(** AUTHOR: Alexey Morozov, Timothee Martiel PURPOSE: driver implementation for Xilinx Zynq UART PS controller *) MODULE PsUart; IMPORT SYSTEM, PsUartMin, PsUartInterrupts, Trace; CONST (** Receive errors - compatible with A2 Serials *) OverrunError* = 10; ParityError* = 11; FramingError* = 12; BreakInterrupt* = 13; DefaultRxBufSize* = 4096; DefaultTxBufSize* = 4096; ReceiveTimeoutInUs* = 500; (** Receive timeout in microseconds *) (* RX data interrupts *) RxDataInterrupts = {PsUartMin.XUARTPS_IXR_TOUT , PsUartMin.XUARTPS_IXR_RXFULL , PsUartMin.XUARTPS_IXR_RXOVR}; (* RX error interrupts *) RxErrorInterrupts = {PsUartMin.XUARTPS_IXR_PARITY , PsUartMin.XUARTPS_IXR_FRAMING , PsUartMin.XUARTPS_IXR_OVER}; RxInterrupts = RxDataInterrupts + RxErrorInterrupts; TYPE UartId* = PsUartMin.UartId; ClockFrequency* = PsUartMin.ClockFrequency; UartController* = POINTER TO RECORD id-: UartId; (** UART controller ID *) regs-: PsUartMin.UartRegisters; (** controller registers *) inputClock-: ClockFrequency; (** controller input clock in Hz *) bps-, data-, parity-, stop-: LONGINT; (** current parameter values *) open-: BOOLEAN; (** TRUE if the controller is open *) rxBuf: POINTER TO ARRAY OF CHAR; (* receive (RX) circular buffer *) rxBufRdPos, rxBufWrPos: SIZE; (* RX buffer read and write positions *) errors: SET; END; VAR uarts: ARRAY 2 OF UartController; (* Disable all UART interrupts *) PROCEDURE DisableInterrupts(regs: PsUartMin.UartRegisters); BEGIN regs.idr := PsUartMin.XUARTPS_IXR_MASK; END DisableInterrupts; PROCEDURE IntrHandler(param: ANY); VAR uart: UartController; intrStatus: SET; BEGIN uart := param(UartController); intrStatus := uart.regs.imr * uart.regs.isr; uart.regs.isr := intrStatus; (* clear the interrupt *) IF intrStatus * RxInterrupts # {} THEN IntrHandlerRx(uart,intrStatus); END; END IntrHandler; PROCEDURE IntrHandlerRx(uart: UartController; intrStatus: SET); VAR bufWrPos: SIZE; BEGIN IF intrStatus * RxErrorInterrupts # {} THEN IF PsUartMin.XUARTPS_IXR_OVER IN intrStatus THEN INCL(uart.errors,OverrunError); Trace.String("---rx overrun(1)---: intrStatus="); Trace.Set(intrStatus); Trace.Ln; RETURN; END; END; bufWrPos := uart.rxBufWrPos; WHILE ~(PsUartMin.XUARTPS_SR_RXEMPTY IN uart.regs.sr) DO uart.rxBuf[bufWrPos] := CHR(uart.regs.fifo); INC(bufWrPos); IF bufWrPos = LEN(uart.rxBuf) THEN bufWrPos := 0; END; IF bufWrPos = uart.rxBufRdPos THEN INCL(uart.errors,OverrunError); Trace.String("---rx overrun(2)---: intrStatus="); Trace.Set(intrStatus); Trace.Ln; RETURN; END; END; uart.rxBufWrPos := bufWrPos; END IntrHandlerRx; (* Returns TRUE if a cyclic buffer is full *) PROCEDURE BufIsFull(bufWrPos, bufRdPos, bufSize: SIZE): BOOLEAN; BEGIN IF bufWrPos # (bufSize-1) THEN RETURN bufRdPos = (bufWrPos+1); ELSE RETURN bufRdPos = 0; END; END BufIsFull; (** Install a UART controller present in the system uart: ID (0-based index) of the UART controller to install base: controller base address inputClock: controller input clock in Hz res: returned error code, 0 in case of success *) PROCEDURE Install* (uart: UartId; base: ADDRESS; inputClock: ClockFrequency; VAR res: WORD); VAR ctl: UartController; BEGIN PsUartMin.Install(uart, base, inputClock, res); IF res # 0 THEN RETURN; END; NEW(ctl); uarts[uart] := ctl; ctl.id := uart; ctl.regs := PsUartMin.GetUart(uart); ctl.inputClock := inputClock; ctl.open := FALSE; ctl.bps := PsUartMin.DefaultBPS; ctl.data := PsUartMin.DefaultDataBits; ctl.parity := PsUartMin.DefaultParity; ctl.stop := PsUartMin.DefaultStop; NEW(ctl.rxBuf,DefaultRxBufSize); ASSERT(PsUartInterrupts.InstallInterruptHandler(uart,IntrHandler,ctl)); END Install; (** Get UART controller with a given ID uart: UART controller ID Returns NIL in case if no controller with given ID has been installed *) PROCEDURE GetUart*(uart: UartId): UartController; BEGIN IF (uart >= 0) & (uart < LEN(uarts)) THEN RETURN uarts[uart]; ELSE RETURN NIL; END; END GetUart; (** Open a UART controller uart: UART controller bps: baudrate data: number of data bits parity: parity control stop: number of stop bits res: returned error code, 0 in case of success *) PROCEDURE Open*(uart: UartController; bps, data, parity, stop: LONGINT; VAR res: WORD); VAR n: SIZE; BEGIN IF uart.open THEN res := PsUartMin.PortInUse; RETURN; END; PsUartMin.Reset(uart.regs); IF ~PsUartMin.SetBps(uart.regs, bps, res) OR ~PsUartMin.SetDataBits(uart.regs, data, res) OR ~PsUartMin.SetParity(uart.regs, parity, res) OR ~PsUartMin.SetStopBits(uart.regs, stop, res) THEN RETURN; END; uart.bps := bps; uart.data := data; uart.parity := parity; uart.stop := stop; uart.rxBufWrPos := 0; uart.rxBufRdPos := 0; (* configure receive timeout to be as close as possible to ReceiveTimeoutInUs *) n := ENTIER((ReceiveTimeoutInUs*REAL(bps)+1000000) / 4000000 + 0.5); n := MAX(1,MIN(255,n-1)); uart.regs.rxtout := n; uart.regs.cr := uart.regs.cr + {PsUartMin.XUARTPS_CR_TORST}; (* restart receive timeout counter *) uart.regs.rxwm := 32; (* RX FIFO triggering threshold *) uart.regs.ier := RxInterrupts; PsUartMin.Enable(uart.regs,TRUE); res := 0; uart.open := TRUE; END Open; (** Close a UART controller uart: UART controller *) PROCEDURE Close*(uart: UartController); BEGIN IF uart.open THEN uart.open := FALSE; DisableInterrupts(uart.regs); PsUartMin.Enable(uart.regs,FALSE); END; END Close; PROCEDURE OccupiedBufSpace(bufWrPos, bufRdPos, bufSize: SIZE): SIZE; VAR n: SIZE; BEGIN n := bufWrPos - bufRdPos; IF n >= 0 THEN RETURN n; ELSE RETURN n+bufSize; END; END OccupiedBufSpace; (* Returns the amount of available free space in a cyclic buffer *) PROCEDURE AvailableBufSpace(bufWrPos, bufRdPos, bufSize: SIZE): SIZE; VAR n: SIZE; BEGIN n := bufWrPos - bufRdPos; IF n >= 0 THEN RETURN bufSize-1-n; ELSE RETURN -n-1; END; END AvailableBufSpace; (** Returns number of bytes available in the receive buffer of a UART controller uart: UART controller res: error code, 0 in case of success *) PROCEDURE Available*(uart: UartController): SIZE; BEGIN RETURN OccupiedBufSpace(uart.rxBufWrPos,uart.rxBufRdPos,LEN(uart.rxBuf)); END Available; (** Send a single character to the UART ch: character to send propagate: TRUE for flushing the TX FIFO buffer res: error code, 0 in case of success *) PROCEDURE SendChar*(uart: UartController; ch: CHAR; propagate: BOOLEAN; onBusy: PsUartMin.BusyLoopCallback; VAR res: WORD); BEGIN PsUartMin.SendChar(uart.regs,ch,propagate,onBusy,res); END SendChar; (** Send data to the UART *) PROCEDURE Send*(uart: UartController; CONST buf: ARRAY OF CHAR; offs, len: LONGINT; propagate: BOOLEAN; onBusy: PsUartMin.BusyLoopCallback; VAR res: WORD); BEGIN WHILE uart.open & (len > 0) DO IF ~(PsUartMin.XUARTPS_SR_TNFUL IN uart.regs.sr) THEN uart.regs.fifo := ORD(buf[offs]); INC(offs); DEC(len); ELSIF (onBusy # NIL) & ~onBusy(res) THEN RETURN; END; END; IF propagate THEN (* flush the FIFO *) WHILE uart.open & ~(PsUartMin.XUARTPS_SR_TXEMPTY IN uart.regs.sr) DO IF (onBusy # NIL) & ~onBusy(res) THEN RETURN; END; END; END; IF uart.open THEN res := PsUartMin.Ok; ELSE res := PsUartMin.Closed; END; END Send; (** Receive a single character from UART res: error code, 0 in case of success Remarks: blocks until a character is available *) PROCEDURE ReceiveChar*(uart: UartController; onBusy: PsUartMin.BusyLoopCallback; VAR res: WORD): CHAR; VAR buf: ARRAY 1 OF CHAR; len: LONGINT; BEGIN Receive(uart,buf,0,1,1,len,onBusy,res); RETURN buf[0]; END ReceiveChar; (** Receive data from the UART *) PROCEDURE Receive*(uart: UartController; VAR buf: ARRAY OF CHAR; offs, size, min: LONGINT; VAR len: LONGINT; onBusy: PsUartMin.BusyLoopCallback; VAR res: WORD); VAR bufRdPos, bufWrPos, n: SIZE; BEGIN IF ~uart.open THEN res := PsUartMin.Closed; RETURN; END; res := 0; len := 0; IF size = 0 THEN RETURN; END; min := MIN(size,min); WHILE uart.open & (size > 0) DO bufRdPos := uart.rxBufRdPos; bufWrPos := uart.rxBufWrPos; n := OccupiedBufSpace(bufWrPos,bufRdPos,LEN(uart.rxBuf)); IF n # 0 THEN n := MIN(n,size); DEC(size,n); INC(len,n); IF min > 0 THEN DEC(min,n); END; (*! Make sure the receive buffer content corresponds to the state of uart.rxBufWrPos *) CODE DMB END; WHILE n > 0 DO buf[offs] := uart.rxBuf[bufRdPos]; INC(bufRdPos); IF bufRdPos = LEN(uart.rxBuf) THEN bufRdPos := 0; END; INC(offs); DEC(n); END; uart.rxBufRdPos := bufRdPos; ELSIF min > 0 THEN IF (onBusy # NIL) & ~onBusy(res) THEN RETURN; END; ELSE RETURN; END; END; END Receive; PROCEDURE PrintRegisters(regs: PsUartMin.UartRegisters); BEGIN Trace.String("cr("); Trace.Hex(ADDRESSOF(regs.cr),-8); Trace.String("): "); Trace.Set(regs.cr); Trace.Ln; Trace.String("mr("); Trace.Hex(ADDRESSOF(regs.mr),-8); Trace.String("): "); Trace.Set(regs.mr); Trace.Ln; Trace.String("ier("); Trace.Hex(ADDRESSOF(regs.ier),-8); Trace.String("): write only"); Trace.Ln; Trace.String("idr("); Trace.Hex(ADDRESSOF(regs.idr),-8); Trace.String("): write only"); Trace.Ln; Trace.String("imr("); Trace.Hex(ADDRESSOF(regs.imr),-8); Trace.String("): "); Trace.Set(regs.imr); Trace.Ln; Trace.String("isr("); Trace.Hex(ADDRESSOF(regs.isr),-8); Trace.String("): "); Trace.Set(regs.isr); Trace.Ln; Trace.String("baudgen("); Trace.Hex(ADDRESSOF(regs.baudgen),-8); Trace.String("): "); Trace.Int(regs.baudgen,0); Trace.Ln; Trace.String("rxtout("); Trace.Hex(ADDRESSOF(regs.rxtout),-8); Trace.String("): "); Trace.Int(regs.rxtout,0); Trace.Ln; Trace.String("rxwm("); Trace.Hex(ADDRESSOF(regs.rxwm),-8); Trace.String("): "); Trace.Int(regs.rxwm,0); Trace.Ln; Trace.String("modemcr("); Trace.Hex(ADDRESSOF(regs.modemcr),-8); Trace.String("): "); Trace.Set(regs.modemcr); Trace.Ln; Trace.String("modemsr("); Trace.Hex(ADDRESSOF(regs.modemsr),-8); Trace.String("): "); Trace.Set(regs.modemsr); Trace.Ln; Trace.String("sr("); Trace.Hex(ADDRESSOF(regs.sr),-8); Trace.String("): "); Trace.Set(regs.sr); Trace.Ln; Trace.String("fifo("); Trace.Hex(ADDRESSOF(regs.fifo),-8); Trace.String("): --- "); Trace.Ln; Trace.String("bauddiv("); Trace.Hex(ADDRESSOF(regs.bauddiv),-8); Trace.String("): "); Trace.Int(regs.bauddiv,0); Trace.Ln; Trace.String("flowdel("); Trace.Hex(ADDRESSOF(regs.flowdel),-8); Trace.String("): "); Trace.Int(regs.flowdel,0); Trace.Ln; Trace.String("txwm("); Trace.Hex(ADDRESSOF(regs.txwm),-8); Trace.String("): "); Trace.Int(regs.txwm,0); Trace.Ln; END PrintRegisters; PROCEDURE Show*; BEGIN IF uarts[0] # NIL THEN Trace.StringLn("PS UART0:"); PrintRegisters(uarts[0].regs); Trace.String("rxBufRdPos="); Trace.Int(uarts[0].rxBufRdPos,0); Trace.Ln; Trace.String("rxBufWrPos="); Trace.Int(uarts[0].rxBufWrPos,0); Trace.Ln; Trace.Ln; END; IF uarts[1] # NIL THEN Trace.StringLn("PS UART1:"); PrintRegisters(uarts[1].regs); Trace.String("rxBufRdPos="); Trace.Int(uarts[1].rxBufRdPos,0); Trace.Ln; Trace.String("rxBufWrPos="); Trace.Int(uarts[1].rxBufWrPos,0); Trace.Ln; Trace.Ln; END; END Show; END PsUart.