum is
sent with a 0-length data packet.

Host → Device

Device → Host

All of the transfer types follow the same convention as the control transfer with the
exception that they differ in the number of transactions that are required to complete
the transfer. The Bulk and Interrupt transfers each have the same format and are
denoted by the IN and OUT PIDs. These transfer types use what is called the
MAX_PACKET_SIZE parameter (which is a USB parameter defined by in the USB
peripheral) to transfer the data. All data transactions must transfer the data in
multiples of the maximum packet size. If a packet less than the maximum number
of bytes is sent then it tells the host that there is not more data. If the data being
transferred is an even multiple of the MAX_PACKET_SIZE parameter then an
additional Data transaction needs to added with a Zero Length Packet (ZLP).

17

17

USB Transfers—Actual Interrupt Transfer

 Bulk/interrupt transfer read example:

IN
Transaction

Interrupt
Transfer

Token
Packet

Data Packet

Handshake
Packet

Here is a screen capture of actual USB data traffic using these Bulk/Interrupt
transfer type. Notice that the transfer is composed of a single transaction.

18

18

USB Transfers—Closer Look at an Isochronous Transfer

 Isochronous transfer
 Contains IN/OUT and DATA transactions

 Fixed transfer rate with a defined number of bytes transferred
 Transferred in bursts

 Host guarantees time scheduled transfers per frame

 Insures data can get through on a busy bus even if the data does not
need to transmit at real time

 Good for constant rate applications such as audio

IN
PID=1101

DATA0
PID=0011

Host sends IN packet and the device responds with the
data requested. No error checking.

OUT
PID=0001

DATA0
PID=0011

Host sends OUT packet and then sends the data. No
error checking.

Host → Device

Device → Host

This is the Isochronous transfer and as we mentioned earlier there is no handshake
packets associated with this transfer type.

19

19

USB Transfers—Actual Isochronous Transfer

 Isochronous transfer OUT example:

Transfer
Transaction

Packet
Hierarchy

OUT
Transaction

Token
Packet

Data Packet

And a screen capture of the Isochronous transfer.

20

20

I Have to Know All of This?

What part of the low level USB information do I need to
be concerned with?

The USB transceiver and the Serial Interface Engine
(SIE) handles the low level USB interface and is done via

the hardware. We are primarily concerned with the
middle layer.

21

21

Silicon Labs Serial Interface Engine (SIE)

 Serial Interface Engine (SIE) is part of the USB
hardware and handles data communications to
the host in hardware
 Handles the handshake between the endpoint

and the host device
 Generates an interrupt when valid data packets

received
 Will not interrupt the CPU when an error in

transmission occurs
 Moves valid data to/from the endpoint FIFOs
 Firmware only needs to be concerned with the

data transferred
 Handles all the bit stuffing required

5478Bits

CRCEndpointAddressPIDFieldToken Packet
format:

5118Bits

CRCFrame NumberPIDFieldSOF Packet
format:

160-10238Bits

CRCDataPIDFieldData Packet
format:

8Bits

PIDFieldHandshake
Packet format:

SIE Handles
error checking

ACK

NAK

SIE Handles
handshaking

Firmware
interfaces

The hardware inside the MCU handles the low level communications in
conformance with the USB specification. The integrated transceiver handles all of
the electrical requirements for the differential signaling and the pull-ups etc. The
Serial Interface Engine (SIE) is a powerful peripheral that provides all of the low
level error checking and packet handling. When the packets come in from the host
the SIE will determine if the packet is valid based on the address and endpoint
number specified. It will also automatically generate the appropriate handshake
packet based on the current state of the MCU. The USB peripheral integrated
provides two interface points: the USB FIFOs and the USB control, status and
interrupt interfaces to the C8051F core. That is where the firmware developer can
read and write the data to be transferred as well as set the state of the USB
peripheral and service interrupts.

22

22

Different Devices and the Transfers They Use

 What happens when all of
these devices are plugged
into the USB?
 Host manages the bus

bandwidth upon
enumeration. If bandwidth
is not available the host
ignores the enumeration
request and doesn’t allow
the device access.

 Mouse and keyboard use
Interrupt transfers to
provide timely responses
to user input. Interrupt
provides guaranteed
maximum latency.

 Scanners and printers use
bulk since they are just
sending data files. Host
allocates the bandwidth as
it becomes available.

 PDA/MP3 may use bulk for
file transfer to the device. If
it is some kind of audio
playback over USB then it
will employ Isochronous
transfers to guarantee the
data for constant rate

Bulk

Bulk

Interrupt

Bulk

Interrupt

Bulk and/or
Isochronous

Note: all devices use Control transfers to
Endpoint 0 for the Enumeration process

So now that we have covered the different types of transfers used in the USB
specification how do we apply those principals to our applications? Let’s say all of
these products are plugged into the USB and you turn the power strip switch ON.
We learned that all of these devices will initialize and be ready to respond to
endpoint 0 address 0, right? Well…there is always a hub (either external or the root
hub) and within the hub spec those ports are required to be enabled to operate.
There is a standard request SetPortFeature(RESET_PORT) which enables a port.
Technically the device should not be ready for endpoint 0 address 0 until the host
resets it anyway. It works because the host will enable one port that shows an attach
event, assign an address to that device and then can move on from there to the next
port. And so on, and so on…

23

USB Middle Layer

24

24

USB—Chapter 9

 The enumeration process begins
 The host initiates a set of communication requests to the device to determine

the who, what, and how about the device
 The device has pre-defined structures located in flash that describe what it

does and how it needs to do it
 These are called descriptors

The host initializes a device through a series of device requests via
control transfers to Endpoint 0. These are defined by the USB specification
and have specific control transfer formats that we have discussed.

Chapter 9 Defines
The device states
The standard request format
The device descriptor format

The process used to transfer all of the configuration

information to endpoint 0 is called Enumeration.

Chapter 9 of the USB Specification calls out the routing of data between the bus
interface (lowest layer) and various endpoints on the device. An endpoint is the
ultimate consumer or provider of data. It may be thought of as a source or sink for
data. We covered all of the different transfer types and how they are composed of
the different packet structures and also discussed that data phase of the transfers and
in which direction the data flows based on the request type. We have eluded to
things called request but really haven’t delved into it so far. Chapter 9 of the USB
specification outlines what all of the data in the Control Transfers means. If you
recall in our outline of the control transfer we mentioned that there are 8 data bytes
that get sent in the Setup phase. Those eight data bytes tells the device what
information the host is requesting. All of these requests are defined in the USB
specification, hence the term Standard Requests. In addition, the USB specification
outlines the format for the data that the host wants to receive from devices which
provides firmware developers the template required to store all of the configuration
information for the end device.

25

25

Enumeration—Loading Descriptors

 Enumeration
 The activity that identifies

and assigns unique
addresses to devices
attached to a bus

Makes USB devices hot-
pluggable

 The host is always checking
the bus for new devices via
Interrupt transfers

 The host cannot
communicate with a USB
device until that device has
been properly enumerated

 Invisible to user

//--
// Sample Standard Device Descriptor Type
// Definition Fields
//--
Length (18)
Descriptor Type (DEVICE, CONFIGURATION,

INTERFACE, ENDPOINT, HID)
USB Spec Release Number (0200h)
Device class (hub type…Human Interface defined in

other descriptor, CDC described here)
Device Sub-class (00h)
Device protocol (00h)
Maximum Packet size (64 bytes – max for the

endpoint)
Vendor ID (ID assigned by USB IF)
Product ID (ID assigned by product manufacturer)
Device release number (revision code of device)
Manufacturer (ABC Corp)
Product (string identifier)
Serial Number (1234)
Number of configurations (1 or more configurations

can follow)

VID/PID discussed next.
This is loaded in the MCU memory.

We covered a lot of detail regarding USB transfers and the means by which the host
retrieves descriptors from the device. This whole process we are describing is
called Enumeration. After the attach event the host begins by resetting the device
and then sends a series of standard request to retrieve the descriptors. If the host can
accommodate the required bandwidth request by the device as well as the power
consumption if it is bus powered, then the host will go ahead and enumerate the
device and normal operation would begin. There can be no communication on the
bus without a successful enumeration. Once again this diagram is showing the
device descriptor as part of the enumeration. This is important because when we
attach a device there is a software driver that has to be loaded on the host in order to
let an application communicate over the USB to the device. We will cover that
next.

26

26

Enumeration: Finding a Driver

 Once all descriptors are communicated, the Windows host searches for
a driver based on the vendor ID and product ID of the device

[DeviceList]
%DESCRIPTION%=DriverInstall,USB\VID_1ABC&PID_2XYZ

[DriverCopyFiles]
usbser.sys

[DriverService]
ServiceType=1
StartType=3
ErrorControl=1
ServiceBinary = %12%\usbser.sys

Example entries of an INF file

Vendor ID

Product ID

Drivers listed for install

Configuration information

Host looks for driver info in the INF File:
• Host tries to match the Vendor ID
• Host tries to match Product ID
• If possible, host tries to find the Release number

If the Windows host can’t find a matching INF file it will prompt for
the user to select a location where the files can be found for install

Remember that two of the fields in the device descriptor are the Vendor ID (VID)
and the Product ID (PID). The first descriptor the host will request is the device
descriptor and as such it will know what device it is communication with. The
Windows operating system (OS) will be able to search an inf file to see if it can find
a match between the VID and PID and what was received. If a match is found then
the driver that the OS needs to install will be called out and the OS can start it. If a
match is not found then the OS will prompt the user to find the driver to load. This
slide shows some excerpts from an INF file and is provided to show what the host
would be looking for in order to get the device up and running. In this case, a CDC
class device using the usbser.sys driver.

27

27

USB Descriptors

 Descriptors
 Data structures, or formatted blocks of information, that enable the host to learn about the device

 Each Descriptor contains information about either the device as a whole or an element in the
device

 The host uses control transfers to obtain the descriptors from the device

 Descriptors typically reside in non-volatile data storage on the device. Most commonly set as C
structures or variables located in code space.

In-System
Reprogrammable

Flash

Descriptors

In-System
Reprogrammable

Flash

8051 External Memory
Space (XRAM on chip)

8051 Internal Memory
Space

USB FIFOs for Endpoints

8051 External Memory
Space (XRAM on chip)

Program Flash

256
bytes

2048
bytes

16K bytes

8051 Memory Example

Descriptor structures located
in code space in part of the
program memory.

In our discussions about control transfers and standard requests we have touched on
the information that is stored in the end device that the host reads to determine the
configuration and operating parameters of the device. The information is stored in
what is called descriptors. There are several types of descriptors that get stored in
the memory of the device and each provides configuration information associated
with a different aspect of the USB communications. For example, the device
descriptor provides high level information about the device. The endpoint
descriptor contains low level communication protocol specific information like
endpoint number etc. In this diagram we see that the descriptors would be stored in
the flash memory such that they are available after each power up and reset in order
for the host to read them. They are just variables in the memory that get passed to
the USB peripheral when the request is made by the host.

28

28

USB Descriptors Types

 Device descriptor
 General info about a USB device (vendor ID,

etc)
 Contains info that applies globally to the

device
 Only one device descriptor

 Configuration descriptor
 USB devices can have multiple

configurations
 Each configuration contains one or more

interfaces
 All associated interface and endpoint

descriptors get loaded with a request from
the host for the configuration descriptor

 Contains fields like remote wake-up capability
and max power requirements

 Interface descriptor
 Lists the endpoint descriptors for the interface
 Identifies if the interface belongs to a

predefined Class (such as the Human
Interface Device or HID)

 Endpoint descriptor
 Info required by host to determine bandwidth

requirements
 Describes endpoint number and address, IN

or OUT endpoint and the transfer types
requested

Device
Descriptor

Device
Descriptor

Configuration
Descriptor

Configuration
Descriptor

Interface
Descriptor
Interface

Descriptor

Endpoint
Descriptor
Endpoint

Descriptor HID DescriptorHID Descriptor

Report
Descriptor

Report
Descriptor

Physical
Descriptor
Physical

Descriptor

There is a hierarchy of descriptors specified in the USB specification. The device
descriptor is the top level descriptor that has global information about the device, in
particular are the maximum packet size (we touched on this earlier), the VID/PID
combination and serial number. Following the Device Descriptor is the
Configuration descriptor. Devices can have multiple configurations and they are
selected by the host. One of the key points when generating descriptors is that when
the host requests the Configuration Descriptor the device is required to send all of
the interface descriptors associated with that configuration as well as the endpoint
descriptors associated with the interface. The first field in a descriptor is the size of
the descriptor. In the case of the device descriptor the length is defined as the
length of just that descriptor. When the host asks for the configuration descriptor
the length field must be the sum of all of the descriptors to follow including the
configuration descriptor.

29

29

Example Device Descriptor Spec (1 of 2)

 A look at a descriptor and its fields

Subclass code (assigned by the USB-IF)

These codes are qualified by the value of the bDeviceClass field

If the bDeviceClass field is reset to zero, this field must also be reset to zero

If the bDeviceClass field is not set to FFH, all values are reserved for
assignment by the USB-IF

SubClass1bDeviceSubClass5

Class code (assigned by the USB-IF)

If this field is reset to zero, each interface within a configuration specifies its
own class information and the various interfaces operate independently.

If this field is set to a value between 1 and FEH, the device supports different
class specifications on different interfaces and the interfaces may not operate
independently. This value identifies the class definition used for the aggregate
interfaces.

If this field is set to FFH, the device class is vendor-specific

Class1bDeviceClass4

USB Specification Release Number in Binary-Coded Decimal (i.e., 2.10 is 210H)
This field identifies the release of the USB Specification with which the device and
its descriptors are compliant.

BCD2bcdUSB2

DEVICE Descriptor TypeConstant1bDescriptorType1

Size of this descriptor in bytesNumber1bLength0

DescriptionValueSizeFieldOffset

Now that we understand how the host requests data from a device and how the
device responds to the request by passing along the descriptors that are stored in
memory, we can take a deeper look at the descriptors. One example of a descriptor
is the Device Descriptor and is transferred to the host as a result of the
Get_Descriptor(DEVICE) standard request. The table in the slide shows the fields
associated with the device descriptor. The first field identifies the length of the data
including the size field. For the device descriptor the size field is always 18 bytes
(0x12). The next is the descriptor type field which identifies the data as the device
descriptor. Many different fields follow including what revision of the USB
specification is supported by the endpoint device, the vendor ID and Product ID, as
well as the maximum packet size supported for the endpoint. Take a look at the
table on this slide and the next to see how the fields are defined for the device
descriptor.

30

30

Number of possible configurationsNumber1bNumConfigurations17

Index of string descriptor describing the device’s serial numberIndex1iSerialNumber16

Index of string descriptor describing productIndex1iProduct15

Index of string descriptor describing manufacturerIndex1iManufacturer14

Device release number in binary-coded DecimalBCD2bcdDevice12

Product ID (assigned by the manufacturer)ID2idProduct10

Vendor ID (assigned by the USB-IF)ID2idVendor8

Maximum packet size for endpoint zero (only 8, 16, 32 or 64 are valid)Number1bMaxPacketSize07

Protocol code (assigned by the USB-IF). These codes are qualified by the value
of the bDeviceClass and the bDeviceSubClass fields. If a device supports class-
specific protocols on a device basis as opposed to an interface basis, this code
identifies the protocols that the device uses as defined by the specification of the
device class.

If this field is reset to zero, the device does not use class-specific protocols on a
device basis. However, it may use class specific protocols on an interface basis.

If this field is set to FFH, the device uses a vendor-specific protocol on a device
basis

Protocol1bDeviceProtocol6

DescriptionValueSizeFieldOffset

Example Device Descriptor Spec (2 of 2)

 A look at a descriptor and its fields

31

31

Device Descriptor Example

 A look at a device descriptor declared in code:
//---------------------------
// Descriptor Declarations
//---------------------------
const device_descriptor DeviceDesc =
{

18, // bLength
0x01, // bDescriptorType
0x0002, // bcdUSB
0x02, // bDeviceClass
0x00, // bDeviceSubClass
0x00, // bDeviceProtocol
EP0_PACKET_SIZE, // 0x40
0x10c4, // idVendor
0x3413, // idProduct
0x0000, // bcdDevice
0x01, // iManufacturer
0x02, // iProduct
0x00, // iSerialNumber
0x01 // bNumConfigurations

}; //end of DeviceDesc

Strings

Remember the length we asked
for in the device descriptor
example?

Tells how many bytes this
endpoint can handle

How many configuration
descriptors this device has

So what would a device descriptor look like when we determine all of the values
required? Here is an example of a device descriptor. You can compare these values
to the fields identified in the table to see how each value maps to the specification.
Shown in the slide is a descriptor for a standard class called CDC as the values
reflect the requirements of both specifications (USB 2.0 and the CDC class
specification). We have this labeled as const in order to have this stored in the non-
volatile flash memory so that we have them available all the time.

32

32

Getting the Descriptors

How does the host get all of these descriptors from
the MCU?

The Standard Request. The data passed as part of the
Setup phase of the control transfer is specified in the

USB specification and each byte has a specific meaning.

33

33

Standard Device Request Format

 The host initializes a device through a series of device requests via control transfers to
Endpoint 0
 These are defined by the USB spec and have specific control transfer formats

Number of bytes to transfer if there is a Data
stage

Count2wLength6

Word-sized field that varies according to
request; typically used to pass an index or
Offset

Index or
Offset

2wIndex4

Word-sized field that varies according to
Request

Value2wValue2

Specific requestValue1bRequest1

Characteristics of request:

D7: Data transfer direction

0 = Host-to-device

1 = Device-to-host

D6...5: Type

0 = Standard

1 = Class

2 = Vendor

3 = Reserved

D4...0: Recipient

0 = Device

1 = Interface

2 = Endpoint

3 = Other

4...31 = Reserved

Bitmap1bmRequestType0

DescriptionValueSizeFieldOffset

Data format of
the 8 bytes
transferred
during the

Setup stage of
the control

transfer

Now we are getting into what is termed the Standard Requests or Chapter 9 of the
USB spec. Remember those 8 data bytes that was sent with the Setup token for
control transfers? The data that was sent during that request conformed to this
table. The first section defines the direction of the data flow with respect to the host
and what the target is, endpoint for example. On the next slide we will see the
values that can be used to fill the bRequest field as well as the others. Essentially
how these fields are set determine what the host is asking for and it is up to the
firmware to parse these fields and make decisions based on the values received.

34

34

Standard Requests Values

 These tables indicate the bRequest values and the wValue values defined by the USB spec
 From the previous slide it can be seen that the wValue field can take on several different meanings

based on the request

11SET_INTERFACE

12SYNCH_FRAME

10GET_INTERFACE

9SET_CONFIGURATION

8GET_CONFIGURATION

7SET_DESCRIPTOR

6GET_DESCRIPTOR

5SET_ADDRESS

4Reserved for future use

3SET_FEATURE

2Reserved for future use

1CLEAR_FEATURE

0GET_STATUS

ValueStandard Request

8INTERFACE_POWER

7OTHER_SPEED_CONFIGURATION

6DEVICE_QUALIFIER

5ENDPOINT

4INTERFACE

3STRING

2CONFIGURATION

1DEVICE

ValueDescriptor Type

bRequest Field: What request? wValue Field: Get_Descriptor Request

2DeviceTEST_MODE

0EndpointENDPOINT_HALT

1DeviceDEVICE_REMOTE_WAKEUP

ValueRecipientFeature Selector

wValue Field: Set_Feature Request

Let’s take a look at some of the values that are defined. Above we see the different
values associated with the fields that were in the table on the previous slide. These
are the values that get populated in the data for the setup phase of the standard
request (the 8 data bytes). For example, if the second byte (bRequest) is 0x06 the
host is requesting a descriptor or if it is a 0x05 the host is going to set our address.
The wValue field shown above goes deeper into the request. If we receive a 0x06
and have determined that the host is asking for a descriptor the wValue field will
tell us which descriptor the host is asking for. For example, if wValue is set to 0x01
then the host wants our device descriptor. As firmware developers we need to be
able to parse through the data received and take appropriate action.

35

35

Standard Request Exercise

 We are a host and we want to generate a request to a device in order to receive
it’s device descriptor
 What values would we need to provide in our SETUP packet data phase?
 Determine the data values we need to send to the device in order for it to respond with

its device descriptor values

0x00122wLength6

0x00002wIndex4

0x01002wValue2

0x061bRequest1

0x801bmRequestType0

ValueSizeFieldOffset

Notes:
1) The device descriptor is 18 bytes long (0x12)
2) The descriptor type is found in the MSB of the wValue field
3) Remember byte ordering

Here is an example of the values we would be parsing for a
Get_Descriptor(DEVICE) request from the host.

36

36

Standard Requests Example

 Get_Descriptor(DEVICE): Standard request to get the device descriptor

bmRequestType = 80h, bRequest = 06h
(Get_Descriptor())

wValue = 0100h (DEVICE)
wIndex = 0000h
wLength = 0012h (18 bytes)

bmRequestType=00h, bRequest=05h
(Set_Address())

wValue = 0300h (Address 3)
wIndex = 0000h
wLength = 0000h (0 bytes)

Set_Address(3): Standard request to set device address to 3.

8 bytes of data found within the setup
phase of the control transfer.

Here are some captures of data highlighting the requests. The first is the
Get_Descriptor(DEVICE) standard request and the second is the Set_Address(3)
request. In the first example we would provide the USB peripheral with the data
that is stored that conforms to the descriptors for the device descriptor. When we
receive the second request we will update the address register with the value
transferred by the host, in this case we would become address 3.

37

37

USB—Device States (1 of 3)

 Idle state
 All drivers are off. Device speed determines Idle state based on the pull-up

resistor attached. For full speed D+ is more positive than D- and vice versa
for low speed.

 Suspend state
 Low power state with < 500 uA current consumption requirement. If remote

wake-up capable then it is < 2.5 mA.
 Remote wake-up — device has the ability to notify the host to start

transactions.

 Timeout
 After 3 mS of inactivity on the bus all devices are required to enter the Suspend

state
 SOF marker devices keep devices out of suspend
 Global suspend when host goes into standby

 Selective suspend
 Host can issue Set_Port_Feature request to put a specific device

into suspend

After power up and throughout the enumeration process the MCU enters/exits several
device states

There are different device states defined in the USB specification. Take a minute to
familiarize yourself with those outlined here.

38

38

USB—Device States (2 of 3)

 Resume
 Any bus activity brings device out of suspend

 Host places bus in Data K state for 20 mS then low speed EOP
 Remote wake-up device drives the Data K state for 1 mS to 15 mS and then places

drivers in High-Z state

 Powered
 Device has been attached to the USB port and draws power from VBUS

 It has not been reset

 Default
 Device has been reset from a powered state and has not been assigned an address

 It responds only to endpoint0

 Addressed
 Device has been assigned its unique address from the host

 Still not configured so it can’t be used yet

 Configured
 Device has passed the addressed state and has been configured

 All functions may be used at this time

There are different device states defined in the USB specification. Take a minute to
familiarize yourself with those outlined here.

39

39

USB—Device States (3 of 3)

State diagram

There are different device states defined in the USB specification. Here is a
graphical view of the device states. As you can see they progress from the attach
event all the way to configured.

40

40

Device Classes

 Device classes group common interfaces together
 Class definitions specify the number and types of endpoints

 May define data formats

 May define functions or capabilities of devices within the class

 Some types of defined classes
 Human interface class

 Communications device class

 Hub class
 Printer class

 Mass storage class

 Audio class

An additional set of specifications has been added to the overall USB 2.0
specifications. These additional specifications provide standard functionality using
a predefined set of rules to set up and enumerate as well as the endpoint types and
transfer types required. Along with defining exactly how the device will be
configured, there is also an associated driver already integrated to the OS. That
alleviates the need to write a custom drivers to suit the application. If the
application data bandwidth requirements can fit within one of these pre-defined
classes defined by the USB consortium then you can use that class and the driver
that is built into the OS. For example, we can configure our device to enumerate as
a Human Interface Device (HID) class and transfer data according to the HID
specification. The driver that communicates with our Windows application is
already a part of Windows and we didn’t have to write any driver code. Another
application is the use of the Communications Device Class (CDC) that can be used
for USB to UART applications and uses the built in Windows driver usbser.sys.

41

41

 HID Class originally developed to for human interface objects such as
mice and keyboards

 Interrupt transfers used for data transport

 Any device can use the HID drivers. It does not need to be a human
interface device device.
 Volt meters

 Bar code readers

 Thermometers

 What do I need?

 Firmware side
 The firmware needs to set the standard descriptors and set the appropriate

report descriptors

 Must support the standard requests as well as the HID specific requests

 Host side
 Need the Windows DDK to get the library functions to read and write the

data to the HID device

Human Interface Device (HID)

There are some things to be considered based on the class definition chosen for the
application. The next few slides discuss some of the standard classes and what is
required to implement them. For example, the HID class is useful for applications
where the data transfer rate is less than 64Kbps. This is due to the fact that it uses
interrupt transfers and they have a maximum packet size of 64 bytes and a minimum
interval of 1ms. If the application fits within those requirements then the
descriptors on the device side will need to reflect those called out in the HID
specification. The firmware will have to support the standard requests associated
with the USB 2.0 specification as well as those for the HID specification such as
Get_Report. On the host side the calls to the driver are available in the Windows
Driver Development Kit (DDK) or a manufacturer like Silicon Labs can provide
their own API.

42

42

Mass Storage (MSD)

 Used for file transfer for memory sticks, etc.

 Bulk transfers used for data transport

 What do I need?

 Firmware side
 Firmware to detect and respond to Standard requests and the

Class specific requests

 Standard and class specific descriptors defined

 Typically SCSI interpreter is all that is needed, however, if access
to the file system is required by means other than the host USB
interface then a file system will also be required

 Host side
 File system access instructions such as fopen, fread, etc.

 Any OS application like Windows Explorer can access the device

The same rules apply to the Mass Storage Device Class (MSD). When
implementing mass storage (like a USB drive) there are several firmware
considerations and application trade-offs to consider. Use this class when you want
to arrange data as files in order to move and copy them easily to other locations.
Typically, a SCSI interpreter is used and all of the file system structure is
maintained on the host PC. This is equivalent to a USB flash drive and using
Windows Explorer to access the files. One consideration to using the mass storage
device class is whether or not file access is to be given to another port other than the
host. In that case the firmware will have to implement its own files system and
need to respond to commands like fopen, fclose etc.

43

43

Communications Device Class (CDC)

 Bulk transfers used for data transport
 Any device can use the CDC drivers. It does not need to be

a modem device.
 Volt meters
 Bar code readers
 Thermometers
 Anything that requires a serial port input to the host uses the Abstract

Control Model (ACM)

 What do I need?
 Firmware side

 Firmware to detect and respond to Standard requests and the Class
specific requests

 Standard and class specific descriptors defined.

 Host side
 To use CDC, the host application opens the comm port assigned by

the operating system. MSCOMM is typical in Windows.

The communications device class (CDC) is used for quite a few applications.
Where it is most beneficial to embedded designers is the implementation of the
Abstract Control Model (ACM) which is a sub part of the CDC specification. The
ACM allows a USB device to operate as a USB to RS232 bridge. It requires the
descriptors to call out the CDC class and the firmware to be compliant to the USB
2.0 and the CDC specification. In addition the firmware is required to respond to
the class specific requests. An example would be the Set_Line_Coding which sends
the baud rate information in order to configure the integrated UART. So does a
CDC class device have to use a UART on the other end? No. We can just use the
class specific enumeration and the built in driver to the OS to provide the means to
pass data back and forth to the host. Once we receive it we can do anything we
want with it.

44

44

Example Class Specific Descriptor Structure

*Device
Descriptor

*Device
Descriptor

Configuration
Descriptor

Configuration
Descriptor

Communications
Class Interface

Descriptor

Communications
Class Interface

Descriptor

Endpoint
Descriptor
Endpoint

Descriptor
Functional
Descriptors
Functional
Descriptors

Endpoint
Descriptor
Endpoint

Descriptor

Data Class
Interface

Descriptor

Data Class
Interface

Descriptor

Endpoint
Descriptor
Endpoint

Descriptor

Class
specific
Class

specificStandardStandard

Standard descriptor using
values from the CDC spec.

Descriptor Types
*Not all classes require specific
values in the device descriptor.

 CDC Class uses the Abstract Control Model
 Bridge the gap between serial devices and

USB
 Uses the Communications Class Interface

and the Data Class Interface
 CDC defines a set of functional descriptors

as part of the Communications Class
Interface

Now that we have discussed the different classes and we have mentioned that our
descriptors have to be compliant to the class specification as well as the USB 2.0
specification, let’s take a look again at the descriptor hierarchy for a standard class
implementation. In this case we will look at the CDC class. Notice that the
standard descriptors we had before are still there, however, we now have class
specific values populated in some of the fields of the descriptors. Looking at our
device descriptor example again, there are device specific fields added for a CDC
class device. In addition to the standard descriptors, deice, configuration, interface
and endpoint, there are additional descriptors the host will request based on the
class. Here we see Data Class and Communications Class descriptors added as part
of the CDC specification. The multi-colored boxes are a standard descriptor
populated with values from the CDC class spec.

45

USB Firmware

46

46

USB Firmware Descriptor Variable Defined

Device Descriptor Structures

Here is a snapshot of some sample code that implements USB. On the left are the
definitions for the specific descripors and on the right is the actual code that places
these descriptor values into the flash of the MCU.

47

47

Code Flow—One Example
ISR generated whenever USB event occurs

Parse the
ISR to
determine
USB event

Handle_Setup Routine

USB ISR Routine

Data that gets written to USB
endpoint 0 FIFO

1

2

3

4

5

In these samples we can follow the firmware after the interrupt is received. The
example here is showing how the firmware determines what type of request was
received and how the data is returned to the host.

48

48

What is Required and Where to Get Help

 Requirements
 Vendor ID—obtained from the USB Forum

 See following slide about how Silicon Labs can help

 Product ID—unique number identifying the product family of the
equipment
 Typically obtained from the USB Forum

 Serial Number—unique identifier for each specific equipment
developed under the PID

 Get help here
 USB Implementers Forum (USB-IF)
 www.usb.org
 USB 2.0 specification
 The USB class specific specifications
 USB Complete by Jan Axelson

 Special recognition needs to be given to Jan Axelson whereby
much of the material presented here is a direct reflection on the
excellent work from this reference

So we have completed the main portion of the training module that covers USB and
how it works. We have shown how the standard classes can benefit an application
by reduces development effort. Now that you understand USB we are going to give
a few tools that can abstract the entire USB operation to get a design
communicating via USB quickly. First, if you are going to be compliant to USB
and provide open functionality then you will have to obtain a VID from the USB
Implementer’s Forum. You can use the Silicon Labs VID and they can assign a PID
under their VID for customers to use. Also listed here are some useful guides to
learn USB in more detail. Thanks to Jan Axelson for the book “USB Complete” as
it has been an invaluable resource when putting this material together.

49

USB Solutions Offered by Silicon Labs

50

50

Certification and Compliance Testing

 Silicon Labs allotment system
 Silicon Labs has a unique VID (0x10C4)

 If a customer uses the Silicon Laboratories VID, they must ask
Silicon Laboratories to assign a unique PID to their product

 Contact Silicon Labs MCU technical support to receive a PID

 USB Implementer’s Forum (USB-IF), found at www.usb.org
 Assigns vendor IDs (VIDs)

 Oversees compliance testing
 USB products must pass compliance testing in order to display the USB

logo and to be listed on the USB-IF Integrators List

 Contact Silicon Labs MCU support for help with compliance testing

Silicon Labs has an agreement with NTS (National Testing Services) to provide
discount USB Compliance testing for Silicon Labs customers. Contact
mcutools@silabs.com for more details.

In order to display a USB certified logo on the end product or packaging, the
designers will have to undergo compliance testing. The USB implementer’s forum
has a list of approved compliance testing vendors. Once a product passes, the
vendor then has the product listed.

The forum also assigns a vendor ID (or VID) so that the designer can assign the
product with a unique ID number.

You can contact silicon labs for assistance.

51

51

Silicon Labs USB MCU Products

 Mixed-Signal USB 2.0 MCU solutions
 48 MIPS core, 10-bit 200 ksps ADC, timers, comparators, UART, EMIF

 On-chip oscillator, voltage regulator, and USB transceiver

 Fixed function USB to UART bridges
 The CP210x family of devices provides the easiest method for upgrading

legacy RS-232 systems with USB

 Proven, royalty-free USB software solutions
 Source code for drivers, transfer types, device classes, and enumeration

Silicon labs controller solutions fall into two main classes: fixed function and fully-
programmable mixed-signal MCUs with integrated USB controller.

Fixed function CP210x USB to UART bridge devices with royalty-free VCP drivers
are the easiest and fastest way to add USB communication to your design – with no
changes to the controller firmware or PC application.

Mixed-signal MCUs are fully-programmable, featuring ISP FLASH (great for USB
bootloaders), a wide array of memory sizes, port I/O, and analog data converters.

All of these feature a calibrated oscillator, and so do not require an external crystal!

52

52

Highly Integrated USB MCUs

 High-speed 8051 core up to 48 MIPS

 Up to 64Kb Flash and 4K RAM for application code

 Complete 2.0 USB feature set
 Internal precision oscillator generates USB clock without external

crystal

 Internal voltage regulator enables MCU to be bus powered without
external components

 Integrated USB transceiver

Best-in-Class analog features
 10-bit, up to 500 ksps ADC

 On-board temperature
sensor

 Precision voltage reference

 Comparators

Digital peripherals include a SMBus, two UARTs, and an enhanced SPI module. Timing
functions can be achieved though the four general-purpose 16-bit timers or a 5-channel
PCA. Five full ports offer 40 controllable I/O lines which are all 5V tolerant. The external
memory interface provides access to data storage well beyond the on-chip XRAM or
provides an easy interface into external peripherals. System reliability features include a
watchdog timer, integrated power-on reset, a supply voltage monitor, and a missing clock
detector.

The F340 truly provides system on chip integration eliminating the unnecessary cost and
problems associated with adding external components.

The F340 and the other family members include everything needed to accomplish even the
most challenging embedded projects that also require USB connectivity. However, having
a powerful MCU is only the first step. A strong complement of hardware and software
development tools is a must if the overall project is to succeed.

53

53

Most Powerful Mixed-Signal USB MCU
High-speed 8051 core

operating up to 48 MIPS

Up to 64 kB Flash
and 5376B of RAM

17 ch. 10-bit, 200
ksps ADC

In-system debug
 No need for emulators

USB transceiver
 No external resistors

Integrated Voltage
Regulator
 Allows bus

powered operation

Internal oscillator
 No external crystal

Silicon labs controller solutions fall into two main classes: fixed function and fully-
programmable mixed-signal MCUs with integrated USB controller.

Fixed function CP210x USB to UART bridge devices with royalty-free VCP drivers are the
easiest and fastest way to add USB communication to your design – with no changes to the
controller firmware or PC application.

Mixed-signal MCUs are fully-programmable, featuring ISP FLASH (great for USB
bootloaders), a wide array of memory sizes, port I/O, and analog data converters.

All of these feature a calibrated oscillator, and so do not require an external crystal!

54

54

Single-Chip USB to UART Bridge

 CP210x family of devices
 Fixed function USB to UART bridges provide

the easiest method for upgrading legacy RS-
232 systems with USB

 Requires no firmware or driver development

 Most integrated USB to UART bridge
solution
 1024 Bytes of EEPROM for customization
 Integrated transceiver
 Integrated precision clock
 On-chip voltage regulator
 5x5 mm2 QFN28 package

 Simplifies and enables legacy system
upgrades
 Full royalty-free driver support
 No software design needed

55

55

Single-Chip CP2103 USB to UART Bridge

UART
I/F

(Modem)

VBUS

D–

D+

CP2103

Voltage
Regulator

USB
Function
Controller

1024 B
EEPROM

UART

48 MHz
Oscillator

640 B
TX Buffer

576 B
RX Buffer

USB
Transceiver

EEPROM
 Custom baud rates
 Stores VID, PID
 Security lock function

USB transceiver
 No external resistors

Integrated voltage regulator
 Allows bus powered operation

Data buffers
 Supports high-speed UART

Integrated oscillator
 No external crystal

Complete UART
 Up to 1 Mbps

4 Host controlled GPIO
 LED drive capability

GPIO

56

56

USB Software Support

 Fixed-function Support Software
 Full royalty-free driver support for Windows,

MAC OS, and Linux
 WHQL certified

 MCU Support Software

 USBXpress:
Allows the developer to implement a USB

application without USB expertise
Royalty Free, Windows Certified Device

Driver that can be customized and
distributed

 Design Examples:
Mass Storage Device (MSD) Data Logger

Human Interface Device w/ Boot Loader

USB Streaming Audio / Isochronous

Control, Bulk and Interrupt firmware and
driver examples

USB Mass Storage RD

Once the appropriate MCU or fixed-function solution is chosen, silicon labs also
provides a wide range of software solutions to enable the designed to quickly enable
the end application to communicate with the user’s application on the PC.

If this is your first time designing with USB connectivity, you may be interested in
some of the innovative reference design applications developed by silicon labs, such
as the USB FM radio or mass storage example.

As with all silicon labs MCU products, comprehensive, low-cost development tools
are available for easy evaluation and design.

57

57

USBXpress—Features

 General USBXpress information
 Implements a bulk pipe between host and peripheral

 Operates at full speed using bulk transfers

 Maximum transaction size is 4096 bytes

 Max throughput = 960 kB/sec

 Allocates one IN endpoint and one OUT endpoint on the
C8051F32x/34x devices

 Multiple USBXpress devices may reside on the same bus

 Distributed as a Keil software library

After the previous slides all of this makes sense right? The key to USBXpress is
that there is no OS driver development and it is easy to use. There is an Application
Programming Interface (API) that is defined that simplifies adding USB to a system
and it runs on any of the Silicon Labs USB product portfolio.

58

58

USB Development Solutions

 Evaluation kits for USB/UART bridge
 CP2102EK, CP2103EK
 VCP Driver CD included

 Full development kits for Flash-based
USB MCUs
 C8051F320DK

C8051F326DK
C8051F340DK

 Integrated IDE, assembler, compiler,
linker, debugger

 On-chip debug hardware (breakpoints,
watchpoints, single-step)

 Mass storage daughter card

 ToolStick daughter cards
 ToolStick321DC
 ToolStick327DC
 ToolStick342DC

 Free downloadable USBXpress firmware
library and host side drivers

CP2103 Evaluation Board

USB MCU Development Kit

As with all silicon labs MCU products, comprehensive, low-cost development tools
are available for easy evaluation and design.

59

59

Learn More at the Education Resource Center

 Visit the Silicon Labs website to get more information on Silicon Labs
products, technologies and tools

 The Education Resource Center training modules are designed to get
designers up and running quickly on the peripherals and tools needed
to get the design done
 http://www.silabs.com/ERC
 http://www.silabs.com/mcu
 http://www.silabs.com/usb
 http://www.silabs.com/products/interface/usbtouart

 To provide feedback on this or any other training go to:

http://www.silabs.com/ERC and click the link for feedback

Visit the Silicon Labs Education Resource Center to learn more about the MCU
products.

60

Appendix
An Actual CDC Class Enumeration &

Data Transfer Example

61

61

Enumeration

Tabular form of what we listed in our device descriptor structure.
Note the bDeviceClass is recognized as Communication

Host sends Get_Descriptor(Device) request to find
out the max packet size and then resets the device

We were responding to
address 0 until the host
assigned us an address

1

2

62

62

Get_Descriptor (Device)

Remember our exercise
slide 35?

We parsed the data and
returned the device
descriptor

Status phase terminating
the transfer

63

63

Passing the Config Descriptor (1 of 2)

Data toggle in action — our max packet size is 64
bytes. Our config descriptor is 67 bytes so we need
multiple data phases to complete the transfer.

All interface and endpoint descriptors
get transferred with the single
Get_Descriptor(Configuration) request

64

64

Passing the Config Descriptor (2 of 2)

The data shown corresponds to the data set-up in the USB_DESCRIPTORS.c
file. It is transferred in response to a Get_Descriptor(Configuration) request.

First 64 bytes of the configuration
including 2 interface descriptors and their
endpoint descriptors. The Abstract Control
Model values are part of this response.

Last 3 bytes of the
configuration request

65

65

More Enumeration

Why the red X? We broadcast USB 2.0 compliant so
this request is to find out if the device supports an
other speed. We don’t so we stall the response.

This is the class specific model we
use for USB to serial conversion

66

66

USB Setting the Baud Rate

When we set HyperTerminal to the baud rate and selected “Connect”,
the driver sends the device a command to set its UART to that rate.

Class request 0x20 is SetLineCoding.
0xE100 = 57600

Class request 0x21 is GetLineCoding.
We return what we received to verify.

67

67

We Use Our Bulk Endpoints

Bulk OUT transfers to send the keys we hit.
This example shows “hello” being typed.

Now that the communications link is established we are ready to transfer
data. We hit keys while the HyperTerminal window is active and the host
is using the Bulk transfers we set up during enumeration to send data.

68

www.silabs.com/MCU

