
Research Collection

Doctoral Thesis

The active object system design and multiprocessor
implementation

Author(s):
Muller, Pieter Johannes

Publication Date:
2002

Permanent Link:
https://doi.org/10.3929/ethz-a-004453415

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-a-004453415
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

The Active Object System
Design and Multiprocessor Implementation

c© 2002 Pieter J. Muller

Diss. ETH No. 14755

The Active Object System

Design and Multiprocessor

Implementation

A dissertation submitted to the
Swiss Federal Institute of Technology Zurich

(ETH Zurich)

for the degree of
Doctor of Technical Sciences

presented by
Pieter Johannes Muller

M.Sc., Stellenbosch University
born 11th July 1968

citizen of the Republic of South Africa

accepted on the recommendation of

Prof. Dr. J. Gutknecht, examiner
Prof. Dr. N. Wirth, co-examiner

2002

Bit by bit,
Putting it together ...
Piece by piece—
Only way to make it work.
Every moment makes a contribution,
Every little detail plays a part.
Having just a vision’s no solution.
Everything depends on execution:
Putting it together—
That’s what counts.

— with apologies to Stephen Sondheim.

v

Acknowledgements

I am indebted to several people, without whom completing this disser-
tation would not have been possible.

Prof. Jürg Gutknecht enthusiastically supported my project and gave
me free reign to pursue my ideas by providing a comfortable and stimu-
lating working environment. Prof. Niklaus Wirth kindly accepted to be
co-examiner and provided much-appreciated encouragement. Together,
their work inspired me to pursue my doctoral studies in the first place.

I was fortunate to have three outstanding colleagues working closely
with me on the system. Patrik Reali tirelessly maintained the compiler
and livened up our office with his jokes. Thomas Frey provided inspira-
tion with his novel graphical user interface and countless applications.
Bernhard Egger ported the system to the ARM architecture and greatly
improved the installation process.

Prof. Thomas Stricker generously co-sponsored the six-processor ma-
chine used during development and testing. Christian Kurmann and
Felix Rauch frequently helped with networking and setup issues.

My other Computer Systems Institute friends and colleagues, espe-
cially André Fischer, Erich Oswald, Marco Sanvido, and Emil Zeller,
ensured a pleasant working environment.

Numerous students and others outside the ETH contributed to the
Oberon and Aos systems and motivated us with the trust they placed
in our work.

Jaco Geldenhuys and Paul Reed scrutinized the manuscript and pro-
vided many corrections and helpful suggestions for improvement. Brian
Kirk provided constructive comments on an early version of the design.

Finally, I’d like to thank my wife Eva for her love, tolerance, and
inspiration, and my parents for their unending love and support.

vii

Contents

Abstract xiii

Zusammenfassung xv

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 2
1.3 Contributions . 4
1.4 Overview . 4

2 Active Object Concepts 7
2.1 Active Object Computing Model 7
2.2 Active Oberon Language 11

2.2.1 Object Types and Methods 11
2.2.2 Synchronization 13
2.2.3 Active Objects 14
2.2.4 Miscellaneous 14

3 System Structuring Concepts 19
3.1 Extensible Systems . 19
3.2 Modular Structure . 20
3.3 Module Layers . 21
3.4 Dynamic Loading . 23
3.5 Service Modules . 24
3.6 Plugin Modules and Objects 25
3.7 Commands . 27

ix

4 Active Object Runtime Design 31
4.1 Runtime Requirements 31
4.2 Active Object Language Support 32

4.2.1 Modules and Dynamic Loading 33
4.2.2 Object Model 34
4.2.3 Process Model 34
4.2.4 Runtime System Calls 38

4.3 Native System Facilities 39
4.3.1 Memory Management 40
4.3.2 Device Driver Model 43
4.3.3 Interrupt Handling Model 44

5 Multiprocessor Runtime Implementation 49
5.1 Multiprocessor Implementation Issues 49
5.2 Runtime Module Decomposition 52
5.3 Interfacing with the Environment 54
5.4 Protecting Runtime Data Structures 56
5.5 Memory Management 58
5.6 Object Storage Management 64
5.7 Interrupts and Exceptions 71
5.8 Modules, Types and Commands 73
5.9 Processes and Synchronization 74

5.9.1 Process States 74
5.9.2 Process Data Structures 76
5.9.3 Process Creation 82
5.9.4 Context Switches 83
5.9.5 Process Termination 86

5.10 Object Locking . 87
5.10.1 Object Header 87
5.10.2 Lock System Call 87
5.10.3 Unlock System Call 89

5.11 Object Condition Management 90
5.11.1 Await Statement 91
5.11.2 Await System Call 91
5.11.3 Evaluating Conditions 93

5.12 Handling Multiple Processors 94
5.13 Kernel Services . 96

x

6 System Services 99
6.1 Files . 99

6.1.1 File Systems . 100
6.1.2 Disk Drivers . 103

6.2 Communication . 105
6.2.1 Internet Protocols 106
6.2.2 TCP Agent Services 114
6.2.3 Network Drivers 116

6.3 User Interface . 118
6.3.1 Display Drivers 118
6.3.2 Input Drivers 122

7 Application Case Studies 125
7.1 Oberon for Aos . 125
7.2 VNC Viewer . 128
7.3 Other Applications . 130

8 Evaluation 133
8.1 Comparison with Related Systems 133

8.1.1 Multiprocessor Research Operating Systems . . . 133
8.1.2 Unix and Related Operating Systems 138

8.2 Performance Measurements 144
8.3 Portability and Flexibility 150

8.3.1 DNARD port 151
8.3.2 Java Environment 152

8.4 System Size . 152

9 Conclusion 155
9.1 Summary . 155
9.2 Future Work . 158

A Module Sizes 161

B Technical Notes 165

C Alternative Interrupt Handling Model 173

List of Figures 181

xi

List of Tables 183

Bibliography 185

Curriculum Vitae 197

xii

Abstract

Today’s pervasive operating systems are large agglomerations of soft-
ware with growing resource requirements in every new release; both for
their development and their operation. Fortunately, with the Oberon
project Wirth and Gutknecht have demonstrated that it is possible to
develop interesting, practical systems with light resource requirements.

We describe the design and implementation of a generally applicable
system more powerful than Oberon, but still comparatively simple and
transparent. It is based on a lean and efficient extensible kernel intended
for varied hardware environments — servers, workstations, embedded
control systems, and small mobile devices.

The kernel primarily acts as a runtime environment for the Active
Oberon language, which uses an active object concept for concurrency,
and exclusive regions, combined with a general await statement, for
synchronization. In a related project the kernel was reused as the basis
for a Java virtual machine, demonstrating its flexibility.

The system was implemented for Intel IA-32 symmetric multiproces-
sor machines, where it schedules active objects to run in parallel, but it
also runs on singleprocessor machines. A student has ported it to the
Intel StrongARM processor, popular in mobile devices.

This work makes three main contributions. It resulted in the re-
lease of a reliable and flexible system that is powerful enough for real
applications. It relates experience with active objects and the elegant
await synchronization statement. Finally, it serves as a new example
of the lean software approach to system design. Arguably, by focusing
on the essential, such systems can perform their task more securely and
reliably than conventional operating systems.

xiii

xiv

Zusammenfassung

Die heute verbreitetsten Betriebssysteme sind grosse Ansammlungen
von Softwareelementen, und bei jeder neuen Version wachsen die Res-
sourcenanforderungen, sowohl für die Entwicklung als auch für den Be-
trieb. Wie Wirth und Gutknecht indessen mit dem Oberon-Projekt be-
legen konnten, ist die Entwicklung interessanter, praktischer, mit wenig
Ressourcen auskommender Systeme durchaus möglich.

In der vorliegenden Arbeit werden Design und Implementierung ei-
nes allgemein einsetzbaren Systems beschrieben, das leistungsfähiger als
Oberon ist, bei vergleichbarer Einfachheit und Transparenz. Das System
basiert auf einem schlanken und zugleich leistungsfähigen, erweiterba-
ren Kern, der sich für verschiedenste Hardwareumgebungen wie Server,
Workstations, eingebettete Kontrollsysteme und kleine Mobilgeräte eig-
net.

Der Kern dient hauptsächlich als Laufzeitumgebung für die Active-
Oberon-Sprache, welche die Konzepte aktive Objekte für Nebenläufig-
keit und exklusive Regionen, kombiniert mit einem allgemeinen await-
Statement, für Synchronisierung verwendet. Die Flexibilität des Kerns
wurde in einem verwandten Dissertationsprojekt aufgezeigt, bei dem er
als Grundlage für eine Java virtuelle Maschine verwendet wurde.

Das System wurde für Intel IA-32 symmetrische Multiprozessor-
Rechner implementiert, wo es aktive Objekte parallel ablaufen lässt,
funktioniert aber genauso auf Einprozessor-Maschinen. In einem Stu-
dentenprojekt wurde es auf den Intel StrongARM Prozessor portiert,
der häufig bei Mobilgeräten eingesetzt wird.

Folgende Hauptbeiträge werden in der vorliegenden Studie präsen-
tiert: Ein zuverlässiges und flexibles Betriebssystem wurde entwickelt,
das leistungsfähig genug ist für echte Anwendungen. Im weiteren wird
über die gemachten Erfahrungen mit aktiven Objekten und dem elegan-

xv

ten await-Synchronisierungsstatement berichtet. Schliesslich wird ein
neuartiges Beispiel des lean software Ansatzes zum Systemdesign auf-
gezeigt. Derart entwickelte Systeme dürften, indem sie sich auf das We-
sentliche konzentrieren, ihre Aufgabe sicherer und zuverlässiger erfüllen
als herkömmliche Betriebssysteme.

xvi

Chapter 1

Introduction

1.1 Motivation

Modern pervasive operating systems are large agglomerations of soft-
ware built in years of work by large groups of developers. Their re-
source requirements seem to mirror the effort placed into construct-
ing them. Fortunately, the Oberon project has demonstrated that it
is possible to develop interesting, practical systems with little man-
power [134]. The outcome of the Oberon project was a simple, efficient
and transparent operating system that was later described as lean soft-
ware [38, 79, 133] — software that is concentrated on the essential and
excludes the inessential.

In this dissertation we attempt to follow in the footsteps of the Obe-
ron project to design and implement a multiprocessor operating system
based on a lean kernel for active object-based systems. The aim was to
develop a generally applicable system more powerful than Oberon, but
still comparatively simple and transparent.

Our motivation is the belief that system software does not have to be
gigantic to be useful or powerful. A sustainable approach to computing
is more desirable than a reliance on Moore’s law to support ever-growing
software systems, sometimes with countless ‘features’ of doubtful utility
(but great marketability).

The specific goals for our project were to:

1. Design a lean and efficient kernel for general active object-based
systems. The kernel should be applicable in many areas, e.g.,

1

2 Chapter 1. Introduction

in an operating system similar to Oberon, in a server operating
system, in an embedded control system or as an operating system
for small devices (i.e., mobile computers). Therefore, it should
also be realizable on a wide range of hardware, from powerful
multiprocessor server machines down to modest hand-held and
wearable devices.

2. Implement the kernel on powerful industry-standard machines,
specifically the Intel 32-bit multiprocessor system architecture.

3. Use the kernel as a testbed to implement a general-purpose active
object-based operating system. The system should host its own
development environment and other applications like servers.

4. Port the current ETH Oberon system to run in an active object
on the system, providing compatibility with existing Oberon ap-
plications.

To achieve the flexibility demanded by the first goal, while keeping
to the standard of leanness and transparency set by Oberon, the kernel
should be little more than a runtime environment for a type-safe active
object-based language, with the possibility of ‘plugging in’ additional
capabilities.

The active object runtime system (Aos kernel) that was developed to
fulfil these goals forms the basis of an extensible operating system (Aos
system), which was created by implementing several system services
using active objects.

1.2 Background

Oberon language. An important reason for the Oberon system’s
leanness is that it is wholly based on the equally lean and powerful
Oberon language [98, 132], which allows the system to be structured
as a collection of shared dynamically-loaded modules. We adopted a
similar language-based approach from the start.

Active Objects. Already before the start of our project Gutknecht
started to extend the Oberon language with direct support for concur-
rency and active objects were identified as a suitable abstraction [45].

1.2. Background 3

The resulting Active Oberon language was selected as the basis for our
system as it retains the leanness and transparency of Oberon and has a
powerful and clean concurrency model.

One may argue that the Oberon system’s single-process multitask-
ing model contributes to its leanness, because it obviates the need for
concurrency protection mechanisms. However, this model, although
well-suited to an isolated single-user system, is insufficient in a more
general environment including networking or other inherently concur-
rent components. Additionally, it is incompatible with multiprocessor
machines, and we therefore had to replace it with a more general con-
currency model, at the cost of adding some complexity to the design.

Native Oberon. The original Oberon system (called Ceres Oberon in
this document) was implemented natively on the custom-designed Ceres
workstation with little concern for portability. Nevertheless, due to its
leanness, modular system design and Oberon language abstraction, it
was soon ported to run as an application on many different operating
systems and hardware architectures. The system was also extended to
support persistent objects [44] and a document-oriented user interface
and component architecture [63].

As there was a need for an Oberon system running natively on mod-
ern personal computers, the author ported the ETH Oberon system to
the industry standard PC architecture in a previous project. The result-
ing Native Oberon system [74] resembles the original system for Ceres,
but due to the more diverse and complex hardware environment some
lower-level modules were expanded and generalized. By concentrating
on open hardware standards like IDE, VGA, VESA and PCI the imple-
mentation effort was kept within bounds while supporting a wide range
of hardware.

Native Oberon has proven itself in teaching and day-to-day use and
has been the basis of many projects: undergraduate [24, 35, 41, 58,
59, 87, 115], diploma [25, 57, 73, 111], postgraduate [30, 77] and in-
dustrial [49, 110]. A notable project was its adaption into a prototype
active object runtime system and singleprocessor server system called
Eamon [30, 31].

Although Native Oberon is a separate system, it has influenced the
Aos kernel and system significantly, and the experience gained during
its development is referred to in some of the discussion here. The system

4 Chapter 1. Introduction

was initially used as cross-development environment for Aos. Finally,
it was ported to run as an application on Aos, allowing existing ETH
Oberon applications to run on Aos, thereby allowing the system to host
its own development environment.

1.3 Contributions

The main contributions of this work are the following:

1. It resulted in the release of a reliable and flexible system that is
powerful enough to be used in real applications.

2. It relates experience with active objects in the Active Oberon lan-
guage. Although active objects are little more than objects com-
bined with lightweight processes, a controversial aspect of the lan-
guage is its general await statement for process synchronization.
We show with practical experience that this elegant synchroniza-
tion concept can be applied effectively in a real system.

3. It serves as a new example of the lean software approach to system
design. For example, a system with only 50KB of kernel code
and 150KB of operating system services and application code can
perform useful tasks, such as serving dynamic web pages on an
off-the-shelf multiprocessor machine. Arguably, by focusing on
the essential, it can perform its task more securely and reliably
than a conventional operating system.

1.4 Overview

Chapter 2 describes the active object computing model and the Active
Oberon language.

Chapter 3 describes the structure of the active object system (Aos
system).

Chapter 4 describes the design of the active object runtime system
(Aos kernel).

Chapter 5 describes the multiprocessor runtime implementation in de-
tail.

1.4. Overview 5

Chapter 6 describes the active object-based device and service ab-
stractions provided by the Aos system.

Chapter 7 presents various application case studies.

Chapter 8 compares the system with related systems and presents
performance measurements.

Chapter 9 concludes and discusses future directions.

Appendix A shows the sizes of the modules of the implementation.

Appendix B contains additional technical notes on the implementa-
tion.

Appendix C describes an alternative interrupt handling model.

6 Chapter 1. Introduction

Chapter 2

Active Object Concepts

This chapter summarizes the active object computing model and the
Active Oberon language.

2.1 Active Object Computing Model

When adding concurrent processes to an object-oriented system, one of
two viewpoints can be taken, illustrated in figure 2.1. On the left is a
system of objects with external processes operating on them. On the
right is a system of active objects with internal processes specifying their
intrinsic activity.

In the external process model processes and objects are independent
entities. Processes modify the state of objects by calling their methods.
They interact with each other by operating on shared objects. For
example, in the figure, process P and Q interact by accessing shared
object Y , which must be suitably protected against conflicting accesses
with some synchronization mechanism.

In the active object model, a process is encapsulated in an object. A
process is always an integral part of an object, created when the object
is instantiated. As in the first model, the active objects can interact by
calling the methods of shared active or non-active objects. The differ-
ences between the two viewpoints may be subtle and controversial [66],
but we believe active objects present a more natural, integrated model
of concurrency.

Similar to normal objects, active objects have state and supply meth-

7

8 Chapter 2. Active Object Concepts

Object
X

Object
Y

Object
Z

Process P

Process Q

A B

C
D

External Processes
Operating on Objects

Objects with (Optional)
Internal Processes

Call

Call

Figure 2.1: Objects and processes: two viewpoints.

2.1. Active Object Computing Model 9

ods which can be called to access the services provided by the object.
An object’s methods can access and modify its state in a controlled way.
As active objects exist in a concurrent environment, a mechanism for
coordinating concurrent access to their state by their methods must be
provided.

To coordinate conflicting concurrent accesses to object state the pro-
grammer specifies exclusive regions in the program text of an object.
These are critical sections of the program that manipulate the state of
an object intended to be shared between processes. The runtime sys-
tem guarantees that at most one process will be active in an exclusive
region, thereby avoiding conflicting state manipulations.

Concurrent actions are synchronized using an await statement to
specify an arbitrary boolean condition as precondition for continued
program execution in an object. If the condition is false, the program is
suspended until the condition is established by an active object calling
a method of the first object. In this way method calls act as communi-
cation mechanism between active objects.

Figure 2.2 shows a population of communicating objects over time
and illustrates some active object synchronization situations. Active
object B starts by calling a method of non-active object R and is sus-
pended inside R, waiting for condition p. Later, active object A calls
a method of R and establishes the condition. The method call by A
returns and also enables the earlier method call by B to return, as p is
now true. Now A and B continue running independently. A performs
another method call of R, and B calls a method of active object C,
where it is suspended waiting for condition q. In this case, the pro-
cess of C itself establishes the condition after some time has passed,
enabling B to continue running (C could be a timer object providing a
delay service).

The exclusive region concept is similar to the critical region of Brinch
Hansen [18]. An exclusive region that encompasses the whole body of
a method corresponds to Brinch Hansen and Hoare’s monitor proce-
dure [19, 47]. Unlike monitor procedures, active object methods are not
mandatorily exclusive.

The await statement was first described by Brinch Hansen in connec-
tion with critical regions and his shared classes monitor concept [18, 19].
However, most implementations of monitors use Hoare’s condition vari-
ables [47] (based on Brinch Hansen’s event queues [18]) as synchroniza-

10 Chapter 2. Active Object Concepts

A

B

RR

A A A

B B B

R

Await p

C

Await q

C

Establish q

Establish p

C

Time

Active
Object

Return

Object

Call

Figure 2.2: Example population of communicating objects.

2.2. Active Oberon Language 11

tion mechanism instead. The await statement is more elegant than
condition variables, but was perceived to be “too inefficient for gen-
eral use in operating systems” [47, Conclusion]. With our system we
demonstrate that this is not necessarily a problem in practice.

A central idea of the monitor (and active object) concept is that
the programmer associates an invariant with the monitor object, which
holds whenever it is at rest [28]. The invariant is used to characterize
the behaviour of the object and make correctness proofs. The appro-
priateness of monitors for rigorously structuring operating systems has
been demonstrated by various projects [61, 62]. When the monitor con-
cept is combined with a module concept, it forms a powerful mechanism
for structuring operating systems [56, 129, 130].

It should be noted that the notion of an active object described here
is closely related to the sequential process model of concurrency [20, 48]
rather than the actors model. The latter uses data-flow, asynchronous
communication, implicit pipelining and no explicit store [5]. Although
it is an interesting theoretical framework, it remains to be seen if prac-
tical systems and machine architectures can be constructed using this
approach. In typical actor example programs [6] large numbers of ac-
tors are created, perhaps comparable to the number of recursion levels
in sequential solutions of the same problems.

Active objects seem well-suited for programming software agents,
which are ‘intelligent’ programs that can autonomously collaborate,
adapt and learn to solve problems in a goal-directed way [17].

2.2 Active Oberon Language

The Active Oberon language developed in the group of Prof. Gutknecht
at the ETH Zurich [45] is an extension of the Oberon language [132]
that supports active objects directly. This section briefly describes the
language extensions and presents some examples of their use. The first
example is a complete bounded buffer implementation, shown in fig-
ure 2.3.

2.2.1 Object Types and Methods

The object types (classes) of Active Oberon are similar to Oberon’s
record pointer types, but can have methods and bodies. An object type

12 Chapter 2. Active Object Concepts

MODULE BoundedBuffers;
TYPE

Item* = OBJECT; (* generic object *)
Buffer* = OBJECT

VAR h, n: INTEGER; B: ARRAY * OF Item;

PROCEDURE Get*(): Item;
VAR x: Item;
BEGIN {EXCLUSIVE}

AWAIT(n # 0); (* buffer not empty *)
x := B[h]; h := (h+1) MOD LEN(B); DEC(n);
RETURN x

END Get;

PROCEDURE Put*(x: Item);
BEGIN {EXCLUSIVE}

AWAIT(n # LEN(B)); (* buffer not full *)
B[(h+n) MOD LEN(B)] := x; INC(n)

END Put;

PROCEDURE &Init(max: INTEGER);
BEGIN (* initializer *)

NEW(B, max); h := 0; n := 0
END Init;

END Buffer;
END BoundedBuffers.

Figure 2.3: A generic bounded buffer in Active Oberon.

(e.g., Buffer in figure 2.3) is declared like a record type. Variables of this
type, called object variables, are always references to object instances
that are dynamically created with the standard procedure NEW. We
use the term object interchangeably to refer to object types, object vari-
ables and object instances, as it is clear from the context what is meant.

Methods are declared as procedures in the syntactic scope of an ob-
ject type (e.g., Get, Put and Init in figure 2.3). Methods are intended to
provide controlled access to the local data of an object. In an extended
object type, methods of the base type can be overridden. Supercalls in
an overridden method are marked with the ‘^’ character.

2.2. Active Oberon Language 13

One method per object type can be marked with a ‘&’ character,
specifying that it is an initializer (e.g., Init in figure 2.3). This method is
called automatically when an object is allocated with NEW. The second
and subsequent actual parameters of NEW are matched to the formal
parameters of the initializer. They are normally used to provide initial-
ization parameters to an object, but VAR parameters can also be used
to return information from the initializer. The initializer is a normal
method that can be called, overridden and supercalled like any other.
If the object type is exported, the initializer is automatically exported.

A comma-separated list of modifier keywords parenthesized by ‘{’
and ‘}’ can be written after the BEGIN of any statement block, and
specify some modification of the default semantics of the block. The
most important modifiers are described below.

The EXCLUSIVE modifier on a statement block defines the block as
a critical section of the immediately enclosing object (or module). The
compiler and runtime system ensure that the exclusive regions of an
instance are entered by at most one process at a time. For example,
the Get and Put methods in figure 2.3 are declared exclusive, as they
modify the state of the buffer.

Typically, the programmer associates an invariant with an object
type. Initializers and exclusive methods are the tools provided by the
language for maintaining object invariants, and hiding internal object
states. The initializer of an object establishes its invariant, and the
exclusive methods maintain it. If a method is not declared exclusive, it
is possible for it to observe inconsistent object states.

2.2.2 Synchronization

Synchronization between processes is performed by the AWAIT state-
ment, which takes an arbitrary boolean expression B as parameter. B
is a condition for continued execution, which means AWAIT only ter-
minates when B has become true. Otherwise, the current process is
delayed until B is found to be true by the runtime system (e.g., the
AWAIT in Get in figure 2.3 waits until the buffer is non-empty). To en-
sure well-behaved synchronization, an await statement must be enclosed
in an exclusive region. When the await statement delays execution due
to an unsatisfied condition, the exclusive region is temporarily released
to other processes, until the condition is satisfied. At that time the

14 Chapter 2. Active Object Concepts

waiting process has to re-enter the exclusive region. Therefore, the pre-
condition of the AWAIT statement is usually the same as the invariant
I of the exclusive region, and the postcondition is I ∧B.

2.2.3 Active Objects

An object type declaration can have a body, which is an anonymous
statement block situated at the end of the declaration, similar to a
module body. The body is invoked at runtime after the initializer of
the object (if any) has terminated successfully. It is usually used to
specify the intrinsic behaviour of an active object, in combination with
the ACTIVE modifier below.

The ACTIVE modifier on an object (or module) body specifies that
a new process is created to execute the body. This is used to generate
an active object. When the process reaches the end of the body it
terminates normally. Object bodies may also be EXCLUSIVE.

Like methods, object bodies can be overridden in extensions of the
object type. All the bodies of an extended object will be invoked se-
quentially when an instance is created, starting with the body of the
base type. In the case of multiple ACTIVE bodies, multiple processes
will be created. This could be useful to model a class with different
concurrent activities at different levels of the type extension hierarchy.

Figure 2.4 shows an example of an active object in a networking
application. The AwaitResponse procedure reads a message from the
network connection and reacts on it.

2.2.4 Miscellaneous

Anonymous object types may also be declared directly in variable decla-
rations, similar to anonymous record types. For example, in figure 2.5,
the producer variable has an anonymous object type. The object in-
stance still has to be allocated with NEW, because the producer variable
only stores a reference to the instance. The example also shows how
a non-active object (Buffer from figure 2.3) can be extended with an
active body.

If a process causes an exception, it is terminated, unless the SAFE
modifier is specified on the active body that created it. In that case,

2.2. Active Oberon Language 15

Receiver = OBJECT
VAR c: Connection;

PROCEDURE &Init(c: Connection);
BEGIN SELF.c := c
END Init;

BEGIN {ACTIVE}
REPEAT AwaitResponse(c) UNTIL c.res # Ok

END Receiver;

Figure 2.4: An active object that awaits and reacts to messages on a
network connection.

the process’s stack is reset, and it restarts executing at the start of the
body.

In the syntactic scope of an object type, the keyword SELF can be
used as a reference to the object instance (e.g., inside Init in figure 2.4).

The built-in type OBJECT is the implied base type of all objects.
A variable of this type can store a reference to any object instance.
It is usually used in combination with type tests and type guards, to
implement generic object operations.

When an active object is instantiated, exactly one process is created
for each of its ACTIVE bodies. Every process is associated with exactly
one active object. The standard function procedure ACTIVE() returns
a generic reference to the active object associated with the current ex-
ecuting process. This facility can be used by resource objects to obtain
a reference to their client active objects.

A BEGIN-END block can be used anywhere a normal statement is al-
lowed. The EXCLUSIVE modifier may also be used on a block statement.
This allows more fine-grained specification of critical sections.

Procedure types have been extended so that procedure variables can
also store references to methods, not just to normal procedures. A
procedure variable now also stores a reference to an object instance,
which is NIL in the case of normal procedure variables. The type of
a method is identical to that of a procedure with the same signature,
making it compatible with procedure variables of the same procedure
type.

16 Chapter 2. Active Object Concepts

TYPE
Item = OBJECT ... END Item;

VAR
producer: OBJECT (BoundedBuffers.Buffer)

VAR i: Item; ”state variables”
BEGIN {ACTIVE}

”initialize state”
LOOP

”compute item i and modify state”
Put(i)

END
END;

VAR
consumer: OBJECT

VAR i: OBJECT;
BEGIN {ACTIVE}

LOOP i := producer.Get(); ”use item i”END
END;

BEGIN
NEW(producer, BufSize); NEW(consumer)

END.

Figure 2.5: Extending a bounded buffer to form an active producer
object.

2.2. Active Oberon Language 17

MODULE TestBuffer;
IMPORT BoundedBuffers, In, Out;

TYPE Item = OBJECT VAR n: INTEGER END Item;
VAR b: BoundedBuffers.Buffer;

PROCEDURE Put*;
VAR n: INTEGER; i: Item;
BEGIN

In.Open; In.Int(n);
IF In.Done THEN NEW(i); i.n := n; b.Put(i) END

END Put;

PROCEDURE Get*;
VAR i: OBJECT;
BEGIN

i := b.Get(); Out.Int(i(Item).n, 1); Out.Ln
END Get;

BEGIN
NEW(b, 10)

END TestBuffer.

Figure 2.6: A test module for the bounded buffer of figure 2.3.

Like the Oberon language, Active Oberon is also intended for sys-
tem programming, so some low-level facilities are provided. The SYS-
TEM pseudo-module allows direct access to memory, registers and I/O
ports, and has a typecasting operator for circumventing the strong type
system. This module is implemented directly by the compiler and its
procedures are translated to inline code. When SYSTEM is imported,
procedures can also be written in assembler language, using a CODE-
END block. Such procedures are assembled directly by the compiler and
when marked with the ‘-’ character, they are expanded inline at the call
location.

To complete the examples and conclude this section, figure 2.6 shows
a test program using the bounded buffer of figure 2.3.

18 Chapter 2. Active Object Concepts

Chapter 3

System Structuring Concepts

This chapter provides an overview of the system structuring concepts
used in the active object system (Aos).

3.1 Extensible Systems

Aos is an extensible (or open) system, which means that there is no
strong division between user programs (applications) and the system.
A safe strongly-typed language with run-time checks is used to program
the system and applications, conserving the integrity of the whole. The
system is an open collection of modules, with no inherent difference
between system modules and application modules.

In contrast, a closed system separates applications and the operat-
ing system by assigning each its own independent address space. The
closed approach allows system integrity to be maintained in the face of
applications that corrupt the memory assigned to them. This is essen-
tial when applications are written in unsafe languages, which are less
helpful in avoiding and containing programming errors. Examples of
closed systems are Unix, Windows NT and microkernel-based systems
like Mach.

In an extensible system, applications can call system-supplied op-
erations directly and data can be shared directly between the system
and applications, and between different applications, because a single
address space is used. In a closed system, applications communicate
with the operating system using supervisor calls or some other cross-

19

20 Chapter 3. System Structuring Concepts

address-space calling mechanism. They communicate with each other
indirectly via the operating system, using interprocess communication
facilities that usually require serialization of parameters, as different
address spaces are used.

Past experience with extensible operating systems developed at the
ETH Zurich Computer Systems Institute has demonstrated that this
approach can be used to build highly transparent, lean and reliable
single-user workstation operating systems (e.g., Medos-2, Vamos, Obe-
ron, ETHOS).

Aos extends the family of ETH-style extensible operating systems
with the active object concurrency concept implemented for multipro-
cessors. Furthermore, its application area is defined much broader than
single-user workstation systems, to include server systems, embedded
control systems and small hand-held or wearable devices.

Like Oberon, Aos is intended for essentially cooperative environ-
ments. This does not contradict using it for server applications, even
though a server application typically has multiple clients connecting to
it on behalf of multiple users. The essential point is that the whole
server environment is under control of a single authority, and the net-
work provides a well-defined interface to the multiple clients. If required,
a server application can be programmed to share its resources fairly be-
tween clients.

3.2 Modular Structure

A common theme of the extensible systems mentioned above is their
modular structure, based on the facilities provided by a modular pro-
gramming language (in this case, Modula-2 and Oberon). Aos has a
modular design inspired by these systems, especially Oberon. Accord-
ing to Parnas [79], ‘software jewels’ like Oberon owe their elegance to
good decomposition principles, good hierarchical structures and good
interface design.

An important advantage of the Oberon (and Active Oberon) lan-
guage is that the import relationships between modules are declared
explicitly. The resulting import graph is constrained to be acyclic, which
gives the system a hierarchical structure. This static framework simpli-
fies the identification of independent subsystems and clarifies the system
structure.

3.3. Module Layers 21

While organizing the system into modules, we attempted to follow
Parnas’s modular design principles [80, 81]. Modules should separate
concerns, with each module responsible for a single well-defined func-
tion. Dependencies between modules should be minimized, to keep com-
plexity down, and when dependencies exist, they should be made ex-
plicit. Modules should be used to hide implementation details and create
abstractions. When implementation details are encapsulated cleanly,
module invariants can be guaranteed by the implementation, improving
the robustness of the system.

Finding a clean modular decomposition is a difficult problem, and
in most cases the solution is a compromise between clean abstraction,
reduced complexity and efficiency, as noted by Szyperski [118]. He gives
some hints for module design, e.g., when two modules are interdepen-
dent and would therefore need to import each other, they should better
be merged into one larger module. If the resulting module would be
too large, a third module containing the shared parts could be factored
out of the two modules. This module would most likely expose some
implementation details in its interface, and would therefore have to be
declared as a private implementation module of the system.

3.3 Module Layers

The modules of Aos are separated into three conceptual layers, as shown
in figure 3.1. The upper layer contains Aos and Oberon application
modules, and the other two layers form the Aos system proper.

The bottom layer is the active object runtime system, which contains
the runtime support for the Active Oberon language. This is the only
layer that has to be present in all configurations of the system, and
it is known as the Aos kernel. Its design and implementation are the
subjects of chapters 4 and 5.

The middle layer contains shared system services, e.g., the commu-
nication and file subsystems. Internally, this layer is horizontally sepa-
rated into modules providing abstract service objects and their concrete
implementations. It is separated vertically into collections of modules
concerned with independent services. Chapter 6 describes this layer in
detail.

Application modules form the top layer of the modular structure.
These can either be pure Aos applications, or Oberon applications that

22 Chapter 3. System Structuring Concepts

Applications

Shared System Services

Service

Active Object Runtime System

Service Service Service

Oberon
System

Aos
Application

Aos
Application

Aos
Application

Oberon
Applications

Figure 3.1: Overview of the Aos system structure.

3.4. Dynamic Loading 23

make use of the Oberon for Aos subsystem, which is an emulation of
the Oberon system that allows most Native Oberon applications to be
compiled and run without change on Aos (cf. 7.1).

The system modules are layered on an abstraction level, but not
on a functional level. This means that a lower layer will never rely
on abstractions supplied in a higher layer, but could rely indirectly on
functionality supplied there. For example, the runtime system provides
an abstract module loader interface, which can be implemented in the
services layer, with the help of a file system and disk driver located
there. In this way the core of the system is kept small and flexible.

As is common in extensible systems the layering is not strict (in the
sense that a higher layer may only rely on abstractions supplied by the
immediately lower layer), and therefore higher layers may use or extend
abstractions supplied on any lower layer. For example, application mod-
ules may import and use public modules in the runtime system directly,
without having to go through modules of the services layer. Similarly, a
device driver can communicate directly with its hardware device using
low-level language facilities. By keeping the system layers relatively flat
and open, the ‘multiple layers of inefficiency’ syndrome of strictly lay-
ered systems is avoided. Although buffering and batching of operations
can improve throughput in such systems, the latency of operations are
always adversely affected by the many layers they must pass through.

The whole module hierarchy is open-ended, i.e., system services and
application programs are simply modules that extend the system’s mod-
ule hierarchy.

3.4 Dynamic Loading

In Aos, as in the Oberon system, there is no concept of a pre-linked
executable program. Instead, all modules are dynamically loaded into
memory when they are first used.

As a module typically depends on functionality exported from other
modules, all required lower-level modules are loaded automatically when
a higher-level module is loaded. If a required module is already present
in memory, the existing instance is reused. Thus module instances are
automatically shared between the modules depending on them. This
makes a significant contribution to the low storage requirements of the
system, as each module is only present once in memory and in the file

24 Chapter 3. System Structuring Concepts

system.
Modules can be unloaded from memory when no longer required.

While a module remains loaded in memory, its global variables repre-
sent its state, which can be used for communication between different
procedure invocations and processes. Therefore, module unloading is
not performed automatically by the system, but can be done under
program control, or manually by the user.

The ability to dynamically load modules is indispensable for a flexi-
ble extensible system, as it allows extensions to the system to be loaded
at runtime.

3.5 Service Modules

A logical approach to design lean and flexible systems is to use a minimal
system core or kernel that can serve as the basis for the additional
components necessary to solve some specific problem [78].

An example of this is the microkernel design approach popularized in
the nineties, where a small system core provides only very basic support
facilities like processes and interprocess communication (IPC), and other
operating system functionality is provided by application-level servers
that can be added and removed like normal user applications [119]. This
design also makes it possible to develop and test interchangeable system
components independently.

In microkernel systems, the servers are implemented as processes in
separate address spaces, and their clients communicate with them via
IPC facilities, e.g., synchronous message passing or remote procedure
calls. In early microkernels, this overhead led to performance problems,
which were mitigated by later designs [46]. However, even with low-
latency and high-bandwidth IPC, the overhead of marshalling parame-
ters into serial form for cross-address-space communication remains.

In response to this, newer monolithic kernel designs such as So-
laris [64] and Linux allow ‘modules’ to be loaded dynamically into the
kernel. Although this solves the performance problems associated with
application-level servers, it does not provide all the advantages. Load-
able modules execute in a specialized environment and can not be devel-
oped and tested as normal user-level applications. Additionally, mod-
ules are not cleanly supported in the languages used in these kernels.

In Aos, the active object runtime system is used as a small system

3.6. Plugin Modules and Objects 25

core, and additional system functionality is added by service modules in
the system services layer. This mirrors the basic idea of the microkernel
design, but avoids the overhead. Service modules are accessed by their
clients via normal procedure and method calls. Compared to microker-
nels and monolithic kernels, this lightweight approach promises much
better performance and reduced complexity.

Although service modules conceptually belong to a separate system
layer, they are completely normal Active Oberon modules that export
their server functionality for clients to import and use. As dynamic
loading is used, the service modules required by an application are au-
tomatically loaded and started when it is loaded.

3.6 Plugin Modules and Objects

Plugin modules are used in Aos to further improve the flexibility and
leanness of the system. A plugin module is used in a situation where
a standard system interface is identified that can be implemented in
different ways.

A typical example are device drivers for a specific class of devices.
In this case an abstract interface is defined for the class of devices,
and several different plugin driver modules are implemented for spe-
cific members of the class. The abstract device interface is defined in
a module of its own and clients that use the device import this mod-
ule. In a given system configuration the appropriate driver modules
are ‘plugged in’ dynamically into the interface module. In this way the
service module and the device modules are indirectly coupled via the
interface module (see figure 3.2).

A plugin module is usually responsible for several instances of the
object class it manages and therefore instantiates one or more plugin
objects. For example, a device driver plugin will instantiate one object
for every instance of the device present in the system.

Unlike normal modules, plugin modules are not imported directly by
their clients. Instead, a client imports the interface module that defines
the interface implemented by the various plugin modules. A plugin
module also imports this interface module and registers itself there.

For this purpose, a plugin registry object is defined by the system.
Each interface module exports an instance of this object, which is a
collection of plugin objects and serves as a registry where plugin objects

26 Chapter 3. System Structuring Concepts

Disk Driver B

B0 B1

File System

Disk Driver A

Disks

A0

R

Driver
Instance

Registry
Instance

FS

File System
Instance

D

Abstract
Disk Driver

Driver
Instances

Figure 3.2: Plugin object registry example: disk drivers.

3.7. Commands 27

that implement the specific interface are registered by plugin modules,
and retrieved by client modules.

Figure 3.2 is an example of how the registry service is used. The four
shared rectangles represent modules. The Disks module is the interface
module for disk drivers, which defines an abstract disk driver object.
This object is extended in concrete disk driver implementation modules
A and B, which implement drivers for two classes of disk devices. A file
system implementation module imports the Disks module and accesses
a disk indirectly using the interface defined by the abstract disk driver
object. It does not import any of the disk driver modules directly.

The shaded circles in the figure represent object instances. The Disks
module exports a single global variable instance of a plugin registry ob-
ject (R), which serves as a collection of all disk driver plugin objects.
Each disk driver implementation module (A and B) implements a disk
driver as an extension of the abstract disk driver object (D). One in-
stance of such an object is created for every physical disk (A0, B0, B1)
and registered with R. A file system object finds the driver object for
the disk containing its data from the registry.

3.7 Commands

Aos uses a more general implementation of the Oberon system’s com-
mand concept. Commands are indirectly related to system structuring
as they provide a mechanism for loose coupling of modules. For ex-
ample, plugin modules are normally instantiated via commands, while
some plugin objects, e.g., file system implementations, are created by
generator commands.

The Oberon system’s commands are simply exported parameterless
procedures that are dynamically callable using the module loader. They
are used mainly for two purposes: initiating actions in the Oberon user
interface and generating object instances.

The Oberon user interface uses commands as the principle means
for the user to initiate actions. The text viewer system translates a
mouse click on a text string of the form M.P into a call of command
procedure P in module M . If the module is not yet present in memory,
it is loaded. Once a module is in memory, its global variables can be
used for communication between subsequent command invocations. For
example, the display space data structure containing all open viewers

28 Chapter 3. System Structuring Concepts

(windows) is rooted in a global variable of the Viewers module. Com-
mands operate on this global data which, together with data structures
on the heap, represents the state of the user interface.

In the persistent object kernel of Oberon, a generator is a command
that creates an instance of a specific object type. Since command pro-
cedures can be called dynamically using the module loader, they allow
a client module to call procedures without statically importing their
defining module. In fact, the name of the command could be generated
at runtime and the command need not even exist at the time the client
module is compiled. Thus, generators provide a way to generate object
instances from modules that are not directly imported. This is essential
when creating modules that manipulate heterogeneous extensible data
structures, e.g., the rich text system of Oberon.

In both these uses of commands in Oberon, global variables are used
for communication between the invoker of a command and the command
itself. In the case of a command initiated by a mouse click, the context
of the M.P text string is stored in a well-known global variable, where P
can fetch it to scan its parameters. In the case of generator commands,
the generated object instance is assigned to another well-known global
variable, where it is fetched by its consumer.

The Oberon command concept can not be applied directly in a mul-
tiprocessing system like Aos. The global variables used for communica-
tion between a command and its invoker are shared resources that have
to be protected from concurrent access by different processes.

In Aos, the notion of a command is generalized so that it is no longer
a parameterless procedure. Parameters can now be passed to commands
directly and they can return results directly, without resorting to global
variables or an explicit locking protocol. A parameterized command in
Aos is defined as a procedure with a generic pointer parameter and a
generic pointer return value. This requires only a small change to the
compiler, the module loader and boot linker.

With this simple change, commands turn into a powerful mechanism
for realizing independent modules that can work together nonetheless.
They are used to instantiate plugin modules and to generate plugin
objects without directly importing them, an essential feature in a lean
extensible system. They are also used by a user to initiate actions,
and unlike Oberon commands, they work reliably even if actions are
initiated in parallel, e.g., by a batch command processing facility to run

3.7. Commands 29

commands in the background using active objects.

30 Chapter 3. System Structuring Concepts

Chapter 4

Active Object Runtime Design

In this chapter the design decisions that were made in the development
of the active object runtime system (Aos kernel) are discussed. The
next chapter describes the details of the runtime system modules.

4.1 Runtime Requirements

Programs in compiled languages are translated by a compiler into ma-
chine code that can be executed directly by a machine. Many constructs
in these languages, such as assignments, loop statements and expres-
sions, can be translated directly into machine code, but some more
complicated constructs, such as dynamic object allocation, can not be
completely translated and require the assistance of a runtime system,
which consists of subroutines and data used by the translated code to
perform its functions. Some languages, e.g., Modula-2 and C, require
almost no runtime support, and other languages, e.g., Active Oberon
and Java, have high-level constructs that require more runtime support.

The primary design requirement for the Aos kernel is to be a com-
plete runtime environment for the Active Oberon language (cf. 2.2). The
kernel is tuned for this language, even though it is it is capable of sup-
porting other comparable languages, e.g., Java (cf. 8.3.2). Mechanisms
required by other language environments, but not by Active Oberon,
can be provided in the form of plugins, to avoid encumbering the kernel
unnecessarily.

A runtime system is usually based on the facilities provided by the

31

32 Chapter 4. Active Object Runtime Design

Application

Runtime System

Operating System

Hardware

Application

System Services

Runtime System

Hardware

Figure 4.1: Runtime system location (traditional left, Aos right).

underlying operating system, but in the case of Aos the runtime system
resides on the bare machine (see figure 4.1). Therefore, two secondary
requirements are that it must implement the required runtime support
natively in terms of the underlying hardware, and it must support the
programming of operating system services. Most operating system ser-
vices like file systems and communication can be programmed directly
in Active Oberon, but device drivers require some interface to the un-
derlying hardware for I/O operations and interrupt handling.

The next section describes the active object language support and
section 4.3 describes the facilities for programming native operating
system services.

4.2 Active Object Language Support

The Aos kernel is mainly intended as a runtime system for Active Obe-
ron and similar languages. The facilities it supplies for this purpose

4.2. Active Object Language Support 33

are:

• Modules and dynamic loading.

• A simple object model with type extension (single-inheritance sub-
classing) and type-bound procedures (methods).

• Object memory management using garbage collection.

• Lightweight processes, locks and general process synchronization.

4.2.1 Modules and Dynamic Loading

Dynamic loading of modules plays an important role in an extensible
system (cf. 3.4). To execute a module, its source code has to be trans-
formed to machine code in memory. For this, three main options are
available (ignoring interpretation):

1. The compiler generates an object file containing machine code
and meta-information, which is loaded into memory, relocated and
linked with other modules by a module loader.

2. The compiler generates an object file containing intermediate code
that is compiled into memory on-the-fly at load time [37].

3. The source code is syntax-checked and stored in tokenized form
and then compiled on-the-fly at load time [63].

As each of the options has its own advantages and disadvantages, the
runtime system should not exclude any of them in advance. Therefore,
we separate the module loading mechanism into two parts: a basic part
that handles the location and recursive loading of modules, and a plugin
part that creates the runnable machine code in memory. The plugin
could simply load a compiled object file, or it could perform on-the-fly
compilation.

The plugin part of the module loader uses the basic part to obtain
information about procedures, types and variables exported from mod-
ules, so that it can link the newly loaded module with the modules
that it imports. In a similar way, the plugin links the module with any
runtime facilities that it may require.

34 Chapter 4. Active Object Runtime Design

4.2.2 Object Model

Active Oberon is an object-oriented language and programs written in
it are mainly concerned with creating and manipulating objects. The
underlying object-oriented characteristics of Active Oberon, supported
by the runtime system, are summarized here.

An object is an anonymous, dynamic instance of an object type (i.e.,
class in object-oriented terminology), referenced by at least one object
reference variable, which is a typed pointer variable that stores a refer-
ence to an object compatible with its type.

An object contains fields, which are named variables nested in the
scope of the object and store its state. An object also has methods, which
are named procedures nested in the object scope that can manipulate
the state of the object.

Object types can be extended (single inheritance) by defining a new
object type as an extension of an existing one. The fields and methods
of the existing object are inherited by the new object. A method of
the new object type can override a method of the same name in the
existing object type. In this case the method in the existing object
is replaced by the new implementation in the new object, which must
have the same signature. It is possible to perform a supercall from an
overriding method to the overridden method. A type test can be used
to test whether an object reference variable points to an object of a
specific type.

An object is allocated explicitly (e.g., with the Active Oberon NEW
procedure), but is deallocated automatically by the system when no
references to it exist any more. In practice, the deallocation can be
delayed until the system’s garbage collector has completed its next full
cycle.

As these characteristics are essentially the same as in Oberon-2 [71],
this part of the runtime system is based on the ETH Oberon systems,
specifically Native Oberon.

4.2.3 Process Model

The major addition in the Active Oberon object model is the object
body, which specifies the inherent activity of an active object. As it
does not make much sense to execute the activities of active objects

4.2. Active Object Language Support 35

sequentially, the runtime system must provide concurrent processes for
this purpose.

To ensure that hundreds or even thousands of active objects can
be created, the processes should be suitably lightweight. This can be
ensured by only associating a small process descriptor and a stack for
the local variables of the executing program with a process. Processes
should not be used as domains or containers for resource allocation
purposes and they all share the same global linear address space. When
aiming for a minimal runtime system, every concept added that may
increase the system complexity should be considered carefully.

Scheduling issues. In a multiprocessor system, different processes
should obviously be assigned to different processors, but each proces-
sor can execute only one process at a time, and typically there may
be many more runnable active objects than processors. In a generic
population of possibly independent active objects, it is likely that the
processes of some objects will perform computations for extended pe-
riods of time, without any natural reason to pause their execution. If
more such processes exist than there are processors available, they will
block the execution of others in the population. Unless further measures
are taken, only some processes will make progress during these extended
periods of time. Therefore, some form of pseudo-parallelism, in which a
processor interleaves the execution of several processes, is required.

A possible solution is to require computationally intensive active ob-
jects to release the processor voluntarily by calling a runtime procedure
from time to time. However, this solution is not satisfactory; experience
with tasks in Oberon have shown that this is difficult to coordinate, es-
pecially when active objects make use of other objects to perform their
work. It can also be inefficient, as releasing the processor too often
causes unnecessary overhead, and releasing it too seldom restricts the
progress of other active objects.

A better solution is to use time-slicing, i.e., let the system automat-
ically preempt long-running processes by setting a timer to interrupt
them. In this way the system is in control of the frequency of pro-
cess switches and the active object programmer does not have to worry
about releasing the processor.

To make the Aos runtime system viable for realtime environments
and responsive in interactive use, a facility must be provided to allow

36 Chapter 4. Active Object Runtime Design

more important processes to run before less important ones. Therefore
the assignment of relative priorities to processes is foreseen. At any
time, the processes executing will have a priority not lower than that of
all other runnable processes.

There are basically two approaches to scheduling multiple proces-
sors: either each processor is responsible for its own scheduling, or one
processor is responsible for scheduling on all the processors [112]. The
first approach is preferred for its simplicity, symmetry and scalability.

Synchronization. Runtime support for active object process syn-
chronization has two aspects: the exclusive regions of active objects
have to be protected by a locking mechanism, and the await statement
requires condition management, which is the periodic evaluation of syn-
chronization conditions specified by the programmer (cf. 2.2).

The compiler and runtime system use locks (binary semaphores) to
ensure that the exclusive regions of an object are entered by at most
one process at a time. Every object (or module) instance is allocated
one lock, which is acquired by a process entering the exclusive region,
and released when the process reaches the end of the region. A process
is not allowed to recursively acquire the same lock.

For well-behaved synchronization, the compiler and runtime system
enforce the rule that an await statement must always be enclosed in an
exclusive region. When await is executed, the current process must hold
the lock of the enclosing object (or module), or a runtime error occurs.
When the condition is found false and the current process has to be
delayed, the lock is released first. Likewise, the object state modification
that establishes the condition being waited on must be made in an
exclusive region of the same object. This obligation is the responsibility
of the programmer and is not automatically checked. It is also assumed
that the conditions are free of unwanted side effects, but this is not
enforced by the system.

The conditions that delayed processes are waiting on have to be
evaluated periodically by the runtime system. Under the assumption
that the relevant object state is only changed in an exclusive region, it
suffices to evaluate the conditions related to a specific object instance
every time a process exits the relevant exclusive region.

In the case where a process exits an exclusive region, and the system
finds that the condition of a waiting process is now true, the lock is

4.2. Active Object Language Support 37

not released, but instead transferred atomically to the process that was
waiting before. That process is then activated and continues to run as
soon as it is scheduled on some processor. In this way, if one process
establishes a condition B, the woken process can safely assume that
B still holds when its await statement terminates (e.g., in figure 2.3,
when Put establishes n 6= 0, Get can safely assume this still holds when
its await statement terminates). In other words, the following proof
rule holds for await, where I is the invariant of the associated exclusive
region:

{I} AWAIT(B) {I ∧B}

It is of course possible for several processes to be awaiting conditions
in the same object context. When a process exits the relevant exclusive
region, the runtime system evaluates all the waiting conditions in se-
quence until the first true condition has been found, and the associated
process is reactivated. It is not necessary to evaluate the rest of the
conditions immediately, as they will be checked when the reactivated
process exits the exclusive region.

Context switches. When implementing pseudo-parallelism, it has
to be decided when a processor will perform a context switch from one
process to the next. There are a few situations where this can be done
naturally, because the running process has no useful work to do any
more. These are called synchronous context switches, because they are
synchronized with the actions of the running process. They occur when
the running process:

1. attempts to enter an exclusive region held by another process,

2. executes an await statement with an unsatisfied condition, or

3. terminates.

A synchronous context switch is always the result of a call to the
runtime system by the running process itself. This knowledge can be
used to optimize these context switches by only saving the relevant
subset of the processor state, similar to what is done with the coroutine
library implementation in Modula-2 [131].

Time-slicing and process priorities provide two more reasons for a
processor to be switched away from a running process, namely:

38 Chapter 4. Active Object Runtime Design

1. it has executed continuously for an extended period of time and
has used up its time slice, or

2. a higher-priority process becomes ready to run.

These two conditions, together with the three listed earlier, represent
all possible reasons for a context switch to occur.

When a timer interrupt expires the time slice of the running process,
or a device interrupt enables a higher-priority process to run, the result
is always an asynchronous context switch, because the running process
is preempted at an arbitrary location during its execution. In this case
the full state of the process has to be saved.

In contrast, a context switch due to a higher-priority process becom-
ing available can be either synchronous or asynchronous. Such a switch
occurs when a process P that has been waiting on a lock or condition is
suddenly able to run again, because some other process Q has released
the associated lock. There are two situations to consider in this case.
First, if Q has a lower priority than P , the situation is handled like
a synchronous context switch, because Q has performed a system call
to release the lock. The process Q is preempted, and process P starts
running on the same processor. Conversely, if Q does not have a lower
priority than P , it must continue to run on the same processor, and P
must be scheduled to run on another processor that is currently exe-
cuting a lower-priority process. The second case is more complicated
to handle than the first, because it involves finding another processor
running a lower-priority process, and preempting the process running
on that processor.

4.2.4 Runtime System Calls

The support for active objects can be implemented by a handful of pro-
cedures exported from the runtime system: CreateProcess, Lock, Unlock
and Await (cf. 5.9.3, 5.10 and 5.11). The compiler inserts normal calls to
these procedures in the object code, and the module loader links these
calls with the runtime modules.

To instantiate an active object, the compiler generates a CreatePro-
cess call that creates a process to execute the object body. In the case of
Active Oberon, active objects are instantiated with the NEW standard
procedure call. This is compiled into: a call to allocate the object’s

4.3. Native System Facilities 39

memory, a call to the object’s initializer, if any, and a call to create the
process that will execute the body. Due to type extension, an object
may have several active bodies, so a process is created for each of these.

When compiling exclusive regions, the compiler generates a Lock
call at the start of the region, and an Unlock call at every point control
leaves the region. For both calls, the self reference of the relevant object
is passed as the only parameter.

The await statement is supported by the Await system call, which
has three parameters. The first is a reference to a function that evalu-
ates the associated condition being waited on, the second specifies the
stack context of the condition and the last is the self reference of the
relevant object. The condition function is a separately-callable function
procedure generated by the compiler for every await statement. This
function has one parameter that specifies the context of the statement
and returns the result of the condition evaluation as a boolean value.
It can be called by the runtime system when the condition needs to be
evaluated.

4.3 Native System Facilities

The active object runtime system realizes the language support de-
scribed above natively on the hardware without any operating system
underneath. For example, memory management is handled directly by
the runtime system kernel.

In fact, facilities are provided for implementing operating system
services on the runtime system. This allows a lean and efficient system
to be configured that excludes some or all of these services. For example,
it would be possible to use the kernel to build a lean active object-
based control application that requires little or no operating system
support like a file system, a viewer system or user interface. In this way,
control applications can be written in a language with active objects and
garbage collection and compiled to run almost directly on the hardware,
with just the small active object runtime system underneath.

A native system must include its own operating system services and
device drivers and the latter require an interface to the underlying hard-
ware. The Active Oberon language provides some low-level features for
this purpose in the SYSTEM module (cf. 2.2.4), but this must be com-
plemented by runtime system support.

40 Chapter 4. Active Object Runtime Design

Section 4.3.2 describes the Aos device driver model, which treats
device drivers as normal programs, and section 4.3.3 describes the inter-
rupt handling model, which maps interrupts to Active Oberon language
constructs like procedures and objects.

4.3.1 Memory Management

One of most basic tasks of an operating system is the management of
memory. In Aos, this is the responsibility of the active object runtime
system itself, as no underlying operating system is used. Put simply,
the task is to implement the Active Oberon built-in procedure NEW
for the allocation of heap objects (active objects, normal objects and
dynamic arrays). This includes the allocation of stack space for the local
variables of processes. No explicit deallocation procedure is foreseen; the
system has to deallocate unused memory automatically, with some form
of garbage collection.

The Native Oberon system serves as an example of how simple mem-
ory management can be made. Virtual addresses are mapped identi-
cally to physical addresses (except for one area that is left unmapped
to trap NIL pointer references), and the resulting memory is divided
into two areas, one for the system stack, and one for the heap. This
model simplifies device driver programming, as drivers can use virtual
addresses directly when performing direct memory access (DMA). As
all allocated memory is physically contiguous, drivers can work directly
on data shared with their client programs, without having to resort to
copying or complicated page mapping.

The design of Aos aspires to this ideal, but there are complicating
factors. Below, some assumptions are stated and justified, and the re-
sulting issues discussed. An implicit assumption in an extensible system
(cf. 3.1) is that a single global address space is used, allowing data to
be shared directly between different parts of the system. This does not
necessarily exclude the use of different protection domains [84].

No object copying. Since Aos is intended for inherently cooperative
environments (cf. 3.1), it is assumed that the range checking and type
safety provided by the language are sufficient tools for maintaining sys-
tem integrity, and that separate address spaces are not required for this
purpose.

4.3. Native System Facilities 41

The runtime system and system services sometimes need to bypass
the type system and the associated range checks, to access memory di-
rectly. Judicious use of this technique in performance-critical parts of
the system (e.g., device drivers and system libraries) can improve per-
formance significantly, which can be justified, even given the additional
risk of compromising system integrity and reliability. But, when the
type system is bypassed, the objects being operated on must remain at
the same virtual address during the whole operation.

A copying (or compacting) garbage collector needs to copy objects
to different virtual addresses during their lifetime. As long as the object
is accessed only in a type-safe way via explicitly declared pointer vari-
ables, the runtime system and compiler can cooperate to ensure access
consistency.

Copying garbage collectors have three apparent advantages [55].
Firstly, allocations are cheap; secondly, fragmentation is avoided; and
thirdly, the cache locality of data is possibly improved. However, copy-
ing data around all the time seems wasteful, and the advantages are not
conclusive. Zorn found that a generational mark-and-sweep collector
can be more effective than a copying collector [138], and Boehm et al.
have developed a very effective conservative mark-and-sweep collector,
which reduces fragmentation with a two-level allocation scheme [13, 14].

Under these considerations, the use of a copying garbage collector is
excluded to simplify the design.

No demand-paged virtual memory. A virtual memory system uses
demand paging to back up parts of the virtual address space to secondary
storage. This means that virtual pages are sometimes not physically
present, and do not always map to the same physical pages. The NEW
procedure initializes a pointer variable with the virtual address of the
memory allocated. Normally, the actual physical location of the memory
is not relevant to a program; it could be allocated on non-contiguous
physical pages, or paged out to secondary storage.

As an exception to this, device drivers performing DMA have special
memory allocation requirements. The memory used has to be physically
present at the same location during the whole transfer and, in most
cases, there are also special alignment and contiguity restrictions. In
spite of this, device drivers in Aos should ideally be completely normal
programs, and should be able to act directly on the data shared with

42 Chapter 4. Active Object Runtime Design

their clients without special allocation procedures or additional copying.
For this reason, and based on the experience with Native Oberon, it

was decided not to consider virtual memory in the system design. Al-
though virtual memory allows programs to handle more data directly,
the sometimes severe and unpredictable performance degradation is un-
satisfactory. Virtual memory presents a false abstraction, because of the
extreme latency of accessing paged-out memory. It is better to handle
data on secondary storage explicitly, by using files. As an aside, the
availability of apparently unlimited virtual memory on some operating
systems seems to encourage wasteful design.

The assumptions above allow the arrangement of the heap as a single
shared area in the virtual address space, mapped directly to physical
memory as in Native Oberon. Were it not for the requirements of pro-
cess stack management (and to a lesser extent, NIL reference checking),
it could even be worth considering the elimination of the virtual-to-
physical mapping completely.

Process stacks. The Native Oberon stack model can unfortunately
not be used for Aos, as it must be able to manage the process stacks
of hundreds of concurrently running active objects, not just one. The
stacks must also be able to grow dynamically, since for general program-
ming tasks it is not possible to predict in advance how large they should
be.

Conceivably, a process stack could be allocated as a contiguous block
in the normal heap, with compiler-generated stack overflow checks (in
the absence of a hardware stack limit register). When a stack overflows
it could be reallocated by allocating a larger area, copying the existing
stack, and modifying all references to the stack, including the dynamic
and static link chains. This would require detailed meta-information de-
scribing the location of reference parameters, as local variables can also
be referenced indirectly. It would also require integration with the gar-
bage collector, which has to scan the stacks for roots. Such an ambitious
scheme requiring close cooperation between the compiler and runtime
system would probably be fraught with unforeseen complications.

Brinch Hansen described an interesting stack allocation scheme for
parallel programs, which interleaves fixed-sized stack segments from dif-
ferent processes in the heap. Unfortunately the solution is “not realis-
tic for an operating system, which allocates an unbounded number of

4.3. Native System Facilities 43

segments, most of which are unique to particular user jobs” [21]. On a
multiprocessor, the scheme also requires two lock and unlock operations
per block activation, which would be an intolerable overhead.

Another option for managing process stacks is to allocate a fixed
area of the virtual address space for each stack. Initially, only a small
part of the area, typically one page, is allocated physically. When a
process uses more than the allocated space, a page fault occurs and
the system allocates more physical pages to the stack. This solution is
easy to integrate with the garbage collector, which has to scan the stack
areas (possibly conservatively) for root pointers.

Direct memory access in device drivers again presents a problem.
Since the physical pages of a virtual stack are not necessarily contiguous,
a driver can not always perform direct memory access on stack pages.
However, this problem can be avoided by allocating buffers in the heap
instead. This solution is not entirely satisfactory, but workable, because
DMA buffers tend to be large, and it is therefore better not to allocate
them on a stack with limited size.

The virtual stacks organization has the disadvantage that the max-
imum size of a stack is limited a priori. Depending on the size of the
address space, it might also place an unsatisfactory limit on the total
number of process stacks. Nonetheless, this organization was chosen
for Aos, because of its straightforward implementation and compiler
independence.

4.3.2 Device Driver Model

Unlike closed systems (cf. 3.1), where device drivers normally reside in
the kernel and have special restrictions, the aim in Aos is to make device
drivers as similar to normal programs as possible. A device driver is just
a normal module that exports some service functionality abstracting a
device and uses low-level facilities of the language and kernel to com-
municate with the hardware. Specifically, it shares the same address
space with its client modules and can therefore work directly on client
parameters without any additional data copying.

The fact that device drivers share the same address space with user
programs does not have any intrinsic effect on the stability of the system.
Even on systems where device drivers reside in a separate address space,
an error in a device driver can cause a system crash, as they use low-level

44 Chapter 4. Active Object Runtime Design

facilities like DMA that bypass the normal processor checks. What is
more important is that device drivers have a simple and unexceptional
programming model, so that errors are less likely.

The Oberon system uses a polling I/O model. A device driver for
an input device provides a polling procedure and a read procedure.
The Oberon main loop or a user program polls to determine if input
is available, and, if so, it calls the read procedure, which will return
immediately. For output, a write procedure is provided that sends the
given data and returns when done. This model is simple and efficient in
a single-process system, but inappropriate for a multiprocessing system.
If a process is polling a device continually, it is wasting processing time
that could be used by other processes to do useful work.

Instead of polling, Aos device drivers should provide blocking in-
terfaces, where an I/O request to a driver suspends the client process
until it can be satisfied. While the requesting process is suspended,
other processes can perform useful work. This kind of interface can be
realized by encapsulating the driver in an object, and using the await
statement to block the client process in the object until it can continue.
This usually requires synchronization with an interrupt from the device.

4.3.3 Interrupt Handling Model

An interrupt is usually used by a device to signal the completion of
some I/O operation, and must therefore be routed to the relevant device
driver.

Low-level interrupt handling. The Native Oberon system uses a
procedure call model for handling interrupts. A device driver can reg-
ister an Oberon procedure as an interrupt handler for a specific inter-
rupt. When the interrupt occurs, the kernel saves the processor state
and calls the registered procedure. All interrupts are disabled for the
duration of the procedure, and when it returns, the processor state is
restored so that execution continues from the interrupted location. In-
terrupt handlers may re-enable interrupts, and can then be interrupted
by higher-priority interrupts, according to the priority model defined by
the interrupt controller.

The polling and read procedures provided by a device driver com-
municate with the interrupt handler via shared global variables. These

4.3. Native System Facilities 45

procedures typically disable interrupts for a short time while accessing
the shared variables, to ensure that no conflicting concurrent accesses
are made by the interrupt handler.

The procedure call model has very little overhead. Some minimal
‘glue’ code is needed to save the processor state and call the registered
procedure, and afterwards acknowledge the interrupt and restore the
processor state. On Ceres Oberon this code is generated inline by the
compiler for even less overhead (no kernel involvement during the in-
terrupt). This is not done here, in order to decouple the compiler and
runtime system more, thereby simplifying the support for other lan-
guages than Active Oberon.

At a low level, Aos too uses this simple procedure call model for
handling interrupts. However, interrupt procedures are restricted in
what they can do. For example, they are not allowed to enter exclusive
regions or use await statements, as they are not independent processes
that can be suspended. To treat device drivers as first-class objects, a
higher-level interrupt handling concept is required.

Exception handling. At the processor level, exceptions (i.e., traps)
are similar to interrupts, but are caused by errors during the execu-
tion of a processor instruction (e.g., a division by zero), or by special
exception-generating instructions (e.g., software interrupt instructions).
An exception usually signals a failure in the currently running program,
therefore a typical response is to terminate the current process.

In Native Oberon, all exceptions are handled by the system, not
by user programs. The default action is to display a trap text with a
symbolic stack traceback showing the context of the exception. Then
the stack is reset and the Oberon main loop is restarted, thereby abort-
ing the current command or task. Although it is possible for a user
program to install an alternative system-wide exception handler, the
default handler is used in most cases.

Since the Active Oberon language has no general exception handling
facilities, e.g., an equivalent to the try-catch construct of C++, the run-
time system does not have to provide complicated exception handling
support. When an exception occurs, the kernel simply terminates the
current process, or restarts it if the SAFE modifier was placed on the
active object body that started the process (cf. 2.2.4).

To allow other language environments running on the kernel, e.g.,

46 Chapter 4. Active Object Runtime Design

Java, to handle their own exceptions, it suffices to allow each process to
install an exception handling procedure, similar to an interrupt handler
procedure. A plugin module that provides support for such a language
can install a handler that gets control when an exception happens and
can unwind the stack or do whatever is necessary to handle it.

Active object interrupt handling. The higher-level interrupt han-
dling mechanism referred to above is described here. It allows device
driver objects to directly handle interrupts and synchronize with their
clients using exclusive regions and await statements.

Figure 4.2 shows the outline of a device driver object using this
mechanism. The example driver is for a device that periodically pro-
duces data and causes an interrupt to signal its availability. The inter-
rupt handler reads the data from the device and stores it the object’s
fields, where a client can fetch it using the Read method. This method
uses an await statement to wait until data is available.

The example object is an extension of a system-supplied abstract
base object InterruptHandler, which has a HandleInterrupt method over-
ridden and implemented by the driver. The driver object registers to
receive interrupts by making a special system call in its initializer.

The implementation of interrupt handling is complicated by the fact
that the same interrupt number can be shared by different devices. The
PCI bus standard [82], used in many modern system architectures, al-
lows independent devices to share level-triggered interrupt lines. The
kernel must allow multiple processes to register for the same interrupt.
When the interrupt occurs, all the registered handlers must be acti-
vated, and only when the interrupt has been processed by all, can it be
unmasked again. The device drivers must handle the resulting spurious
interrupts gracefully.

To implement the high-level interrupt handling mechanism, the sys-
tem provides an active object behind-the-scenes for every interrupt num-
ber. When an interrupt occurs, the process of this object is scheduled
to call the registered interrupt handler methods. It sequentially calls
all the methods registered on the specific interrupt. The interrupt is
masked while these calls are being performed and after they have all re-
turned, the interrupt is unmasked and the system process is suspended
until it is signalled again.

The high-level interrupt handling model described here was imple-

4.3. Native System Facilities 47

TYPE
Driver = OBJECT (InterruptHandler) (* extends system object *)

VAR ”driver state”(* shared by client and interrupt handler process *)

PROCEDURE Read(...); (* client process calls this to read data *)
BEGIN {EXCLUSIVE} (* mutually exclusive with interrupt handler *)

AWAIT(”driver state indicates data available”);
”return state information”

END Read;

PROCEDURE HandleInterrupt; (* system calls this on interrupt *)
BEGIN {EXCLUSIVE} (* mutually exclusive with client *)

”get data from device and possibly modify driver state”
END HandleInterrupt;

PROCEDURE &Init; (* initializer *)
BEGIN

”register SELF as interrupt handler in system”
”initialize device”

END Init;
END Driver;

Figure 4.2: Active Oberon pseudo-code of a device driver.

48 Chapter 4. Active Object Runtime Design

mented in the Aos kernel. The outline of an alternative model that was
not implemented, is presented in appendix C.

Chapter 5

Multiprocessor Runtime

Implementation

This chapter describes the native implementation of the active object
runtime system (the bottom layer in figure 3.1) on the Intel IA-32 sym-
metric multiprocessor (SMP) architecture.

5.1 Multiprocessor Implementation Issues

Target architecture. The active object runtime system was first
implemented on the Intel IA-32 SMP architecture realized in the In-
tel P6-family of processors — the Pentium Pro, Pentium II and Pen-
tium III [51]. This architecture was selected as we aimed to show how a
lean but powerful multiprocessor system can be developed for relatively
low-cost multiprocessor machines available today. The implementation
also works with other IA-32 processors like the Pentium and the Pen-
tium 4, but does not use the new multiprocessor features introduced
on the latter. It would be relatively easy to adapt it for i386 and i486
embedded processors.

The Intel architecture (see figure 5.1) is typical for multiprocessors
with up to eight processors. Each processor is tightly coupled with its
primary and secondary cache, which connects it to the shared memory
subsystem via the system bus. Each processor has an advanced pro-
grammable interrupt controller (APIC), which connects it to a special
bus for interrupt delivery and interprocessor communication. This bus

49

50 Chapter 5. Multiprocessor Runtime Implementation

Cache

CPU

APIC

Cache

CPU

APIC

Memory

I/O APIC

local
ints

local
ints

APIC bus

system bus

external
ints

Figure 5.1: Intel SMP multiprocessor architecture (simplified).

is connected to an I/O interrupt controller (I/O APIC), which handles
interrupt communication with external devices.

The processor provides three mechanisms for atomically operating
on the shared memory: primitive atomic operations, bus locking and
a cache coherency protocol. Some primitive memory operations (reads
and writes) are guaranteed to be atomic: 8-bit memory accesses, aligned
16-bit memory accesses and aligned 32-bit memory accesses. The pro-
cessor automatically asserts a special bus lock signal during some crit-
ical operations, e.g., when executing an exchange (XCHG) instruction
or when updating page table entries. Some instructions may be pre-
fixed with a lock prefix to assert the same signal under software control.
In this case, if the relevant data is cached, the bus signal is generally
not asserted, but the locking is applied on the cache instead, and the
cache coherency protocol is relied on for atomic access. This protocol
prevents different processors from simultaneously modifying the same
cached memory area.

5.1. Multiprocessor Implementation Issues 51

Memory ordering model. The local processor caches significantly
improve program performance, but also complicate programming due to
their imposition of a possibly non-intuitive, relaxed memory ordering.
The memory ordering model is an artefact of the buffering and caching
implementation of the processor’s memory interface [33, 69]. Put simply,
the interaction of shared memory reads and writes from the same or
different processors may lead to unexpected results.

It should be noted that the memory ordering model is only relevant
to user programs when processes interact without acquiring critical sec-
tion locks, e.g., when a shared variable is accessed without protecting it
with exclusive regions. This kind of access often occurs in performance-
critical software, where avoiding a locking operation in the common case
can provide great benefit.

Our approach to this problem is to simply expose the memory order-
ing model of the P6-family processors, since this model is still relatively
intuitive. Our compilers align 8-bit, 16-bit and 32-bit variables so that
they can be accessed atomically. If Aos is ported to other multiproces-
sor architectures with a more relaxed memory ordering, e.g., the IA-64
architecture, an approach where the compiler and runtime system co-
operate to present a stronger model may be more appropriate [126].

Interrupt controllers. The local APIC built into every processor
(see figure 5.1) is responsible for routing interrupts to it. These con-
trollers are connected to a shared I/O APIC that routes interrupts from
I/O devices to the processors. The routing can be static so that an in-
terrupt is always routed to a specific processor, or it can be dynamic, so
that interrupts are routed to the lowest-priority processor. For this case,
every local APIC has a processor priority register that can be updated
by software.

The APIC can be used by any processor to initiate an interrupt on
any subset of the processors. This interprocessor interrupt facility is
used by the runtime system to synchronize different processors, e.g.,
during garbage collection.

Another case where interprocessor interrupts are used is in the syn-
chronization of the paging structures shared by all processors in Aos.
When a page is unmapped from the virtual address space, (e.g., when
a process stack is deallocated), an interrupt is sent to every processor
requesting it to clear its translation lookaside buffer (TLB).

52 Chapter 5. Multiprocessor Runtime Implementation

Memory

Interrupts

Boot

Processors

Kernel

Active

Heap

Locks

Out

Modules

Figure 5.2: Aos runtime system module structure.

The APIC can also be programmed to generate periodic interrupts
to the local processor. This facility is used by the runtime system to
implement time-slicing and statistical profiling.

5.2 Runtime Module Decomposition

Figure 5.2 shows the module structure of the runtime system and ta-
ble 5.1 shows the responsibilities of the various modules. The implemen-
tation of the kernel was split into many small modules to make it more
understandable, even though it could probably have been made smaller
by combining all kernel functionality in one module as in the Oberon
system. This also has the consequence that some kernel modules (e.g.,
Heap) export implementation details. Where possible, modules above
kernel level should only import the top-most kernel module.

The bottom two modules (Boot and Locks) can be seen as an ex-
tension of the processor’s instruction set with facilities needed in the

5.2. Runtime Module Decomposition 53

Module Responsibility

Kernel Portable kernel interface
Processors Multiple processors
Active Active objects
Modules Modules and types
Interrupts Low-level interrupts
Heap Heap and garbage collector
Memory Virtual address space
Out Serial console output (debugging)
Locks Fine-grained locks
Boot Boot loader and environment interface

Table 5.1: Aos runtime system module responsibilities.

implementation of the runtime system.
The Boot module acts as interface between the runtime system, the

boot loader and the firmware, providing access to the machine’s hard-
ware configuration information. This is required since the hardware
environment can be quite diverse and complex. It also assigns every
processor in a multiprocessor system a unique sequence number, which
can be used to index per-processor data structures, and provides some
primitive atomic operations.

The Locks module provides locks for the protection of runtime data
structures. As the critical sections in the runtime system are relatively
short and do not contain await operations, the locks are implemented
with busy-waiting.

The Out module provides console output and is used mostly for
debugging purposes. During system startup some progress information
is written to the console. This is invaluable to find startup problems.

The virtual address space and object storage management aspects of
memory management are implemented in the Memory and Heap mod-
ules, respectively. The Memory module initializes the virtual address
space using the paging facilities of the processor and manages page-
level allocation and deallocation. It provides procedures for accessing
memory-mapped devices and for allocating and deallocating process
stacks and heap memory. The Heap module manages the heap, which is
used to allocate objects, dynamic arrays and untyped blocks of memory
using Active Oberon’s NEW standard procedure call. Deallocation of

54 Chapter 5. Multiprocessor Runtime Implementation

unused objects is performed automatically by a mark-and-sweep gar-
bage collector.

The Modules module is responsible for modules, types and com-
mands. It implements the dynamic loader algorithm, while the actual
loading of an object file is handled by a plugin.

Three modules are responsible for implementing active objects and
interrupt handling: Processors, Active and Interrupts. The Interrupts
module manages the interrupt controller and maps interrupts into Obe-
ron procedure calls. The Active module is the heart of the runtime sys-
tem. It implements lightweight processes for active objects, schedules
the processes, manages the object locks and synchronization conditions
and implements active object-based interrupt handling and timing. The
Processors module implements multiprocessor support. It is responsi-
ble for interprocessor communication and booting additional processors,
when present. It also provides a periodic timer facility used for accu-
rate timing in device drivers and for time-slicing, which is essential on
singleprocessor machines.

The Kernel module exports primitive atomic operations, fine-grained
timing and finalization operations (cf. 5.6). In some cases it also re-
exports some functionality from the rest of the runtime system, where
this can be done portably and with negligible performance loss. When
higher-level modules need kernel services, they should import only this
module, as far as possible, to be less dependent on a specific runtime
implementation. It is intended as the only module in the runtime system
with a portable interface that can be considered stable, even when the
implementation of the runtime system changes. This gives a system
implementor the freedom to change the interfaces of any other runtime
modules, without adversely affecting many higher-level modules.

The following sections of this chapter describe the modules of the
kernel in a bottom-up fashion.

5.3 Interfacing with the Environment

The first piece of software to get control when an Intel IA-32 machine
boots is the firmware (i.e., BIOS) provided by the manufacturer. This
program performs some initial testing and initialization of the proces-
sors, memory and boot devices, and proceeds to boot the installed oper-
ating system kernel. It provides a level of manufacturer-independence,

5.3. Interfacing with the Environment 55

allowing the kernel to boot on machines with different motherboards,
memory configurations and boot devices.

The modules of the Aos kernel are statically linked into a boot file,
which is written to a hard disk or other boot device, together with a
boot loader. After initialization, the firmware loads the boot loader
into memory and starts executing it. The Native Oberon boot loader is
used, which performs the following tasks:

1. Set the segment registers and stack for a simple 16-bit execution
environment which allows us to use firmware services like the boot
device driver.

2. Read the boot file into memory and check its consistency.

3. Query the firmware for some hardware information and store this
in memory for later use.

4. Set up a simple 32-bit execution environment, move the boot file
to its final location at address 1M and start executing it.

Boot module. The first module in the Aos kernel that gets control
is the bottom-most module, called Boot. It is responsible for low-level
initialization and interfacing with the firmware, which makes available
some information about the hardware environment, e.g., the number of
processors available. Information which is not reliably provided by the
firmware, e.g., the total memory size, is computed here.

The module exports some functions for use in the rest of the kernel,
the most important of which is the processor ID function, which re-
turns a unique sequence number for each processor it executes on. This
number is used to index arrays containing per-processor data. Also
exported are an atomic test-and-set operation and atomic versions of
the INC, INCL and EXCL standard procedures of Oberon, used when
operating on shared data.

When this module gets control, the processor that has been elected
as boot processor is running, and the other processors are disabled.
After this module has initialized, the boot processor continues executing
the body of the next-higher kernel module, and so on until the Processors
module which finally boots the other processors (cf. 5.12).

56 Chapter 5. Multiprocessor Runtime Implementation

5.4 Protecting Runtime Data Structures

The data structures of the runtime system have to be protected from
concurrent access by different processes. On a multiprocessor system,
processes running on different processors can make parallel calls to the
runtime system. Additionally, if processes are allowed to be preempted
while they are executing in the runtime system, the data structures have
to be protected against pseudo-concurrent accesses, which happen when
a process switch occurs in a critical section.

Examples of such data structures are the queues and arrays men-
tioned in section 5.9.2, but also the structures of the memory manager,
interrupt handling, module management, and other parts of the runtime
system.

On a singleprocessor system, the critical sections can be protected
by simply switching off interrupts during their execution. This disables
process switches, ensuring that the current process has exclusive access
to the data during the critical section. The Oberon system uses this
solution to protect data structures shared between the Oberon process
and interrupt handlers in device drivers. This is not sufficient in a mul-
tiprocessor environment, because different processors can access shared
data even when they are running with interrupts disabled.

Spin locks. Critical sections in a multiprocessor environment can be
protected by binary semaphores implemented with busy-waiting — also
known as spin locks [7]. Most modern processors have primitive atomic
instructions such as ‘test-and-set’ or ‘exchange’ which can be used to
implement spin locks. The lock is implemented as a boolean variable.
The acquire operation sets the lock variable to true, and at the same
time tests its existing value. If the value was true, the operation is
retried (and the value remains true). Otherwise, the operation finishes
with the value set to true, indicating that the lock is held, and that the
critical section may be entered. The release operation at the end of the
critical section simply sets the lock value to false, allowing other acquire
operations to succeed.

Spin locks as described above can interact with interrupts to produce
deadlocks. If a critical section is interrupted, and the interrupt handler
attempts to acquire the lock that protects this critical section, it will
wait forever. This is avoided by disabling interrupts during critical

5.4. Protecting Runtime Data Structures 57

sections.
Another reason for disabling interrupts during critical sections is to

avoid interrupts that could cause the process that is currently execut-
ing in the kernel to be preempted and rescheduled on another proces-
sor. This is important as kernel critical sections often manipulate per-
processor data structures and therefore assume that the same processor
executes the whole critical section.

When protecting critical data structures, there is a trade-off in de-
ciding how large a critical section to protect. Using few locks reduces
the complexity and makes it easier to avoid deadlock, but also reduces
the potential parallelism. Using many locks improves the potential par-
allelism, but makes it more difficult to avoid deadlocks. The latter
solution may also have a higher overhead due to processes having to
acquire and release more locks.

As an example, the runtime system could use one single lock to
protect all its data structures. This implies that only one process can
execute in it at any time, which could severely restrict parallelism. A
better option is to have a lock for every data structure, but partitioning
the critical sections is not straightforward when the data structures —
or the interactions between them — are non-trivial.

A middle road taken in Aos is to structure the runtime system as sev-
eral modules, each of which manages a few related data structures, and
to use a single lock for each module. This makes it relatively straight-
forward to show that an implementation is deadlock-free.

Locks module. The handling of spin locks is concentrated in the
Aos kernel module called Locks, which provides two kinds of spin lock.
The first kind is used to protect global kernel data structures and the
second kind is used to protect the header fields of an active object
(cf. 5.10.1). The difference between the two kinds is that the first also
disables interrupts during the critical section and therefore needs to
keep track of the nesting level of locks. The second kind of lock is a
straightforward lightweight spin lock which can not be nested.

The following strategy is used to avoid deadlock in the kernel: As
far as possible, only a single lock is held at a time. For the cases where
more than one lock is required simultaneously, the locks are acquired in
a fixed order, so that no hold-and-wait cycles can occur. To simplify the
issue of lock ordering, only one lock is used per module, to protect all

58 Chapter 5. Multiprocessor Runtime Implementation

the shared global variables of the module at once. This lock is acquired
at critical entry points to the module, and released at exit points. There
are three kinds of entry points: exported procedures, local procedures
that are registered as upcalls in other modules (e.g., interrupt handler
procedures) and overridden methods of objects from other modules (rare
in the kernel). Procedures that are not module entry points do not need
to acquire the lock, as they are always called from other procedures that
are entry points. If we further ensure that no locks are held when an
upcall is performed, it suffices to order the locks according to their level
in the module hierarchy. Thus the acyclic module import structure is
used to order the locks and avoid deadlock, as in the THE system [29].

To evaluate the cost of locking, especially the decision to use only
one lock per module, the locking module optionally accumulates the
following statistics on the use of the individual locks: the number of
times a specific lock was acquired, the mean and maximum time the
lock was waited for and held, and the variance of these times.

5.5 Memory Management

Section 4.3.1 presented the design decisions behind the Aos virtual ad-
dress space organization and concluded that a single shared virtual ad-
dress space containing the heap and process stacks should be used, with
the heap area mapped identically to the physical address space. In
this section we first summarize the memory management options of
the IA-32 architecture and then show how the virtual address space is
mapped to the physical address space.

IA-32 memory management options. The IA-32 architecture [53]
supports segmentation and paging. Paging can be switched off, but
segmentation is always enabled. The processor translates 48-bit logical
addresses via segmentation to 32-bit linear addresses, which are then
optionally translated via paging to 32-bit or 36-bit physical addresses.
Pages can be 4KB, 2MB or 4MB big, and can be mapped to physical
memory or marked as not-present. To speed up address translation,
page-table entries are cached in code and data translation lookaside
buffers (TLB caches).

A logical address consists of a 16-bit segment selector, specifying
some segment, and a 32-bit offset into the segment. The segment selec-

5.5. Memory Management 59

Feature Introduced Page sizes Levels Address size
Paging Intel386 4KB 2 32-bit (4GB)
PSE Pentium 4KB/4MB 2/1 32-bit (4GB)
PAE Pentium Pro 4KB/2MB 3/2 36-bit (64GB)
PSE-36 Pentium III 4MB 1 36-bit (64GB)

Table 5.2: IA-32 architecture paging options.

tor is usually specified implicitly via one of the 6 segment registers, and
is an index into the global descriptor table (GDT) or a local descriptor
table (LDT). These tables specify the 32-bit linear base addresses, sizes
and other attributes of the segments in the system. A segment can
have any byte-granular size up to 1MB, or any 4KB-granular size from
4KB to 4GB. Segments are typically used for general-purpose data, but
some special segments describe system data structures (local descriptor
tables, task-state segments, call-gates, interrupt-gates, trap-gates and
task-gates).

Table 5.2 summarizes the paging options present on IA-32 proces-
sors. All the listed processors are backward compatible with earlier
processors in the table. On the Pentium, 4KB pages can be mixed with
4MB pages. The advantage of using large pages is that single-level page
translation is performed and TLB utilization is improved.

Linear addresses are limited to 32 bits, therefore more than 4GB
of physical memory can only be accessed using paging. The PSE-36
feature of the Pentium III provides a direct way to do this, by allowing
4MB pages to be located on any 4MB boundary in the 64GB physical
address space. Unfortunately, it does not allow mixing of 4KB and 4MB
pages. The PAE feature of the Pentium Pro also enables a large physical
memory, using a triple-level page translation structure with mixed 4KB
and 2MB pages.

IA-32 physical address space. Figure 5.3 shows the physical mem-
ory layout of an IA-32 machine. It can be seen that the RAM is not
physically contiguous, as there are fixed areas reserved for I/O devices
(between 640KB and 1M, and above address X) and firmware ROM.

Due to backward compatibility issues with old IBM PC/AT-class
machines, the RAM at 512K and 15M is optional and can be masked
out by the system to allow older I/O devices to occupy these areas. The

60 Chapter 5. Multiprocessor Runtime Implementation

64G

RAM
4G

I/O

X

RAM
16M

(RAM)
15M

RAM
1M

ROM, I/O
640K

(RAM)
512K

RAM
0

Physical

Figure 5.3: Typical IA-32 system physical memory layout.

Aos implementation assumes that these addresses contain RAM, which
is true on most modern machines.

The address X designates the highest RAM address below 4G, and
depends on the amount of installed RAM. Its largest possible value is
4076M, since at least 20MB is always reserved for I/O devices at the
top of the 32-bit address space. The RAM above 4G is only present on
very large systems that have at least 4GB RAM.

Each processor starts up in 16-bit x86 mode with paging disabled,
and can therefore only access the low 1MB of physical memory. After
switching to 32-bit mode in the boot loader, the whole 4GB address
space becomes accessible. The memory above 4G is never directly ad-
dressable, and can only be accessed via paging.

Memory module. The Memory module initializes the virtual address
space and provides procedures for managing process stacks, allocating
heap memory and making memory-mapped devices accessible.

When the module gets control the boot processor is initialized to
run in 32-bit flat segmentation mode with paging disabled. Flat mode
uses two segments in the GDT, one for code and one for data, that are

5.5. Memory Management 61

4G
Mappings

3.75G

Stacks
3G

32M

6Heap
1M

640K

4K

Firmware/Devices

Page Heap (Mapped)

Unmapped
0

Virtual

4G

Devices

32M
Page Heap

?

6Heap
1M

640K

4K

Firmware/Devices

Page Heap (Mapped)

Page Heap
0

Physical

Figure 5.4: Address space organization (32MB RAM shown).

both based at address 0 and encompass the whole 4GB linear address
space. All the segment selector registers are set to these segments, and
in effect segmentation can now be ignored.

Figure 5.4 shows the main areas of the virtual address space, which
are mapped to the physical address space using paging.

The heap starts at 1M and grows upwards. Virtual pages are mapped
directly to physical pages, which simplifies device drivers that perform
direct memory access (cf. 4.3.1).

The stack area contains all process stacks and has a fixed size and
location close to the top of the address space. When a process stack is
allocated, a fixed part of the stack area is allocated to it. Initially, only
one page is physically allocated, but when page faults occur in this area,
additional pages are allocated. Arbitrary physical pages from the page
heap described below can be mapped to the stacks, and the pages are
not necessarily physically contiguous. The virtual address ranges for
the stacks are managed using a fixed-sized block allocator implemented
with a bitmap.

The mapping area maps in parts of the physical address space con-
taining memory-mapped devices and is at the top of the address space.

The low area below 1M is a mixed bag. It is mapped directly to

62 Chapter 5. Multiprocessor Runtime Implementation

physical memory, except for the very first page, which is left unmapped
to trap NIL pointer references. The RAM below 640K is part of the
page heap and the part between 640K and 1M contains firmware and
memory-mapped devices. As the processors boot in 16-bit x86 mode,
some low pages are reserved during booting.

For the page mapping, 4KB pages are used. Since the page size
and other implementation-specific information is not exported from the
module, it would be relatively simple to use the Pentium PSE extensions
to allocate 4MB pages to parts of the heap, thereby reducing the load
on the TLB caches and improving performance.

Physical memory is dynamically allocated to the heap and the pro-
cess stacks. The physical pages for the heap come from the area above
1M in the physical address space, as they are identically mapped. These
are managed as a simple allocate-only stack which satisfies the need for
contiguous physical memory.

The physical pages for the process stacks come from the page heap,
which initially consists only of the RAM pages below 1M. Once these
pages are used up, physical pages are taken from the top of RAM down-
wards towards the end of the heap. When a process stack is deallocated,
its physical pages are returned to the page heap. The page heap is also
used when allocating other physical pages, e.g., for page tables.

The single shared address space design is efficient and simplifies
memory management, but it also constrains the RAM directly usable
for program data to about 3GB excluding stack. Figure 5.5 shows how
the organization would look on a system with 4GB RAM. The RAM
above 4G is inaccessible, but could be made accessible through a win-
dow in the mapping area by using the PAE paging option. A good way
to make this memory available to programs would be as a RAM file
system or disk cache.

After the Memory module has initialized, the paging structures have
been set up and the boot processor has switched from the boot loader
stack and is running with paging enabled.

Memory module interface. The Memory module interface exports:
heap size management for the object storage module (cf. 5.6), a stack
data type for the processes module (cf. 5.9) and physical memory access
procedures for device drivers.

The boot file which is loaded at 1M contains a static image of the

5.5. Memory Management 63

4G
Mappings

3.75G

Stacks
3G

32M

6Heap
1M

640K

4K

Firmware/Devices

Page Heap (Mapped)

Unmapped
0

Virtual

4.25G
(Paged)

4G
Devices

3.75G
Page Heap

?
3G

32M

6Heap
1M

640K

4K

Firmware/Devices

Page Heap (Mapped)

Page Heap
0

Physical

Figure 5.5: Address space organization (4GB RAM shown).

kernel modules in the same format as the heap managed by the heap
module. This image forms the initial heap and the first procedure be-
low returns its boundaries for the heap module. The second procedure
allows the heap module to control the dynamic heap size. As input it
accepts the requested heap end address, and as output it returns the
new heap end address that was actually set.

PROCEDURE GetHeapAdr(VAR begin, end, first, free: LONGINT);
PROCEDURE SetHeapEndAdr(VAR end: LONGINT);

For stack management, the following type and operations are ex-
ported. A stack can be allocated or deallocated, and the virtual memory
allocated to a stack can be extended.

TYPE
Stack = RECORD

low, high: LONGINT (* stack boundaries *)
END;

PROCEDURE NewStack(VAR s: Stack; VAR sp: LONGINT);
PROCEDURE DisposeStack(VAR s: Stack);
PROCEDURE ExtendStack(VAR s: Stack; adr: LONGINT): BOOLEAN;

64 Chapter 5. Multiprocessor Runtime Implementation

The first two procedures below allow a physical address range to be
mapped into the virtual address space, or unmapped, respectively. The
last function returns the physical address corresponding to a virtual
address range, for direct memory access operations. If the specified
address range is not physically contiguous (e.g., in the stack area), it
returns −1.

PROCEDURE MapPhysical(phys, size: LONGINT; VAR virt: LONGINT);
PROCEDURE UnmapPhysical(virt, size: LONGINT);
PROCEDURE PhysicalAdr(virt, size: LONGINT): LONGINT;

The module also exports some initialization procedures used when
booting other processors. The first procedure returns a low page con-
taining a bootstrap loader for subsequent processors, and the second
procedure is called by each processor to initialize its paging unit.

PROCEDURE InitBootPage(start: PROCEDURE; VAR phys: LONGINT);
PROCEDURE InitMemory; (* initialize paging *)

5.6 Object Storage Management

Heap module. The Heap module is responsible for managing ob-
ject allocation and garbage collection in a contiguous growable block of
memory obtained from the Memory module. Rather than implement a
completely new allocation and garbage collection algorithm, it was de-
cided to adapt that of Native Oberon, which is in turn based on earlier
ETH Oberon versions. For Aos, the algorithm was extended to handle
active objects and abstract root objects. The unsafe finalization mech-
anism was replaced by a safer one (p. 67). The allocator was adapted
to share memory with the stack allocator. The heap management is
implemented in a separate module to make explicit the interface be-
tween it and the rest of the runtime system and thereby simplify later
replacement by another algorithm.

Oberon garbage collection overview. Ceres Oberon [134] uses a
mark-sweep garbage collector [55]. The mark phase of the garbage col-
lector is implemented without a recursion stack by using a pointer re-
versal algorithm [107]. The basic algorithm is essentially the same in
most ETH Oberon versions, but later implementations lifted some re-
strictions and added support for object-orientation.

5.6. Object Storage Management 65

Ceres Oberon has two kinds of heap blocks: one for records allocated
with NEW and one for untyped memory allocated with SYSTEM.NEW.
Both kinds of block have a one-word header, which contains a mark byte
for the garbage collector, and either the size of the block or a pointer to
the type descriptor for a record. Such a pointer is also called a type tag,
and is used to generate efficient type tests, and to find type information
during garbage collection. The type descriptor contains the size of the
record, the tags of its base types and the offsets of pointer fields in
the record. It is allocated as an untyped heap block, therefore it does
not need a meta-type descriptor. The fields of the type descriptor are
used in type tests and in the garbage collector. As an implementation
restriction, dynamic arrays are allocated as untyped blocks and are not
allowed to contain pointers.

Heeb and Pfister [85] describe an improved algorithm that uses the
type tag as an implicit mark byte. Templ [85] describes an extended
algorithm that lifts the implementation restriction and allows dynamic
arrays to contain pointers. Templ also developed a simple finalization
mechanism [120]. For Object Oberon [70] and Oberon-2 [71] the type
descriptor was extended to support type-bound procedures (i.e., virtual
methods). The resulting heap block layout of later Oberon implemen-
tations is documented in [27, 117]. This was used with minor changes
in Native Oberon.

As is mostly the case, the added functionality has a cost in terms of
added complexity. In comparison with Ceres Oberon’s two kinds of heap
blocks, Native Oberon has four [25], and their structure is somewhat
more involved:

1. Simple record block for dynamic records and objects.

2. Type descriptor block with meta-type descriptor for itself.

3. Array block for dynamic arrays containing pointers.

4. System block for dynamic arrays without pointers, module de-
scriptors and untyped memory.

In Ceres Oberon, the garbage collector is invoked only from the main
loop, when it is known that there are no heap blocks that are reachable
exclusively from local pointer variables. Thus, local pointer variables on
the stack can be ignored during the mark phase without risking dangling

66 Chapter 5. Multiprocessor Runtime Implementation

pointers, thereby simplifying the garbage collector. Unfortunately, this
can lead to program failures due to an apparent lack of memory, when
a command allocates a lot of temporary memory.

To solve this problem in a general way, later Oberon garbage collec-
tor implementations also consider local pointer variables on the stack
as roots. To find such variables without additional stack layout descrip-
tors, they scan the stack (and the processor registers) conservatively to
find pointer candidates, and perform an additional sweep operation to
confirm which candidates point to actual heap blocks. In this way the
garbage collector can be invoked at any time — also from the allocation
procedure when the free lists are empty. For Aos, this ability to invoke
the garbage collector at any time is essential, as there is no steady state
in which all process stacks are known not to contain pointer variables
exclusively anchoring heap blocks.

Adding active objects. From the allocation perspective, an active
object is similar to an Oberon-2 dynamically allocated record with type-
bound procedures, except that it requires additional system data in
every instance to manage locking and conditions. Therefore it is feasible
to take the Oberon garbage collector and adapt it to support active
objects. The main problem is how to extend the heap blocks of records
to include the additional data. In Eamon [30], this is done by having
the programmer declare every active object as an extension of a system-
supplied base object that contains the necessary fields. For Aos this is
considered too inflexible, since it would not be possible to extend an
existing non-active object to make it active. In an object framework
that supports active objects, every base object would have to be declared
active, incurring system overhead on every instance.

The solution chosen in Aos is to define a new heap block that
prepends the additional system information to a normal record block.
The block is formatted so that it meets the alignment requirements of a
record block. This allows a non-active base object to be extended at a
later time (perhaps in a different module) with an active body, and still
remain compatible with its extensions. Type tests can be compiled in
exactly the same way as before. The details of the new block are shown
in appendix B.

5.6. Object Storage Management 67

Adding abstract root objects. The garbage collector finds all live
data blocks in the heap by starting at the root pointers and exhaustively
traversing all pointer links. All blocks that are not part of the transitive
closure computed this way are unused and can be added to the free list
for reallocation. For the traversal the location of root pointers and
the location of pointers in the data blocks have to be known. This
meta-information is contained in type descriptors, module descriptors
and process descriptors. The type descriptors define where pointers are
located in data blocks, the module descriptors define the location of
global pointer variables, and the process descriptors contain the stack
descriptors used to locate local pointer variables.

In Aos, the concern of locating root pointers is removed from the
Heap module by using abstract root objects. Module descriptors and
process descriptors declared in higher-level modules are extensions of
this object. When the garbage collector finds such an object in the
heap, it calls its FindRoots method to obtain root pointers contained in
the object. In the case of a module descriptor this returns the global
pointer variables and in the case of the process descriptor, the stack of
the process is scanned for pointer candidates. This mechanism decou-
ples the garbage collector from the module and process descriptor data
structures, simplifying the implementation of other language environ-
ments on the kernel.

When the garbage collector is initiated, the root pointer of the mod-
ule list is passed to it. This is sufficient to trace all reachable data
structures as all other modules are reachable via the module list, and
all processes are reachable via the scheduler data structures rooted in
global pointer variables and active objects in the heap.

Finalization. Finalization is a mechanism that allows a user-defined
procedure to be called when an object is deallocated by the garbage col-
lector [55]. Finalization is not required often, but when it is required,
it is essential [50]. It is useful to create state-reduced module inter-
faces, e.g., a file system module that does not require files to be closed
explicitly.

Finalization is useful in cases where garbage collected objects man-
age external resources. It is then desirable to free the external resources
associated with an object once the object is deallocated. As the garbage
collector can not in general know the nature of the external resource, a

68 Chapter 5. Multiprocessor Runtime Implementation

suitably general mechanism must be provided.
Native Oberon supports finalization of objects using Templ’s algo-

rithm [120]. An object reference and associated finalization procedure
can be registered with the garbage collector, which adds it to a special
list of checked objects. When the garbage collector finds that a checked
object is no longer reachable (except from the list), it removes it from
the list, and calls the finalization procedure, passing a reference to the
object. The object is not deallocated immediately, as a reference to it
still exists. If the finalization procedure does not re-anchor the object,
it will be collected in the next cycle.

In some cases a module needs to assign names to the objects that
it manages (e.g., file objects in a file system module). When a client
requests an object by name, the same object reference must be returned
when the same name is requested multiple times. In Oberon this is
implemented by linking the objects together in a global collection using
untraced pointers, which are pointers that are ignored completely by
the garbage collector. The objects are also registered for finalization.
Subsequently, when a client no longer has a pointer to an object, the
finalization procedure of the object gets called, and the module can
remove it from the global collection.

Although this technique is simple to use and implement, it is subtle
and if incorrectly used can lead to dangling references — errors that
impact the stability of the whole system and are notoriously difficult to
debug. It is therefore desirable to provide a finalization mechanism in
Aos that does not depend on untraced pointers.

For the automatic management of named collections of objects the
Aos kernel provides the finalized collection object type, which manages
a collection of arbitrary objects with automatic removal of otherwise
unreachable objects. Objects can be added to such a collection, removed
from the collection and enumerated. They are also removed implicitly
by the garbage collector when they are no longer reachable, except for
the links inside the collection itself. Additionally, when an object is
added, a finalization procedure can be associated with it, which gets
called when the object is no longer reachable. Finalized collections are
similar to identity directories in ETHOS [118], except that they can
store arbitrary objects.

Unlike the Oberon system, the Aos garbage collector does not call
the finalization procedure directly, as this can lead to deadlocks when

5.6. Object Storage Management 69

the garbage collector is invoked while an application is holding some
object locks. Instead, a separate process is used to call the procedures,
thereby avoiding this kind of deadlock.

It is important to understand the limits of finalized collections when
using them. As unreachable objects in a finalized collection are only
discovered once a garbage collection cycle completes, it is possible that
they remain in the collection for an indefinite amount of time. Truly
scarce resources should rather be managed with explicit allocation and
deallocation, even though it is less convenient and more error-prone.

Interaction with the page heap. The allocation algorithm in Aos
is similar to that of Native Oberon, except in the case where it runs
out of free memory. In Native Oberon a garbage collection is then
performed, and the allocation retried once before failing. In Aos there is
the additional choice of extending the heap by allocating more memory
from the page heap shared with the process stacks (cf. 5.5).

Deciding whether to extend the heap or not is a difficult problem
to solve in general. Due to the simplifying requirements that the heap
memory be physically contiguous and that a non-moving garbage collec-
tor is used (cf. 4.3.1), once pages are allocated to the heap they can not
be returned to the page heap. Therefore we would like to avoid growing
the heap unnecessarily, to maximize the number of process stacks that
can be allocated. On the other hand, if the heap is kept small, garbage
collection has to be performed more often, resulting in unnecessary over-
head. The compromise made is that the heap starts small, and while it
is less than 50% of the total memory size, it is expanded immediately
on initial allocation failure. Once it has grown past this limit, it is only
expanded after attempting a garbage collection first. Once it has grown
to 95% of the total memory size, it is not expanded any more. In this
way the system adapts dynamically to its workload.

A simpler alternative to the dynamic sharing of pages between the
heap and stacks would be to allocate a fixed number of pages to each
role. This was rejected in favour of the more dynamic solution described
above, but in some applications, e.g., embedded systems, it might ar-
guably be the better choice.

Garbage collection algorithm. The mark-sweep garbage collection
algorithm of Aos, adapted from Native Oberon, is described here.

70 Chapter 5. Multiprocessor Runtime Implementation

The following auxiliary procedure starts at pointer p and marks all
heap objects reachable from it that are not marked already. As a side
effect, it adds any root objects discovered during the traversal to the
global rootList.

PROCEDURE Mark(p: PTR);

Conservative marking of pointer candidates is handled by the two
procedures below. The first procedure searches for pointer candidates
in the specified block of memory using alignment checks and adds them
to a global array. The second procedure sorts the array and scans the
heap, matching candidates with actual heap block addresses and calling
Mark in case of a confirmed candidate.

PROCEDURE RegisterCandidates(adr, size: LONGINT);
PROCEDURE CheckCandidates;

The following procedure implements the mark-and-sweep algorithm.
Since the algorithm can not run concurrently with heap mutators, it
is only executed on one processor, and all other processors are halted
first. This is done by broadcasting an interprocessor interrupt to all
processors. In response to this interrupt, one processor executes the
garbage collector, while the other processors enter a waiting loop until
it is finished. The interrupt handler pushes all registers on the stack,
thus the conservative scanning of the stack will also discover pointer
candidates that are contained exclusively in processor registers. The
numCandidates variable counts the number of candidates in the global
array. It is incremented by RegisterCandidates and cleared by CheckCan-
didates.

PROCEDURE CollectGarbage(root: PTR);
VAR obj: RootObject;
BEGIN

rootList := NIL; Mark(root);
REPEAT

REPEAT
WHILE rootList # NIL DO

obj := Get(rootList);
obj.FindRoots (* calls Mark and RegisterCandidates *)

END;
IF numCandidates # 0 THEN CheckCandidates END

UNTIL (numCandidates = 0) & (rootList = NIL);

5.7. Interrupts and Exceptions 71

CheckFinalizedObjects
UNTIL rootList = NIL;
Sweep

END CollectGarbage;

The CheckFinalizedObjects procedure checks the reachability of ob-
jects registered for finalization by traversing the list of registered objects
once. If any unmarked objects are found, they are moved to another
list and subsequently marked (including their subgraphs). A separate
finalizer process is activated to call the associated finalization proce-
dures after the garbage collector finishes. The Sweep procedure scans
the heap and adds all unmarked objects to the free list. It also clears
all mark bits.

The garbage collector is sensitive to memory caching issues, as it
traverses all reachable objects in the heap. Since only one processor
is active during garbage collection, the kernel makes sure that it al-
ways runs on the same processor. In some measurements this improved
the performance of subsequent garbage collections with 35%, due to
the primed memory caches, even when long periods of time with other
program activity pass between the collections.

5.7 Interrupts and Exceptions

The IA-32 architecture supports three kinds of interrupts and excep-
tions [53]:

External interrupts These are signals from external I/O devices or
interprocessor interrupts and timer interrupts from the APIC.

Software interrupts These interrupts are generated by special in-
structions under program control.

Processor exceptions These interrupts are caused by errors during
instruction execution. They are subdivided into three categories:
faults (restartable exceptions), traps (resumable exceptions) and
aborts (fatal exceptions).

External interrupts can be masked by the processor using the disable
interrupts instruction. I/O interrupts can also be masked individually
by the interrupt controller. The other two kinds can not be masked.

72 Chapter 5. Multiprocessor Runtime Implementation

Interrupts module. The Interrupts module is responsible for driving
the interrupt controller and the low-level handling of interrupts using the
procedure call model. Higher-level modules, e.g., device drivers using
active objects, use the active object-based interrupt handling mecha-
nism for I/O interrupts (cf. 4.3.3).

At this low level, all three kinds of interrupts described above are
treated equally. Handler procedures can be installed in the interrupt
vector table using the procedure defined below. A handler procedure
is called when an interrupt occurs and gets full access to the processor
state at that time. It can also modify the state on return, which is
useful when implementing exception handling.

TYPE
State = RECORD ... END; (* processor state *)
Handler = PROCEDURE (VAR state: State);

PROCEDURE InstallHandler(h: Handler; int: INTEGER);

The state parameter contains a reference to the saved processor state
at the time of the interrupt. When the handler returns, this state is
restored in the processor. The stack pointer at the time of the interrupt
is part of the state and can be modified to return on another stack.
The instruction pointer is also part of the state and can be modified to
return to another location, e.g., to the terminate procedure to terminate
the process that caused an exception, or to a process-specific exception
handler.

External interrupts are masked by the processor for the duration of
the handler procedure. Specific external interrupts can be unmasked
or masked permanently at the interrupt controller with the following
two procedures. These are later used to implement the higher-level I/O
interrupt handling.

PROCEDURE EnableInterrupt(int: INTEGER);
PROCEDURE DisableInterrupt(int: INTEGER);

During booting, every processor calls the following procedure to ini-
tialize its interrupt handling mechanism. It loads the address of the
interrupt descriptor table into the interrupt descriptor table register.
All processors share this table and handle interrupts the same way.

5.8. Modules, Types and Commands 73

PROCEDURE InitInterrupts; (* initialize interrupt handling *)

Exceptions are treated exactly like interrupts, except that they can
provide additional information on the processor state at the time of the
exception, e.g., the kind of exception that occurred and the contents
of debugging registers. The following procedure returns the additional
information. The installed handler for an exception can modify the pro-
cessor state, e.g., to cause the exception handler to return to a different
location and unwind the stack (cf. 4.3.3).

TYPE
ExceptionState = RECORD ... END; (* additional state *)

PROCEDURE GetExceptionState(VAR int: State; VAR exc: ExceptionState);

5.8 Modules, Types and Commands

Modules module. As in the Oberon system, the module called Mod-
ules is responsible for modules, types and commands. It declares the
module descriptor and the list of loaded modules. It provides operations
to load and unload modules and to find existing modules. A module
can register a termination procedure to be called when it is unloaded
and when the system is shut down.

For module loading the recursive algorithm of Templ [120] is used,
with the small modification that the actual creation of the module in
memory is performed by a plugin. This allows different object file for-
mats to be supported (cf. 8.3.2), or for modules to be compiled on-the-
fly. In configurations not requiring dynamic loading of modules (e.g.,
some embedded systems), the plugin need not be installed.

The types contained in modules are described by type descriptors,
which describe the size of a type and the location of methods and pointer
fields. These are used by generated code when calling methods and by
the object allocator and garbage collector. Operations are provided to
find type descriptors by name or by tag, which can be used for debugging
and metaprogramming [120]. Type descriptors are generated by the
Heap module, which also contains the garbage collector that uses the
type descriptors to locate pointer fields.

Modules can contain commands, which are exported procedures that
can be called dynamically without explicitly importing them (cf. 3.7).

74 Chapter 5. Multiprocessor Runtime Implementation

Operations are provided to find commands by name. Aos commands are
distinguished from Oberon commands in that they can take a generic
parameter and return a generic result.

5.9 Processes and Synchronization

Active module. The Active module is described in detail in the fol-
lowing three sections. This module is responsible for everything directly
related to active objects: processes (cf. 5.9), object locking (cf. 5.10) and
condition management (cf. 5.11).

A process is used to execute the activity of an active object, ex-
pressed by the program declared in its body. The process is created
when the active object is allocated, and terminates when the body ex-
its. The process may call methods of the same or other objects and
enter exclusive regions of those objects, where it competes with other
processes for entry to these regions. An object lock is used to protect
the exclusive regions of an object and allow only one process to enter a
region at a time. Condition management concerns the implementation
of the await statement and the evaluation of the conditions expressed
therein.

5.9.1 Process States

A process can be in one of several states, and with every state (except
Terminated) is associated a data structure which stores descriptors of
processes in that state. It follows that a process can only be in one of
these data structures at any time — when it switches state it is also
moved from one data structure to another. The states and all possible
transitions between them are shown in figure 5.6 and described below:

Ready This is the initial state of a process. It is ready to run and
waiting for a processor to be assigned to it, at which time it will
move to the Running state.

Running A process is in this state when it is running on one of the
available processors. It leaves this state when it terminates, is
preempted, or starts waiting for a lock, condition or interrupt.

5.9. Processes and Synchronization 75

Running

Ready

Awaiting
Condition

Awaiting
Lock

Awaiting
Interrupt

Terminated

Figure 5.6: All process states and state transitions.

76 Chapter 5. Multiprocessor Runtime Implementation

AwaitingLock A process is in this state when it is waiting to acquire
an object lock that is held by another process. When it eventually
acquires the lock, it moves back to the Ready state.

AwaitingCondition A process is in this state when it is waiting for
a condition to be made true by some other process. When the
condition is eventually found to be true by the runtime system,
the process moves back to the Ready state.

AwaitingInterrupt A process (typically a device driver) is in this
state when it is waiting for a specific interrupt to occur. This
is similar to the previous state, except that the process will be
enabled to run by an interrupt, and not the actions of another
process (cf. 4.3.3). When it is enabled, it moves back to the Ready
state.

Terminated This is the final state, which is entered when a process ter-
minates. Terminated process descriptors are not in any program-
defined data structure, but remain in the heap until they are
cleaned up by the garbage collector.

5.9.2 Process Data Structures

This section describes the data structures used by the runtime system
to keep track of processes: ready queue, running array, lock queue, con-
dition queue and interrupt array.

Process Descriptor A process descriptor is a small record containing
information about a process. Its most important fields are shown below.

TYPE
Process = OBJECT ...

stack: Stack;
state: ProcessorState;
preempted: BOOLEAN;
condition: Condition;
conditionFP: ADDRESS;
priority: INTEGER;
obj: OBJECT;
next: Process

5.9. Processes and Synchronization 77

END Process;

ProcessQueue = RECORD
head, tail: Process

END;

Every process has its own private stack, referenced by the stack
field, which is used to manage procedure calls and efficiently allocate
and deallocate local variables.

When a process that was running on some processor is suspended,
that processor’s state is stored in the state field, so that it can later be
restored on the same or another processor when the process is sched-
uled to run again. When the preempted field is set, the process has
been preempted and the full processor state is stored in the state field.
Otherwise, only a partial copy of the processor state is stored.

The condition and conditionFP fields used for object condition man-
agement are described in section 5.11.

The current priority of a process is defined by the priority integer
field, which can assume one of a fixed number of values, with lower
values indicating lower priorities.

Every process has exactly one associated active object, which is ref-
erenced by the obj field. This is set when the process is created and does
not change afterwards. It is required only for the ActiveObject system
call, which returns the associated active object.

A process descriptor can be in at most one queue, therefore a single
next field is sufficient to implement queues of descriptors. A queue is
represented by the ProcessQueue record, which references the first and
last descriptor in the queue.

Ready Queue The descriptors of processes in the Ready state are
stored in a global ready queue. In fact, a separate first-in-first-out queue
is used for each process priority level (three queues are shown at the
bottom of figure 5.7):

VAR
ready: ARRAY NumPriorities OF ProcessQueue;
maxReady: INTEGER;

A process descriptor is entered into the ready queue in constant time
by indexing on its priority and adding it at the end of the relevant queue.

78 Chapter 5. Multiprocessor Runtime Implementation

NIL

NIL

NIL

P

P

P P P P

P

P
P

P

P

0 1 2

interrupt
array

0

2

1

3

5

4

0 21 3

running
array

P

P

ready
queue
array

condition
queues

lock
queues

NIL

NIL

NIL

O

P

object
(locked)

process

array

P process
queue

LEGEND

CPU#

in
terru

p
t#

priority

O object

empty
queue

NIL

O O O

Figure 5.7: Overview of the process data structures.

5.9. Processes and Synchronization 79

Processes in the Ready state can not change their priority, so they are
never moved from one queue to another.

To select a new process to run, the queues are scanned from the
highest priority down until a non-empty queue is found and then the
first process descriptor is removed from it. In the worst case all queues
would have to be scanned, so, to reduce the average search time, the
system keeps track of non-empty queues in the maxReady variable, which
satisfies the following invariant:

∀i : MinPriority ≤ maxReady < i < NumPriorities : Empty(readyi)

The full procedures to enter a process in the ready queue and select
a process from the ready queue are shown below. The Get and Put pro-
cedures perform constant-time queue operations using the ProcessQueue
type and Process.next field. It is assumed that the relevant spin lock is
held when these procedures are called (cf. 5.4).

PROCEDURE Enter(p: Process);
BEGIN

Put(ready[p.priority], p);
IF p.priority > maxReady THEN maxReady := p.priority END

END Enter;

PROCEDURE Select(VAR new: Process; priority: INTEGER);
BEGIN

LOOP
IF maxReady < priority THEN new := NIL; EXIT END;
Get(ready[maxReady], new);
IF (new # NIL) OR (maxReady = MinPriority) THEN EXIT END;
maxReady := maxReady-1

END
END Select;

The Select procedure has a priority parameter to specify the minimum
priority process that may be returned. This is used when the runtime
system needs to select only process with the same or higher priority as
the current process, e.g., when timeslicing.

Running Array While a process is running on processor i, its de-
scriptor is referenced by element i of the global running array (four

80 Chapter 5. Multiprocessor Runtime Implementation

processor elements are shown at the top of figure 5.7). The runtime
system indexes this array using the ProcessorID function, which returns
a unique number for each processor it executes on.

VAR running: ARRAY NumProcessors OF Process;

The interplay between the running array and the ready queue is best
illustrated by the following procedure, which can be called by a process
to yield the processor voluntarily to another.

PROCEDURE Yield;
VAR id: INTEGER; new: Process;
BEGIN

Acquire(Active);
id := ProcessorID();
Select(new, running[id].priority);
IF new # NIL THEN

Enter(running[id]);
SwitchTo(running[id], new)

ELSE
Release(Active)

END
END Yield;

The Acquire and Release operations on the Active spin lock are used
to synchronize access to the shared data structures: the ready queue and
running array. The Select and Enter procedures operate on the ready
queue. The SwitchTo procedure performs a context switch by storing
the processor state into its first parameter and loading the processor
state from the second parameter (similar to Modula-2’s TRANSFER). It
does not return immediately, but rather ‘returns’ to the new process’s
last execution context. In all these procedures it is assumed that the
caller holds the Active spin lock and the SwitchTo procedure releases the
lock as it switches to the new process.

As the Yield procedure is running in the context of the current pro-
cess and using its stack, it is important that the Enter and SwitchTo
operations execute indivisibly. This avoids the following race condition
which could occur if the spin lock were released between these two oper-
ations: Process P executes Yield (or another scheduling procedure) on
one processor. After Enter, but before SwitchTo, process Q running on

5.9. Processes and Synchronization 81

another processor also executes Yield, selects P to run and switches to
it, whereby we end up with two processors executing P at the same time
on the same stack! By holding the Active spin lock during the Enter and
SwitchTo operations we avoid this problem.

Lock Queue A process enters the AwaitingLock state when it starts
waiting for some object’s lock to become available. Its process descriptor
is added to the lock queue of the object being waited on. Every object
with exclusive regions has such a lock queue, because processes can
potentially wait to enter its exclusive regions. When a process releases
the lock of some object, the runtime system removes the first process
descriptor (if any) from the lock queue, cedes the lock to that process,
and enters it in the ready queue (cf. 5.10). For illustration, figure 5.7
shows three objects, the leftmost two of which have three processes each
waiting in their lock queues, and the rightmost one with no waiting
processes. A process descriptor moves from the running array to an
awaiting lock queue when the process attempts to lock an object that
is already locked. As the process that has locked the object leaves the
exclusive region, it hands the lock over to the first waiting process.
When the process at the front of the queue receives the lock, it moves
to the ready queue for its priority, from where it can proceed back to
the running array.

Condition Queue The AwaitingCondition state is entered when a
process starts waiting for some condition to become true in an exclusive
region of an object. Its process descriptor is added to the condition
queue associated with the object containing the await statement. Ev-
ery object with exclusive regions containing await statements has such
a condition queue. The queue is used by the runtime system when it
needs to re-evaluate conditions associated with an object. If a condition
is later found true, the associated process descriptor is removed from
the condition queue and entered in the ready queue (cf. 5.11). For illus-
tration, the middle object in figure 5.7 has no processes in its condition
queue, and the other two objects have four waiting processes each. The
movement of a process descriptor through the condition queue is similar
to that through the lock queue, except that the queue can be rotated
due to condition evaluation (cf. 5.11.3).

82 Chapter 5. Multiprocessor Runtime Implementation

Interrupt Array The descriptor of a process in the AwaitingInter-
rupt state is stored in the global interrupt process array, which contains
processes waiting on interrupts. When an interrupt occurs, the process
is enabled and can then run to handle the interrupt (cf. 4.3.3). For
illustration, figure 5.7 shows 6 interrupt numbers, with three processes
waiting on interrupt number 1, 2 and 5, respectively.

No Process List A notable absence from the data structures de-
scribed above is a global list of process descriptors. In fact, there is no
such list that has to be updated when a process is created or terminates,
which reduces space and time overhead. The described data structures
are the only places where process descriptors are stored by the runtime
system, so if its descriptor is no longer in any of these structures, a pro-
cess is terminated by definition. Of course, all processes in the system
can still be found by scanning the heap for their descriptors; in fact,
this is exactly what a debugging utility that displays a list of active
processes does. This may also find some descriptors of processes that
have already terminated, but have not yet been garbage collected.

5.9.3 Process Creation

The runtime system creates a process with the following procedure. The
body parameter specifies the body of the active object to be executed,
priority is the initial process priority and obj is a reference to the asso-
ciated active object.

PROCEDURE CreateProcess(body: ADDRESS; priority: INTEGER; obj: OBJECT);
VAR p: Process;
BEGIN

NEW(p); NewStack(p, body, obj);
p.preempted := FALSE; p.obj := obj; p.next := NIL;
RegisterFinalizer(p, FinalizeProcess);
Acquire(Active);
IF priority # 0 THEN

p.priority := priority
ELSE (* inherit priority of creator *)

p.priority := running[ProcessorID()].priority
END;
Enter(p);
Release(Active)

5.9. Processes and Synchronization 83

END CreateProcess;

First, the process descriptor and stack are allocated and initialized.
The stack and processor state in the descriptor are initialized so that the
process will start executing at the beginning of the active object body
and will call the Terminate procedure (cf. 5.9.5) when the body exits. For
the process descriptor a finalizer procedure is registered to deallocate
the process stack, which will be called by the garbage collector before
it deallocates the descriptor.

Finally, the Active spin lock is acquired and the process descriptor
is entered into the ready queue to be scheduled on some processor. The
priority of the new process is set to the same as that of its creator,
which has the consequence that the new process will never immediately
preempt its creator due to a higher priority. Once the new process is
scheduled to run, it can change its own priority.

5.9.4 Context Switches

The runtime system uses the SwitchTo procedure to perform a syn-
chronous context switch from the running process to a new process.
The version for the IA-32 architecture is shown below. The current
processor state is stored in the running process descriptor and the new
state is loaded from the new process descriptor.

PROCEDURE SwitchTo(VAR running: Process; new: Process);
BEGIN

running.state.SP := SYSTEM.GETREG(SP);
running.state.FP := SYSTEM.GETREG(FP);
running := new;
IF ~new.preempted THEN (* 1 *)

SYSTEM.PUTREG(SP, new.state.FP);
Release(Active);
SYSTEM.PUTREG(FP, SYSTEM.GETREG(SP))

ELSE (* 2 *)
new.preempted := FALSE;
SYSTEM.PUTREG(SP, new.state.SP);
PushState(new);
Release(Active);
PopState

END
END SwitchTo;

84 Chapter 5. Multiprocessor Runtime Implementation

The caller of this procedure must hold the Active spin lock to syn-
chronize access to the process descriptors and other shared data struc-
tures. Typically the descriptor of the running process has just been
added to a scheduling queue, e.g., the ready queue or an object lock
queue, and the descriptor of the new process has just been removed
from such a queue. The latter descriptor is now stored in the running
array (indirectly via the first parameter).

The next action of the procedure is to save the state of the running
process’s stack by storing the stack pointer and frame pointer in its pro-
cess descriptor. No other registers are saved, as the IA-32 architecture
has few registers and the calling convention does not use callee-saved
registers.

Next there are two cases to consider (numbered 1 and 2 in the com-
ments above):

1. The new process has previously performed a synchronous context
switch by calling SwitchTo. Here we switch to the stack of the
new process and then release the spin lock. It is safe to release
the lock after switching the stack, as this leaves the old stack ready
for reuse by another processor and the new stack in exclusive use
by the current processor. All that remains is to switch the frame
pointer to the new stack and then we can return in the context of
the new process using the normal procedure exit code generated
by the compiler.

2. The new process has previously been preempted asynchronously
by an interrupt. Here also we switch to the new stack, but before
releasing the lock we save the reference to the procedure descriptor
on the new stack using the PushState procedure written in inline
assembler. After the lock is released we should no longer access
the old stack containing the procedure parameters, as it could
already be in use again by another processor. The inline PopState
assembler procedure is used to retrieve the new process descriptor
and load the processor state from it, thereby directly returning to
the context of the new process.

When suspending a process, the following help procedure is used to
switch to a new process.

PROCEDURE SwitchToNew;

5.9. Processes and Synchronization 85

VAR new: Process;
BEGIN

Select(new, MinPriority);
SwitchTo(running[ProcessorID()], new)

END SwitchToNew;

The runtime system arranges that Select will always return at least
one process, by creating a number of ‘idle’ processes that run at the
minimum priority level reserved for them. One such process is created
for every processor in the system.

Timeslicing. Timeslicing (cf. 4.2.3) is performed by calling the fol-
lowing procedure periodically from a timer interrupt handler to auto-
matically preempt a long-running process. The state parameter contains
the processor state that was active when the interrupt occurred.

PROCEDURE Timeslice(VAR state: ProcessorState);
VAR id: INTEGER; new: Process;
BEGIN

Acquire(Active);
id := ProcessorID();
IF running[id].priority # Idle THEN

Select(new, running[id].priority);
IF new # NIL THEN

running[id].preempted := TRUE;
CopyState(state, running[id].state);
Enter(running[id]);
running[id] := new;
IF new.preempted THEN

new.preempted := FALSE;
CopyState(new.state, state)

ELSE
SwitchToState(new, state)

END
END

END;
Release(Active)

END Timeslice;

First, the Active spin lock is acquired and a new process is selected
to run. If no process is available, the current process is left alone and
the procedure returns after releasing the lock.

86 Chapter 5. Multiprocessor Runtime Implementation

If another process is available, the running process is preempted by
copying the processor state at the time of the interrupt to the process’s
descriptor, setting the preempted flag in the descriptor and entering the
descriptor in the ready queue.

Then the descriptor of the new process is stored in the running array
and it is arranged to switch to the new process. If the new process
has previously been preempted, the processor state is copied from the
descriptor to the state parameter, from where it will be restored when
the timer interrupt returns.

Otherwise, SwitchToState is called, which manipulates the state pa-
rameter so that the return will be to the location where the new process
has previously called the SwitchTo procedure to perform its synchronous
context switch.

Finally, the spin lock is released and the procedure returns, restoring
the modified processor state and thereby returning to a different location
from where the interrupt has occurred.

5.9.5 Process Termination

A process terminates itself by calling the following runtime procedure
which simply selects another process to run.

PROCEDURE Terminate;
BEGIN

Acquire(Active);
SwitchToNew

END Terminate;

The process descriptor and stack are deallocated by the garbage col-
lector (using the following procedure) once they are no longer reachable.
Deallocating the stack is delayed like this for two reasons: First, it sim-
plifies Terminate, because it does not need to deallocate the stack it is
running on. Second, the stacks of terminated processes can be examined
by a postmortem debugger.

PROCEDURE FinalizeProcess(p: Process);
BEGIN

DisposeStack(p.stack)
END FinalizeProcess;

5.10. Object Locking 87

5.10 Object Locking

Object locks are used by the runtime system to implement the exclusive
regions of objects. As exclusive regions are executed very often in an
active object-based system, it is important to implement the locking
mechanism efficiently.

5.10.1 Object Header

The runtime system adds a hidden header to every instance of an object
type that has exclusive regions. This header contains fields used to
implement object locking.

ObjectHeader = RECORD
headerLock: BOOLEAN;
lockedBy: Process;
awaitingLock: ProcessQueue;
awaitingCondition: ProcessQueue;
...

END;

The headerLock field is a spin lock to protect the other header fields
from concurrent modification. The lockedBy field points to the descrip-
tor of the process that is currently holding the object lock, and is NIL if
the object lock is free. The awaitingLock queue contains descriptors of
processes waiting on the lock and the awaitingCondition queue contains
the descriptors of processes waiting on a condition to become true in
the scope of the object.

5.10.2 Lock System Call

The compiler inserts a call to the Lock procedure at the start of every
exclusive region. This procedure acquires the object lock if it is free,
and otherwise suspends the running process.

PROCEDURE Lock(obj: OBJECT);
VAR r: Process;
BEGIN

DisablePreemption;
r := running[ProcessorID()];

88 Chapter 5. Multiprocessor Runtime Implementation

AcquireObject(obj.hdr.headerLock);
IF obj.hdr.lockedBy = NIL THEN (* 1 *)

obj.hdr.lockedBy := r;
ReleaseObject(obj.hdr.headerLock);
EnablePreemption

ELSIF obj.hdr.lockedBy = r THEN (* 2 *)
HALT(”recursive lock”)

ELSE (* 3 *)
Acquire(Active);
Put(obj.hdr.awaitingLock, r);
ReleaseObject(obj.hdr.headerLock);
EnablePreemption;
SwitchToNew

END
END Lock;

Since the Lock procedure manipulates the running process’s descrip-
tor (referenced by variable r), it disables preemption during its execution
to ensure that the running process does not change due to an interrupt.

Before modifying any fields of the header, the headerLock spin lock
is acquired. This lock is only held for short times while the runtime
system is modifying the object header and should not be confused with
the actual object lock, which is implemented by the lockedBy field.

There are three cases to consider (numbered 1 to 3 in the comments
above): the object lock is either free, held by the running process or
held by another process.

1. If the lock is free, it is simply given to the running process (by
setting lockedBy), the spin lock is released, preemption is enabled
again, and the procedure exits. Measurements have shown that
this is the common case, so it could be the first target for opti-
mization.

2. If the object lock is held by the running process, this is an attempt
to re-enter the exclusive region, which is not allowed.

3. If the lock is held by another process, the running process has to
be suspended. First the Active spin lock protecting the scheduling
data structures is acquired. Then the process descriptor is added
to the object’s awaitingLock queue, the object header spin lock is

5.10. Object Locking 89

released, preemption is enabled, and a new process is selected and
context-switched to.

5.10.3 Unlock System Call

The compiler inserts a call to the Unlock procedure at the end of every
exclusive region. This procedure releases the object lock and performs
related actions.

PROCEDURE Unlock(obj: OBJECT);
VAR c: Process;
BEGIN

IF obj.hdr.awaitingCondition.head = NIL THEN c := NIL
ELSE c := FindCondition(obj.hdr.awaitingCondition)
END;
DisablePreemption;
AcquireObject(obj.hdr.headerLock);
IF c = NIL THEN

Get(obj.hdr.awaitingLock, c);
IF c = NIL THEN (* 1 *)

obj.hdr.lockedBy := NIL
ELSE (* 2 *)

obj.hdr.lockedBy := c
END

ELSE (* 3 *)
obj.hdr.lockedBy := c

END;
ReleaseObject(obj.hdr.headerLock);
IF c # NIL THEN Acquire(Active); Enter(c); Release(Active) END;
EnablePreemption

END Unlock;

The first action performed by the Unlock procedure is to check if any
processes are waiting for conditions in the context of the current object.
This is done because the running process is exiting an exclusive region
and has possibly modified the state of the current object and caused
some of the conditions being waited on to become true. If processes
are waiting, FindCondition (cf. 5.11) is called to evaluate the waiting
conditions. It returns the process descriptor of a process that can now
continue to run because its condition has become true. If no such process

90 Chapter 5. Multiprocessor Runtime Implementation

is found, it returns NIL. At this stage the object is still locked, so the
conditions are conceptually evaluated inside the exclusive region.

After the conditions have been checked, the lock can be released. As
in the case of Lock, preemption is first disabled and the object header
spin lock is acquired.

There are now three cases to consider (numbered 1 to 3 in the com-
ments above):

1. If no condition was found true and no process is waiting for the
lock, the lock can simply be released by setting lockedBy to NIL.

2. If no condition was found true, but there are processes waiting for
the lock that is being released, the lock is granted to the process
that has been waiting the longest (the first in the lock queue). As
the object header spin lock is held at this stage, the lock is trans-
ferred atomically to the waiting process. There is no possibility
for another process to execute the Lock procedure on another pro-
cessor and ‘jump the queue’.

3. If a condition was found true, the lock is granted to the process
that had been waiting on it. As above, the lock is transferred
atomically. There is no possibility for another process to enter the
exclusive region in the meantime and falsify the condition again.

Next, the header spin lock is released. If a suspended process needs
to be re-enabled because it was waiting on the lock or on a condition
that is now true, the Active spin lock is acquired shortly and the process
is entered into the ready queue. Then preemption is enabled again and
the procedure exits.

5.11 Object Condition Management

The synchronization of active objects is based on the await primitive
(cf. 4.2.3), which allows the programmer to specify arbitrary boolean
synchronization conditions. The compiler and runtime system cooper-
ate to evaluate the conditions and suspend and re-enable processes as
necessary.

5.11. Object Condition Management 91

5.11.1 Await Statement

In Active Oberon, an AWAIT(b) statement, where b is an arbitrary
boolean expression, is compiled into a helper procedure and an Await
system call.

The helper procedure is equivalent to the following procedure, where
the parameter specifies the frame pointer of the procedure containing the
await statement and all references to local variables and object fields in
the expression b are addressed relative to this parameter. A new name is
generated for every helper procedure compiled and it can only be called
by the runtime system.

PROCEDURE $Condition(fp: ADDRESS): BOOLEAN;
BEGIN

RETURN ”boolean expression from AWAIT statement”
END $Condition;

At the location of the await statement, the equivalent of the fol-
lowing code is compiled to perform the Await system call. The helper
procedure ($Condition) and the current frame pointer (FP) are passed
to the runtime system so that it can later re-evaluate the condition [31].
The self reference to the associated object instance is also passed as
parameter.

IF NOT $Condition(FP) THEN
Await($Condition, FP, SELF)

END

The generation of the inline IF statement by the compiler is an op-
timization. Measurements made while the system was hosting its own
development on a dual-processor machine have shown that this avoids
on average 70-85% of Await system calls. As a further optimization,
the compiler could inline the condition in the IF statement, saving a
procedure call at the cost of slightly more object code.

5.11.2 Await System Call

When the Await procedure is called, the IF statement generated by the
compiler has already found the condition false, so Await has to release
the object lock, suspend the running process and set up the runtime

92 Chapter 5. Multiprocessor Runtime Implementation

data structures so that the condition can be re-evaluated at a later time.
Process descriptors are added to the condition queues of objects by the
Await procedure and removed by the Unlock procedure. The Condition
type matches the signature of the condition procedure generated by the
compiler.

TYPE Condition = PROCEDURE (fp: ADDRESS): BOOLEAN;

PROCEDURE Await(condition: Condition; fp: ADDRESS; obj: OBJECT);
VAR r, t: Process;
BEGIN

DisablePreemption;
AcquireObject(obj.hdr.headerLock);
Get(obj.hdr.awaitingLock, t);
IF t = NIL THEN

obj.hdr.lockedBy := NIL
ELSE

obj.hdr.lockedBy := t
END;
Acquire(Active);
IF t # NIL THEN Enter(t) END;
r := running[ProcessorID()];
r.condition := condition; r.conditionFP := fp;
Put(obj.hdr.awaitingCondition, r);
ReleaseObject(obj.hdr.headerLock);
EnablePreemption;
SwitchToNew

END Await;

At the start of the Await procedure the object lock is released, so up
to the point where the Active spin lock is acquired the implementation
is similar to Unlock.

To suspend the running process, its descriptor is added to the await-
ingCondition queue of the object. The condition procedure and frame
pointer are saved in the process descriptor for later re-evaluation of
the condition. Then the object header lock is released, preemption is
enabled and a new process is switched to, as was done at the end of the
Lock system call.

5.11. Object Condition Management 93

5.11.3 Evaluating Conditions

When the runtime system needs to evaluate conditions it calls the fol-
lowing procedure, which cycles through the descriptors in the condition
queue and calls their condition procedures until it finds the first true
condition. The relevant descriptor is then removed from the queue. If
no true condition is found, the queue is left in the same state as it was
before.

PROCEDURE FindCondition(VAR q: ProcessQueue): Process;
VAR f, c: Process;
BEGIN (* ~Empty(q) *)

Get(q, f);
IF f.condition(f.conditionFP) THEN

RETURN f
END;
Put(q, f);
WHILE q.head # f DO

Get(q, c);
IF c.condition(c.conditionFP) THEN

RETURN c
END;
Put(q, c)

END;
RETURN NIL

END FindCondition;

To evaluate a condition, a normal procedure call is made through
procedure variable condition stored in the process descriptor. As the
condition procedure is compiled as a normal self-contained procedure,
no full context switch has to be made. The frame pointer passed to
the procedure gives it access to the local variables of the procedure
containing the await statement and the fields of the relevant object. In
a sense this is a lightweight synchronous context switch to the process
that executed the await statement.

Measurements were made while the system was hosting its own de-
velopment on a dual-processor machine to determine how often the first
condition in the queue was immediately found true. When averaged
over an extended period of editing and compiling, the first condition
was found true about 90% of the times FindCondition was called. When
the measurements were restricted to compiling only, an I/O-intensive

94 Chapter 5. Multiprocessor Runtime Implementation

activity implying many process interactions, the average dropped to
just over 20%.

Interestingly, in all measured cases the average queue length when
FindCondition was called was 1.00, which implies that if there are con-
ditions to check when an exclusive region is exited, on average only one
condition has to be checked.

To put the measurements in perspective, the condition queue was
found empty in more than 98% of the cases where a process left an
exclusive region. This means the FindCondition procedure was called in
less than 2% of these cases, making the overhead of condition evaluation
negligible in comparison with the locking overhead.

5.12 Handling Multiple Processors

The Processors module is responsible for multiprocessor support, viz.,
booting additional processors, interprocessor communication and local
timers.

Booting other processors. At startup, the hardware elects a boot
processor that starts running the firmware boot loader [51]. After the
kernel has been loaded, this processor executes the module initialization
code bottom-up until it gets to the Processors module, where the other
processors are recognized and started.

The boot processor scans the configuration information supplied by
firmware to find out at what address the APIC (cf. 5.1) is located and
how many processors are available, as well as what their physical ID
numbers are. Then it executes the following multiprocessor booting
algorithm. For each processor to boot:

1. Set up a boot page in low memory with a simple 16-bit boot
loader.

2. Use the APIC to send an init and startup interprocessor message
to the specified processor, to initialize it and cause it to start
executing at the boot page.

3. Wait with a timeout for the new processor to set a flag in shared
memory showing that it has booted successfully.

5.12. Handling Multiple Processors 95

When all processors have been booted, the boot processor enables
global operations that influence all processors, e.g., garbage collection
and TLB synchronization. Then it sets the flag signalling all other
processors to start scheduling processes.

Each processor that boots up, executes the following:

1. The processor starts executing the boot loader on the boot page
in 16-bit x86 mode.

2. The boot loader sets up a simple 32-bit execution environment.

3. The control registers, memory management, interrupt handling
and APIC are initialized by Oberon code.

4. The processor adds its ID to the set of booted processors and sets
the flag showing that it has booted successfully.

5. It waits on a shared memory flag signalling that all processors
have been booted.

6. Finally, it calls the process scheduler to start executing processes
(or an idle process if no others are available). The processor is now
fully booted and taking part in normal active object scheduling.

Broadcasting messages. The Processors module provides a facility
for asynchronously broadcasting an arbitrary message to all processors.
This is implemented using an interprocessor interrupt and a message
record in shared memory. All processors (optionally the sending pro-
cessor also) are interrupted by the broadcast and act on the message
before continuing where they were interrupted. This facility is used for:

TLB cache flushing When paging structures are changed, e.g., when
a process stack is deallocated, the TLB cache on every processor
has to be flushed, otherwise a processor might use stale informa-
tion from its cache and corrupt memory.

Garbage collection At some stages during garbage collection, it is
necessary to halt all processors except the one executing the collec-
tor. This is done by broadcasting a message to all processors. One
processor reacts to the message by executing part of the garbage
collection algorithm, while the others wait on a shared memory
flag until the working processor signals that it has finished.

96 Chapter 5. Multiprocessor Runtime Implementation

Memory cache control Each processor has its own caches and cache
control registers. When a device driver needs to change caching
behaviour, e.g., to enable write buffering on a frame buffer, this is
done on all processors by broadcasting the relevant message.

The Broadcast procedure defined below is exported for use in device
drivers. Its handler parameter specifies a procedure that will be called
individually by all processors to process the message. The Message type
can be extended to send arbitrary information with the broadcast. The
constants are used as flags for the procedure. The Self flag specifies
whether the calling processor should itself receive the message. The
two barrier flags specify whether the processors should synchronize at
the start and end of the message handling procedure, respectively.

CONST
Self = 0; FrontBarrier = 1; BackBarrier = 2; (* flags for Broadcast. *)

TYPE
Message = POINTER TO RECORD END;
Handler = PROCEDURE (msg: Message; ...);

PROCEDURE Broadcast(h: Handler; msg: Message; flags: SET);

Local timers. The APIC on each processor has a timer which can be
programmed to interrupt the processor periodically. On multiprocessor
machines, this timer is programmed to perform timeslicing (cf. 5.9.4).
The timer runs at the bus clock rate, therefore the bus clock speed has to
be measured first, using an external timer device with a known frequency
as reference. If the processor does not have an APIC (e.g., an older
singleprocessor PC), the external timer device is used for timeslicing
instead.

5.13 Kernel Services

Kernel module. The Kernel module is the main module of the Aos
kernel. It provides facilities that require the support of all the other
kernel modules. Unlike lower-level kernel modules, it does not export
any implementation details and its interface can therefore be considered
stable and portable, even when the kernel implementation changes. The

5.13. Kernel Services 97

interface consists of three sections: fine-grained timers, primitive atomic
operations and finalized collections.

Fine-grained timers. The fine-grained timer facility is provided for
accurate measurement of time periods. It is based on a counter that is
periodically incremented at a fixed frequency. The GetTimer procedure
below returns the current value of the counter. The timer frequency
is a characteristic of the underlying implementation and is therefore
exported as a variable, although its value remains constant.

VAR second: LONGINT; (* timer counts per second *)

PROCEDURE GetTimer(): LONGINT;

For more convenient access to the timer, some auxiliary procedures
are provided to manipulate an abstract timer. The SetTimer procedure
sets a timer to expire in the specified time, Expired tests whether a timer
has expired, Elapsed returns the elapsed time and Left returns the time
left before expiry.

TYPE
Timer = RECORD END; (* opaque *)

PROCEDURE SetTimer (VAR t: Timer; ms: LONGINT);
PROCEDURE Expired (VAR t: Timer): BOOLEAN;
PROCEDURE Elapsed (VAR t: Timer): LONGINT;
PROCEDURE Left (VAR t: Timer): LONGINT;

Primitive atomic operations. In Active Oberon, any operation can
be made atomic by wrapping it in an active object with exclusive meth-
ods, but for efficiency the kernel also exports some primitive atomic
operations on simple data types:

PROCEDURE Inc(VAR x: LONGINT); (* x’ := x + 1 *)
PROCEDURE Dec(VAR x: LONGINT); (* x’ := x - 1 *)
PROCEDURE Add(VAR x: LONGINT; y: LONGINT); (* x’ := x + y *)
PROCEDURE TestSet(VAR x: BOOLEAN): BOOLEAN; (* x’ := true; return x *)

98 Chapter 5. Multiprocessor Runtime Implementation

Finalized collections. The finalized collections mentioned in sec-
tion 5.6 are provided with the interface shown below. The Add method
adds an arbitrary object reference to a collection. If the fin procedure
parameter is non-NIL, the specified procedure will be called before the
object is deallocated. The Remove method removes an object from the
collection. The Enumerate method enumerates the collection contents
by calling the specified procedure once for each object currently in the
collection (as long as the cont parameter is not set to FALSE).

Objects are automatically removed from the collection when they are
no longer reachable (just before the optional finalization procedure is
called). The finalization procedures are called from a separate process,
so that they can acquire arbitrary locks.

TYPE
Finalizer = PROCEDURE (obj: PTR);
Enumerator = PROCEDURE (obj: PTR; VAR cont: BOOLEAN);
FinalizedCollection = OBJECT

PROCEDURE Add(obj: PTR; fin: Finalizer);
PROCEDURE Remove(obj: PTR);
PROCEDURE Enumerate(enum: Enumerator);

END;

Chapter 6

System Services

This chapter describes the system services layer of the active object
system (the middle layer in figure 3.1). The layer contains shared system
services, e.g., the communication and file subsystems and their device
drivers. Its modules can be classified into three kinds (cf. 3.6):

Service modules These modules provide standard interfaces for sys-
tem services. They typically declare abstract objects that are im-
plemented in plugin modules and used in client modules. A client
locates a service by importing the service module and querying
the registry exported there.

Plugin modules The plugin modules implement the interfaces defined
by service modules, normally by extending the abstract objects
declared there. Specific instances of the service objects are entered
in the registry exported by the service module.

Helper modules These modules provide auxiliary functions, e.g., con-
figuration and device driver support.

6.1 Files

Files are used for external storage. A file is a sequence of bytes normally
accessed sequentially, but can also be accessed randomly. It can be
named or anonymous. Files are normally used for permanent storage,
but can also be used for temporary external storage (usually anonymous
files).

99

100 Chapter 6. System Services

FATFS

ISOFS

NatFS

UsbStorage

Adaptec7

SCSI

ATA

Disks

FS

DiskFS

DiskVolumes

RAMVolumes

Caches

Figure 6.1: File subsystem structure.

6.1.1 File Systems

The Ceres Oberon system provided a single file system module with two
compatible implementations. The first stored files permanently on disk,
and the second stored files semi-permanently (until the next power-off)
in RAM. In Native Oberon, there was a need to allow many kinds of file
system for interoperability with other operating systems installed on the
same machine, to access several kinds of removable media with their own
file system formats, and to access file systems located on remote servers.
The installable file system framework developed for Native Oberon was
adapted and refined for Aos. An overview of the modules is shown in
figure 6.1.

FS module. The FS (short for file system) module defines an abstract
file system object that can be extended to define different kinds of file
systems. An instance of such an object is responsible for managing each

6.1. Files 101

file system. As in the Disks module, concrete file system objects can be
implemented in other modules that extend the types of the FS module.

The module defines a system-wide file name space. A file name con-
sists of two parts: a file system specifier and a local file name, separated
by a colon. The specifier is a prefix that uniquely identifies a specific file
system currently accessible on the system. The local file name identifies
a file uniquely in the specific file system (which might use a hierarchical
naming scheme).

The data stored in a file system exists statically on disk or some other
storage device. To make the data accessible to programs, a file system
object has to be instantiated and registered in the file name space of the
FS module. This is done automatically by the system (e.g., for the boot
file system), or manually by a user with a file system command tool or
configuration file. The process is called mounting as the file system is
connected into the name space at this point. A unique prefix can be
freely assigned to the file system at this time.

The FS module also defines an abstract volume object, which can
be used as an intermediate object between a file system implementation
and the underlying block device (a volume can be seen as a kind of
virtual disk device). In this way, different file systems can be mapped
to different partitions on the same disk, or a file system can be attached
to a virtual disk in RAM.

Aos disk file system. The DiskFS module implements a concrete
file system based on an abstract volume, of which two concrete imple-
mentations exist: module DiskVolumes implements a volume based on
a disk device and RAMVolumes implements a virtual RAM volume. By
combining a file system object with either of the two kinds of volume
object, a file system on a real disk or a virtual disk can be accessed.

The implementation of the file system is based on that of Native
Oberon, but the maximum file and volume size have been increased by
increasing the volume block size and by using a double indirection in the
file system structures. The disk volume object uses the Caches module
to providing write-through and write-back caching, which significantly
improves file system performance.

Caches module. The Caches module defines a generic cache object
for block devices. A cache manages a fixed number of buffers that can

102 Chapter 6. System Services

contain data read from and written to different disks with the same
block size. A write-through or write-back cache policy can be used.
Clients of a cache call the Acquire and Release methods to obtain and
return buffers, respectively. Clients should modify only the data field of
a buffer — the rest of the buffer is under control of the cache object.
The Synchronize method is used to write all modified buffers to disk.

TYPE
Buffer = POINTER TO RECORD

data: DataBlock; dev: Disks.Disk; block: LONGINT
END;
Cache = OBJECT

VAR blockSize: LONGINT;
PROCEDURE Acquire(dev: Disks.Disk; block: LONGINT;

VAR buf: Buffer; VAR valid: BOOLEAN);
PROCEDURE Release(buf: Buffer; modified, written: BOOLEAN);
PROCEDURE Synchronize;
PROCEDURE &Init(blockSize, cacheSize: LONGINT);

END Cache;

The Acquire method acquires a buffer for the disk block specified by
the dev and block parameters. If the buffer is already in the cache, it
is locked and returned in the buf parameter with the valid parameter
true, to indicate to the client that no disk read needs to be made (it is
assumed that all clients access the disk through the cache). If the buffer
is not in the cache, the cache returns the least-recently used unlocked
non-dirty buffer for reuse. If all buffers are currently in use, it waits for a
buffer to become available (it is assumed that all buffers are eventually
released). The returned buffer is locked and returned with the valid
parameter false (as it does not contain the desired disk block yet). The
caller is responsible for reading the required block into the buffer.

The Release method releases a buffer to the cache. The modified
parameter specifies whether the buffer has been modified by the caller
since it was acquired and the written parameter specifies whether the
caller has written the buffer to disk.

The Synchronize method writes all currently dirty buffers back to
disk. This method can be called at any time to synchronize the buffer
contents with the disk. The cache itself calls the method when non-dirty
buffers become scarce.

6.1. Files 103

The implementation of the cache object contains examples of non-
trivial await statements. In one case the Acquire method waits for the
state of a buffer object to change. Although the condition being waited
on is apparently not local to the cache object (it depends on the state
of a buffer, not the cache or method), it can only be established by one
of the cache object methods modifying the internal state of the buffer.
The state of the buffers can be seen as an extension of the cache object
state, as it is only modified under control of the cache object in an
exclusive region of the cache object.

In another case, the Acquire method has to wait for a non-dirty buffer
to appear in the least-recently-used list. As it would not be efficient to
traverse the whole list every time the condition is checked, the cache
maintains a counter of the number of dirty buffers in the list. The
counter invariant is established every time the list is modified.

The cache object manages disk blocks declared by a block device
object, described below.

6.1.2 Disk Drivers

Disks module. The Disks module primarily serves to define the Disk
object, which is an abstraction for general block devices. This object
has some abstract methods that are extended and overwritten by device
driver modules for hard disks, diskettes and other random-access block
devices to implement concrete device driver objects. One such object
is instantiated for each block device used in the system. A module
that needs to access such a block device calls the methods of the spe-
cific instance directly. In this way the Disks module defines an abstract
interface for block devices.

When designing the abstract interface, our main concern was to de-
fine a simple abstraction that is general, extensible, and does not impede
performance. The essence of the interface is shown in the definition of
the Disk object below. A disk is modeled as an array of equally-sized
data blocks numbered sequentially. The two most important operations
on it are modelled as methods. The Transfer method transfers (reads
or writes) a contiguous collection of disk blocks between the disk and
memory. The GetSize method returns the size (number of blocks) of the
media currently in the drive. The block size is assumed to be fixed for a
device, even if the media can be changed. It is exported as the blockSize

104 Chapter 6. System Services

field of the object.

CONST Read = 0; Write = 1; (* values for op parameter *)
TYPE

Disk = OBJECT (Plugins.Plugin)
VAR blockSize: LONGINT; ...
PROCEDURE Transfer (op, block, num, ofs: LONGINT;

VAR data: ARRAY OF CHAR; VAR res: LONGINT);
PROCEDURE GetSize (VAR size, res: LONGINT);

END Disk;

The Transfer method is synchronous (blocking), which means that it
does not return until the transfer is complete, or an error has occurred
(indicated by a non-zero res parameter). If parallel requests to a disk
need to be made for performance reasons, this can be done by calling the
method from different active objects. In this way all asynchronicity in
the device interface is hidden in the device driver implementation, and
not exported to higher levels with an asynchronous interface utilizing,
e.g., callbacks or signals.

The Disk object is a plugin (cf. 3.6) and the Disks module provides
a registry for disk objects. A module that needs to access a disk device
queries the registry to find the required device by name. A disk device
driver module instantiates a disk object for each device it manages and
registers each instance here with a unique name.

VAR registry: Plugins.Registry;

The minimal interface presented above is sufficient for most current
uses of block devices in the system. However, it is not possible to foresee
all possible cases and define them in a standard interface. Therefore a
generic message handler method is provided for message-based exten-
sion of the interface. The Handle method accepts a generic Message
record, which can be extended in other modules when necessary. Han-
dling of a message is optional; if it can not handled a non-zero result is
returned. A few pre-defined messages (EjectMsg, GetGeometryMsg, etc.)
are provided for common operations that are nonetheless not available
on all devices.

TYPE
Message = RECORD END;

6.2. Communication 105

Disk = OBJECT (Plugins.Plugin) ...
PROCEDURE Handle (VAR msg: Message; VAR res: LONGINT); ...

END Disk;
EjectMsg = RECORD (Message) END;
GetGeometryMsg = RECORD (Message)

cyls, hds, spt: LONGINT
END; ...

In addition to the functions described here, the Disks module also de-
fines some auxiliary procedures for reading disk partition tables, which
are used to partition a disk into different sections for different operating
systems or file systems.

Disk device drivers. A disk device driver module extends the ab-
stract disk object defined by the Disks module and implements at least
the Transfer and GetSize methods defined there. When the module is
loaded, it creates an instance of such an object for every compatible
disk in the system, and registers the object with the plugin registry in
the Disks module.

An example of such a driver module is the ATADisks module. It im-
plements a driver for ATA (i.e., IDE) standard disks [8] connected to an
ATA bus controller. The motherboard chipsets of most IA-32 machines
have such integrated controllers, e.g., the Intel 82371SB [52]. Most of
these controllers are backward-compatible with older models, but for the
best performance, a driver has to be customized for a specific chipset.
A possible approach is to make the concrete drivers extensible [75].

It is relatively simple to port Native Oberon disk drivers to Aos,
as they use a similar interface to an abstract disk object. The main
concerns when porting are protecting the objects using exclusive regions,
adapting the interrupt handling (cf. 4.3.3) and adapting direct memory
access to the Aos memory model (cf. 4.3.1). In this way Native Oberon
drivers for Adaptec SCSI bus controllers [4] and USB storage devices [87,
123] have been ported by users of Aos.

6.2 Communication

The communication subsystem is an important component of the sys-
tem, as it allows the system to access and provide services in the in-
ternet. It consists of three parts: the internet protocols, TCP agent

106 Chapter 6. System Services

services and link layer device drivers. An overview of the modules is
shown in figure 6.2.

6.2.1 Internet Protocols

The basic internet protocols [54] were implemented for Aos, to allow it
to support internet applications. The protocols were implemented in a
modular fashion, with one module for every major protocol in the suite.

IP module. The IP module implements the closely-related internet
protocol (IP) [92], internet control message protocol (ICMP) [91] and
address resolution protocol (ARP) [88], which provide basic internet ad-
dressing and connectivity. The implementation is based on the abstract
link device defined in the Net module, which can be instantiated with
an ethernet driver for LAN connectivity or a point-to-point protocol
(PPP) [113] implementation for point-to-point connectivity.

When IP datagrams are received, they are passed to higher-level
modules for handling using the Input upcall procedure defined below.
The Output procedure sends the specified IP datagram out on the spec-
ified link device.

TYPE
Input = PROCEDURE (dev: Net.LinkDevice; VAR iphdr: Net.RecvHdr;

hlen, dlen: LONGINT);
PROCEDURE Output(dev: Net.LinkDevice; VAR hdr: Net.RecvHdr;

VAR data: ARRAY OF CHAR; hlen, dofs, dlen: LONGINT);

The ARP protocol is responsible for mapping IP addresses to link
layer addresses on a LAN. Its main data structure is a table containing
the current mappings. This is implemented as an object with exclusive
methods for entering information in the table and a non-exclusive lookup
method allowing concurrent lookup operations. The table also stores IP
packets to be sent to addresses that are still being resolved. As soon as
the relevant ARP reply is received, the packets are sent.

UDP module. The UDP module implements the user datagram pro-
tocol (UDP) [90], which provides simple connectionless datagram facili-
ties to higher-level network protocols and applications. The implemen-
tation is based on the facilities provided by the IP module.

6.2. Communication 107

DHCP

UDP

DNS

Net

RTL8139

3Com5x9

3Com90x

TCP

IP

TCPServices

Figure 6.2: Communication subsystem structure.

108 Chapter 6. System Services

The Socket object defined below functions as a UDP communication
endpoint. A local UDP port number is associated with the object in
the Open method. Datagrams that arrive for this port are buffered
internally in the object until they are read with the Receive method. If
called when no data is available, this method waits until data becomes
available, or until the specified timeout expires. It returns the data
of the datagram and the foreign IP address and port number. The
Send method is used to send a datagram to the specified foreign IP
address and port number. The Close method is used to stop buffering
of incoming datagrams and to make the local port number available for
re-use.

TYPE
Socket = OBJECT

PROCEDURE &Open(lport: LONGINT; VAR res: LONGINT);
PROCEDURE Send(fip: IP.Adr; fport: LONGINT;

VAR data: ARRAY OF CHAR; ofs, len: LONGINT; VAR res: LONGINT);
PROCEDURE Receive(VAR data: ARRAY OF CHAR; ofs, size, ms: LONGINT;

VAR fip: IP.Adr; VAR fport, len, res: LONGINT);
PROCEDURE Close;

END Socket;

DNS module. The DNS module implements a domain name service
(DNS) [67, 68] client, which is based on UDP and mainly used to trans-
late domain names (e.g., www.oberon.ethz.ch) into IP addresses (e.g.,
129.132.178.197).

The module has a very simple interface. The HostByName procedure
translates an internet host’s domain name into an IP address. The Host-
ByNumber procedure performs the reverse translation.

PROCEDURE HostByName(hostname: ARRAY OF CHAR;
VAR adr: IP.Adr; VAR res: LONGINT);

PROCEDURE HostByNumber(adr: IP.Adr;
VAR hostname: ARRAY OF CHAR; VAR res: LONGINT);

DHCP module. The DHCP module implements a dynamic host con-
figuration protocol (DHCP) [32] client, which is used to initialize the
TCP/IP subsystem without requiring manual intervention. The proto-
col is based on UDP and works by contacting a DHCP server on the

6.2. Communication 109

LAN during initialization. The server returns internet protocol parame-
ters like the IP address, netmask, DNS server address, etc. IP addresses
are assigned based on a static configuration for the host at the server,
or are dynamically assigned by the server from a fixed pool of addresses.
Automatic network configuration makes it possible to boot Aos from a
CD or diskette and immediately use it to access the internet, without
having to install it on the hard disk of a computer.

TCP module. The TCP module implements the transmission control
protocol (TCP) [93], which is a connection-based protocol providing a
bidirectional reliable byte stream connection between two internet hosts.
The TCP protocol is significantly more complex than the other protocols
presented so far. The Aos implementation is based on the ubiquitous
BSD implementation of TCP [65, 135], but has been adapted to be more
object-oriented and concurrent.

The Connection object defined below functions as a TCP communi-
cation endpoint.

TYPE
Connection = OBJECT

PROCEDURE Open(lport: LONGINT; fip: IP.Adr; fport: LONGINT;
VAR res: LONGINT);

PROCEDURE Send(VAR data: ARRAY OF CHAR; ofs, len: LONGINT;
VAR res: LONGINT);

PROCEDURE Receive(VAR data: ARRAY OF CHAR; ofs, size, min: LONGINT;
VAR len, res: LONGINT);

PROCEDURE AwaitState(good, bad: SET; ms: LONGINT; VAR res: LONGINT);
PROCEDURE Close;
PROCEDURE Accept (VAR client: Connection; VAR res: LONGINT); ...

END Connection;

The Open method is used to open an active or passive connection,
where an active connection is used by a client to contact a server, and
a passive connection is used by a server to wait for client connections.
The fip (foreign IP address) parameter is used to distinguish between
the two cases, with a zero address specifying a passive connection. The
lport parameter specifies the local TCP port number. If it is zero, a free
port is assigned automatically. A connection is closed with the Close
method, which performs a TCP half-close operation.

110 Chapter 6. System Services

Opening and closing are asynchronous operations. The methods ini-
tiate the operation and return immediately, while the operation is per-
formed in the background by an active object. The AwaitState method
is provided to synchronize with the TCP connection state changes, e.g.,
to wait until a connection is established.

For data transfer, the Send and Receive methods are provided.
When a client connection request arrives on a passive connection, it

is queued internally until it is accepted by the server calling the Accept
method, which returns a new connection object for communication be-
tween the client and server. In the mean time, the passive connection
can accept new client connection requests.

The connection object can be shared between multiple processes.
This is typically used in servers to allow different agent processes to
accept client connections on a shared passive connection. When a client
request arrives, one of the agents will accept it and start communicating
with the client. Meanwhile, the other agents continue waiting for client
requests (cf. 6.2.2).

TCP implementation structure. Figure 6.3 shows the objects that
take part in the Aos TCP implementation. The TCP module defines four
types of object: connection, connection pool, timer and sequence num-
ber source (shaded in the figure). Two other types of object from other
modules take part (unshaded in the figure): the link device (cf. 6.2.3)
and system timer. One connection object is instantiated for every con-
nection, a link device object is instantiated for every configured link
device, and one instance of each of the other objects is shared between
all the connections. The connection pool object stores all connections
that currently exist, the sequence number source object generates ini-
tial send sequence numbers for connections and the timer object handles
TCP timers.

The connection object encapsulates the state of a TCP connection
and forms the core of the implementation. It reacts on messages from
different sources, implemented as exclusive methods. Most of the meth-
ods are exported from the module and form the programming interface
described above. The other methods are used internally for communi-
cation with the other objects taking part in the implementation.

6.2. Communication 111

1

Connection

Sequence
Number
Source

Timer

Connection
Pool

System
Timer

Link
Device

3

2

4

5

6 8

9 10

7

Figure 6.3: TCP object call graph.

112 Chapter 6. System Services

Deadlock avoidance. In an environment where exclusive methods of
one object calls exclusive methods of other objects, there is the danger
of hold-and-wait deadlock. We now prove informally that this is not the
case in the TCP implementation.

The arrows in figure 6.3 indicate which objects call methods of which
other objects from their own methods. All exclusive method calls are
shown, and no object calls its own exclusive methods. The method calls
are:

1. The exported methods of the connection object, Open, Send, Re-
ceive, AwaitState, Close and Accept, can be called from outside the
module, but only from higher-level modules, which are not called
by the TCP module.

2. Likewise, the connection pool object exports Enumerate.

3. A connection object calls the SetLocalAddr, SetForeignAddr, Set-
Addrs and Remote methods of the connection pool object.

4. A link device object calls the Input method of a connection object
when a packet arrives for the connection.

5. Conversely, a connection object calls the Send method of a link
device object when it sends a packet.

6. A connection object calls the Get method of the sequence number
source object when it is opened.

7. The timer object calls the DelayedAck and SlowTimer methods of
a connection when the relevant timers expire.

8. The system timer object calls the HandleTimeout method of a
connection when a timeout occurs.

9. The timer object calls the Update method of the sequence number
source object periodically.

10. The system timer object calls the HandleTimeout method of the
timer periodically.

The exclusive method call graph is acyclic by design (with one ex-
ception), and this can be verified informally by inspection of the source

6.2. Communication 113

code. The exception is that connection and link device objects can call
each other (cases 4 and 5 above). Therefore, this is the only case where
a deadlock can possibly occur, as no cyclic waits are possible otherwise.

As an example of how deadlock can occur, consider the case where
an acknowledgement packet arrives for a specific connection. The link
device object calls the Input method of the connection (from an exclusive
method) and the connection processes the packet, adjusts the send win-
dow and if buffered data is available, calls the Send method of the same
link device to send out a data packet. If this method is also exclusive,
it will result in deadlock.

The problem is solved in different ways in different link device drivers
(cf. 6.2.3). For example, the 3C90X driver splits up the link device
object into two objects internally and the 3C5X9 driver uses explicit
locking and queues packets if the object is already locked.

Await statement examples. The connection object implementation
contains some examples of non-trivial await statements. For example,
the following condition in Send waits until the connection is established
and the send window has space for a data segment, or until the connec-
tion is terminated (whichever comes first):

AWAIT(((state IN {Established, CloseWait}) & (sndspace >= len0)) OR
~(state IN {SynSent..CloseWait}))

With the following statement the Receive method waits until data is
available, or the connection is terminated:

AWAIT((rcvhead.len # 0) OR ~(state IN {SynSent..Established, FinWait1, FinWait2}))

The following statement in AwaitState is used to wait for either a
good or bad TCP state to occur, or a timeout. The former condition
is typically signalled by packet processing and the latter by the timer
object:

AWAIT((state IN (good+bad)) OR (Timeout IN flags))

The Accept method consists mainly of the following statement, which
waits until the passive connection is closed, or a new client connection
request has been queued by packet processing.

AWAIT((state # Listen) OR (acceptNext # NIL))

114 Chapter 6. System Services

6.2.2 TCP Agent Services

The TCPServices module (definition below) facilitates the implementa-
tion of active object-based TCP server applications. The Service object
defined in the module automatically handles connection acceptance and
creates an active object (agent) to service each incoming client connec-
tion. The active object receives a handle on the connection with which
it can receive client requests and send server responses.

TYPE
NewAgent = PROCEDURE (c: TCP.Connection; s: Service): Agent;
Service = OBJECT

PROCEDURE &Start(port: LONGINT; new: NewAgent; VAR res: LONGINT);
END Service;
Agent = OBJECT

VAR client: TCP.Connection;
PROCEDURE &Start(c: TCP.Connection; s: Service);
PROCEDURE Terminate;

END Agent;
PROCEDURE OpenService(VAR service: Service; port: LONGINT; new: NewAgent);
PROCEDURE CloseService(VAR service: Service);

The Agent object is an abstract agent object, which is extended
with an active body by a module implementing an actual agent. The
exported client field is a handle on the TCP connection to the client.
When the agent has finished processing client requests, it calls the Ter-
minate method to signal to its service object that it is terminating.

A new service is instantiated with the OpenService procedure, where
the port parameter specifies the TCP port on which the server should
listen for client connections. The new procedure parameter specifies
a generator procedure for agents that will provide the actual service.
Every time a client connection arrives, the service object calls this pro-
cedure to generate a new agent to serve the client.

Example service: Echo. The example agent below implements the
TCP echo service [89]. It receives all input from the client connection
into a buffer and sends it back unchanged to the client. This contin-
ues until the client closes the connection (res 6= 0) and then the agent
terminates.

6.2. Communication 115

TYPE
EchoAgent = OBJECT (TCPServices.Agent)

VAR len, res: LONGINT; buf: ARRAY 4096 OF CHAR;
BEGIN {ACTIVE}

LOOP
client.Receive(buf, 0, LEN(buf), 1, len, res);
IF res # 0 THEN EXIT END;
client.Send(buf, 0, len, res);
IF res # 0 THEN EXIT END

END;
Terminate

END EchoAgent;

The following procedure is used as a generator for echo agents. It
simply allocates the relevant agent object, passing the supplied TCP
connection as parameter to its initializer, and then returns the new
object.

PROCEDURE NewEchoAgent(c: TCP.Connection;
s: TCPServices.Service): TCPServices.Agent;

VAR a: EchoAgent;
BEGIN

NEW(a, c, s); RETURN a
END NewEchoAgent;

To complete the example, the initialization of the service is shown
below. The second parameter of the OpenService call specifies the TCP
port number (the standard echo port is 7), and the third parameter
passes the echo agent generator to the echo service object.

VAR echo: TCPServices.Service;
BEGIN

TCPServices.OpenService(echo, 7, NewEchoAgent)
END

Example service: Web server. The following example outlines a
simple HTTP 1.0 [11] web server agent. It shows how an agent can
assign an input and output buffer on the client connection, so that it can
efficiently parse client data character-by-character (in the ParseRequest
procedure) and buffer the response sent to the client.

116 Chapter 6. System Services

TYPE
HTTPAgent = OBJECT (TCPServices.Agent)

VAR ...
BEGIN {ACTIVE}

IO.OpenReader(in, client.Receive);
IO.OpenWriter(out, client.Send);
ParseRequest(in, uri, host, method, res);
IF res = Ok THEN

LocateResource(uri, host, method, type, f, res);
IF res = Ok THEN

WriteHeader(out, type);
IF f # NIL THEN WriteFile(out, f) END

END
END;
IF res # Ok THEN WriteStatus(out, res) END;
IO.Update(out);
Terminate

END HTTPAgent;

The initialization of the service object is similar to the echo example,
except that the HTTPAgent is generated instead of the EchoAgent, and
the standard HTTP port 80 is used in the OpenService call.

6.2.3 Network Drivers

Net module. The Net module defines an abstract network link layer
device object. As in the Disks module, other modules extend the object
to implement device driver objects. A link layer device, e.g., an ethernet
network controller, can send and receive packets on the network. It
forms the lowest-level software part of the networking system.

For sending packets, the link device provides the Send method, which
accepts a destination address, packet type and payload. The payload is
split into a protocol header and data part. The device driver combines
the link layer header, protocol header and data into one packet, which
reduces the number of copy operations that have to be performed on
the data. In order to keep the interface relatively simple, a more general
data gathering facility is not provided. Typically, the send operation
enqueues the data and returns immediately.

TYPE

6.2. Communication 117

LinkDevice = OBJECT (Plugins.Plugin)
VAR local, broadcast: LinkAdr; mtu: LONGINT; ...
PROCEDURE Send(dst: LinkAdr; VAR hdr, data: ARRAY OF CHAR;

type, hlen, dofs, dlen: LONGINT); ...
END LinkDevice;

The local field of the link device contains the local link layer address
and the broadcast field contains the link layer broadcast address. The
mtu field defines the largest packet that can be delivered by the link
layer.

Receiving of packets is implemented with an upcall mechanism. A
receiver procedure for a specific packet type can be installed with the
device object. When a packet of this type arrives, the procedure is
called by the device. The protocol header of the packet is passed to
the upcall, and the rest of the data can be obtained with the RecvData
method.

TYPE
Receiver = PROCEDURE (dev: LinkDevice; VAR hdr: RecvHdr;

len, type: LONGINT; src: LinkAdr);
LinkDevice = OBJECT (Plugins.Plugin) ...

PROCEDURE InstallRecv(type, hlen: LONGINT; h: Receiver);
PROCEDURE RemoveRecv(type: LONGINT; h: Receiver);
PROCEDURE GetRecv(type: LONGINT; VAR h: Receiver; VAR hlen: LONGINT);
PROCEDURE RecvData(VAR data: ARRAY OF CHAR; ofs, size: LONGINT); ...

END LinkDevice;

As in the Disks module, the Net module provides a registry for link
device objects.

VAR registry: Plugins.Registry;

Link layer device drivers. The first link layer device driver imple-
mented for Aos was a driver for the 3Com 3C5X9 ethernet controller [1],
which is relatively simple and well-documented. When the driver mod-
ule is loaded, the controller is detected, initialized and a device driver
object is allocated and registered with the Net module. A reference to
the driver object is obtained from here by the higher-level protocol mod-
ules. When a protocol wants to send a packet, it calls the Send method,
which waits until buffer space is available on the controller, then trans-
fers the packet directly to the controller’s buffer, and returns while the

118 Chapter 6. System Services

controller sends the packet out on the wire. For receiving packets, the
protocol registers a receiver procedure with the driver object. When a
packet arrives, the controller interrupts the driver object, which copies
the packet to memory and calls the receiver to handle the packet.

At a later stage, a driver for the 3Com 3C90X ethernet controller [2]
for Native Oberon [115] was ported to Aos. This controller uses direct
memory access (DMA) to transfer packets from and to memory. This
driver works similarly to the one described above, but also manages
special buffers for DMA. The data from the network is deposited straight
into these buffers by the controller and can then be copied directly to
the application by the protocol.

Most recently, a driver for the Realtek RTL 8139 ethernet con-
troller [97], which also uses DMA, has been implemented by a user
of Aos.

6.3 User Interface

A user interface for the Aos system is being developed in a separate
project. Although the window manager developed in that project al-
ready allows different applications to share the display and input de-
vices, it is not rich enough yet to allow day-to-day work to be done ex-
clusively in that environment. In the meantime Oberon for Aos (cf. 7.1)
is used as the primary user interface for development, but it has the
disadvantage that it does not allow arbitrary concurrency, thereby re-
stricting the user interaction capabilities of active objects. This section
describes the underlying user interface device drivers. An overview of
the modules is shown in figure 6.4.

6.3.1 Display Drivers

Displays module. The Displays module defines the Display abstract
raster device object that can be extended by display driver modules. Its
interface is purposely kept small but general enough to be usable with
most common raster display devices. The idea is to provide a uniform
device interface for a higher-level graphics library, e.g., the one defined
in [77]. The abstract raster device consists of a two-dimensional array
of pixels with an integer device coordinate system.

6.3. User Interface 119

MouseUsb

MouseV24

DisplaysInputs

MousePS2

Keyboard

Mach64

Permedia2

Linear

Messages

Figure 6.4: User interface subsystem structure.

120 Chapter 6. System Services

Basic interface. The basic interface of the Display object is shown
below. The Dot method draws a dot in the specified colour at position
(x, y) and Fill fills the rectangular area specified by (x, y, w, h) with
the specified colour. The Mask method fills the specified rectangular
area with a tiled monochrome pattern in the specified foreground and
background colour. The width and height fields export the size of the
raster.

CONST
red = 00FF0000H; green = 0000FF00H; blue = 000000FFH;
trans = 80000000H; invert = 40000000H;

TYPE
Display = OBJECT (Plugins.Plugin) ...

VAR width, height: LONGINT; ...
PROCEDURE Dot(col, x, y: LONGINT);
PROCEDURE Fill(col, x, y, w, h: LONGINT);
PROCEDURE Mask(VAR buf: ARRAY OF CHAR; bitofs, stride,

fg, bg, x, y, w, h: LONGINT); ...
END Display;

All these methods use an RGB true-colour model with colours en-
coded as 32-bit integers, usually written as hexadecimal constants. The
low 24 bits specify the RGB components of the colour and the high 8 bits
are used as flags, of which two are currently defined. The trans flag in-
dicates a fully transparent colour and is used with the Mask method to
‘paint’ a pattern on the existing raster contents. The invert flag indicates
that the colour should be combined with the existing raster contents in a
reversible way — if the same colour is drawn twice, the original contents
is restored — typically implemented with an XOR operation.

As in the Disks module, the Displays module provides a registry for
display driver objects:

VAR registry: Plugins.Registry;

Low-level interface. For efficient block transfers to and from the
raster frame buffer, the low-level interface below is provided. The Copy
method copies the rectangular area specified by (sx, sy, w, h) to position
(dx, dy). The Transfer method transfers a buffer containing colour values
in the transfer format to, or from, the rectangular area specified by
(x, y, w, h). The op parameter indicates the direction.

6.3. User Interface 121

CONST
get = 0; set = 1;
index8 = 1; color565 = 2; color888 = 3; color8888 = 4;

TYPE
Display = OBJECT (Plugins.Plugin)

VAR format: LONGINT; ...
PROCEDURE Copy(sx, sy, w, h, dx, dy: LONGINT);
PROCEDURE Transfer(VAR buf: ARRAY OF CHAR; ofs, stride,

x, y, w, h, op: LONGINT);
PROCEDURE ColorToIndex(col: LONGINT): LONGINT;
PROCEDURE IndexToColor(index: LONGINT): LONGINT; ...

END Display;

Four transfer formats are defined, allowing a driver to expose a for-
mat that can be converted efficiently to its native frame buffer format.
If a graphics library uses this low-level interface, it is responsible for
mapping the driver’s transfer format to its own internal format. The
index8 format uses 8 bits to represent a pixel and the value is an in-
dex into a fixed colour table that can be queried with the ColorToIndex
and IndexToColor methods. It is mostly intended for low-end devices
with small memories. The color565 format uses 16 bits per pixel, with
red, green and blue colour components encoded as 5, 6 and 5 bits, re-
spectively. It provides high efficiency with a minimal true-colour model
and is often used on medium-range systems. The color888 format uses
24 bits per pixel, with each colour component encoded as 8 bits. It is
intended for memory-efficient true-colour devices. The color8888 format
is similar to the previous one, but adds padding so that the frame buffer
values are aligned on 32-bit boundaries, improving performance. This
is the most common true-colour format.

Display device drivers. Similar to the Disks module, the idea is that
a concrete display driver will extend the Display object and override its
methods with device-specific implementations. However, the Display
object is implemented in a way that simplifies writing a display driver
significantly.

The Display object is not completely abstract, but contains a generic
implementation of all the primitive methods in terms of a memory-
mapped linear frame buffer. Therefore a minimal display driver imple-
mentation simply has to map its frame buffer into memory, initialize

122 Chapter 6. System Services

the format, width and height fields, and call the following method to
initialize the generic implementation, where the parameters specify the
location of the frame buffer.

TYPE
Display = OBJECT (Plugins.Plugin) ...

PROCEDURE InitFrameBuffer(adr, size: LONGINT); ...
END Display;

The VESA linear frame buffer display driver of Aos takes advantage
of the generic frame buffer implementation. VESA is an industry group
that produced several display controller specification standards, which
are implemented in the majority of display controllers on the market.
Controllers supporting a linear frame buffer according to the VESA 2.0
standard [125] are usable with this generic driver, which provides full
support for Aos, albeit without using any acceleration features of the
relevant controller.

In the generic implementation the Dot, Fill, Mask and Copy methods
are all implemented in terms of the Transfer method, and the Color-
ToIndex and IndexToColor use a standard colour palette. Therefore a
display driver module that is not based on a memory-mapped linear
frame buffer can simply override the Transfer method and use the de-
fault, generic implementation of the others.

The generic S3 display driver of Aos is an example of such a driver.
It overrides only the Transfer method, and re-implements it using the
generic bank switching facilities available on S3 display controllers [104].

If the display controller has its own dedicated processor, which is the
case with almost all modern controllers, better performance is obtained
by utilizing this processor in the implementation of all the methods. The
Aos driver for the 3Dlabs Permedia 2 [3] display driver is implemented
in this way, based on the corresponding driver for Native Oberon [59].

6.3.2 Input Drivers

The Inputs module is responsible for user interface input devices and is
based on the modules developed in [39]. It defines a general message-
passing transport and some specific messages for different kinds of input
devices. The message transport consists of the following definitions:

6.3. User Interface 123

TYPE
Message = RECORD END;
Sink = OBJECT

PROCEDURE Handle(VAR msg: Message);
END Sink;
Group = OBJECT

PROCEDURE Register(s: Sink);
PROCEDURE Unregister(s: Sink);
PROCEDURE Handle(VAR msg: Message);

END Group;
PROCEDURE NewBroadcaster(): Group;

The Message record represents a generic message that can be sent to
interested parties, which are called sinks and are extensions of the Sink
object. Typically, a message is broadcast to a group of sinks, which have
registered themselves with a specific Group object. The group object is
responsible for sending the message to all its registered sinks.

The Inputs module defines three types of messages for the three main
kinds of user input devices: keyboard, mouse and pointer. A pointer
differs from a mouse in that it provides absolute coordinates, whereas a
mouse only provides information on relative movements.

CONST
Release = 0;
LeftShift = 1; RightShift = 2; LeftCtrl = 3; RightCtrl = 4;
LeftAlt = 5; RightAlt = 6; LeftMeta = 7; RightMeta = 8;

TYPE
KeyboardMsg = RECORD (Message)

ch: CHAR; flags: SET; keysym: LONGINT
END;
MouseMsg = RECORD (Message)

keys: SET; dx, dy, dz: LONGINT
END;
PointerMsg = RECORD (Message)

keys: SET; x, y, z, mx, my, mz: LONGINT
END;

VAR keyboard, mouse, pointer: Group;

A KeyboardMsg is sent whenever a key is pressed or released and
the Release flag indicates which of the two cases occurred. The flags
field also contains the current state of eight possible shift keys (LeftShift

124 Chapter 6. System Services

to RightMeta). The ch field contains the ASCII code of the key being
pressed, or the NUL character if this is not defined. The keysym field
contains an exact description of the key using the codes defined by the
X Window system [105].

A MouseMsg is sent whenever a mouse movement or button state
change is detected. The keys field specifies which mouse buttons are
pressed, and the dx, dy and dz fields specify the relative movements
in the relevant directions (the Z-coordinate is typically specified by an
optional wheel on top of the mouse).

A PointerMsg is sent whenever a pointer device detects a change in
position or button state. The keys field specifies which pointer buttons
are pressed, and the x, y and z fields specify the absolute coordinates of
the pointer. The mx, my and mz fields specify the maximum values of
the relevant coordinates, and the minimum values are 0 in all cases. The
origin is in the same relative position as defined in the Displays module.

The keyboard, mouse and pointer variables define global message
broadcast groups for the three kinds of input devices. The default input
devices are registered here when the system is configured, and the user
interface subsystem registers itself here (cf. 7.1 and [40]).

Typically, a mouse is used as a virtual pointer device. For this
purpose a virtual pointer object is defined which accepts mouse messages
and uses them to update a virtual pointer position, which it uses to send
pointer messages.

Based on the messages defined in the Inputs module, input device
drivers have been implemented for all common serial mouse protocols
and PS/2-style keyboards and mice [124].

Chapter 7

Application Case Studies

This chapter presents some applications that were developed on the Aos
system to demonstrate how it can be used.

7.1 Oberon for Aos

A port of the ETH Oberon system was one of the first applications
created for Aos. The main goal for this port was to allow ETH Oberon
applications to run on Aos, specifically the Active Oberon compiler
and development tools, which allows the Aos system to host its own
development.

An additional requirement was that it should be possible to run
Oberon as a full-screen application without the Aos window manager,
but also with the window manager as a normal windowed Aos applica-
tion. The rationale was that the full-screen configuration can be used
on low-end machines that do not have sufficient resources to support
the window manager.

The starting point for the port was the Native Oberon system. The
implementation of nine low-level modules had to be modified or rewrit-
ten: Kernel, Modules, FileDir, Disks, Files, Display, Input, System and
NetSystem. All other modules of the Native Oberon system and its ap-
plications, except for device drivers and some file system tools, could
simply be recompiled, as the Active Oberon language is a superset of
the Oberon language, and the module interfaces were kept compatible.

The functionality of most of the above nine modules is provided di-

125

126 Chapter 7. Application Case Studies

DisplaysInputs

MousePS2

Keyboard

OberonWM

DisplayInput

WM
Permedia2

Figure 7.1: Oberon for Aos user interface modules.

rectly by the Aos system and their implementations therefore consist
mainly of calling the equivalent Aos procedures. Some straightforward
translation is necessary because of the object-oriented style of the Aos
interfaces. However, the Display and Input modules were less straight-
forward to implement, due to the requirement that Oberon be usable
with or without the window manager.

Oberon user interface. Figure 7.1 shows the low level modules con-
cerned with the Oberon for Aos user interface. At the bottom are the
two Aos modules Inputs and Displays (cf. 6.3.2 and 6.3.1). Above these
are some concrete device driver modules for input and display devices
(e.g., Keyboard, MousePS2 and Permedia2 in the figure). At the top
are the Aos implementations of the Oberon modules Input and Display.
In the middle are the modules of the Aos window manager (cf. 7.3)
and a special driver called OberonWM (described below). These mod-
ules (boxed in the figure) are not required when running in full-screen

7.1. Oberon for Aos 127

mode.
The Oberon Input and Display modules only import the Aos Inputs

and Displays modules, respectively. They are implemented in terms
of the abstract input and display driver objects defined in the latter
two modules. As such, the modules are completely independent of the
window manager, and can function even when the window manager is
not loaded. In this case, Oberon is in full control of the display and
input devices.

When the Oberon system has to co-exist with the window manager,
another solution is needed, as the window manager then needs to be
in control of the display and input devices. In this case the Oberon-
WM module is used to manage the Oberon window. It opens a window
using the window manager and registers a virtual display driver with
the Displays module and a virtual Oberon input driver with the Inputs
module. The Oberon Input and Display modules then access the window
indirectly via these virtual devices. Output from Oberon is sent to the
window and keyboard input and pointer movements in the window are
directed to Oberon.

Oberon and concurrency. As the Oberon system is based on a
single-process cooperative multitasking model, many of its modules are
not reentrant. This means that different processes must not call modules
of the Oberon system in an uncontrolled way, otherwise data corruption
can occur. Therefore, a single active object instance is used to execute
the Oberon main loop in Aos.

Aos programmers are expected to distinguish between Oberon mod-
ules and pure Aos modules. Oberon modules are defined as modules
that import the Oberon Kernel module (transitively), and all remaining
modules are defined as pure Aos modules.

Pure Aos modules are required to export only reentrant interfaces.
Oberon modules are not required to be reentrant, and should be used
only from within the Oberon system. Of course, these requirements
can not be checked automatically for general Oberon modules, and it is
the programmer’s responsibility to ensure that they are satisfied. The
system merely ensures that only one instance of the Oberon main loop
is started.

For experimental purposes, a global Oberon lock has been imple-
mented, similar to the solution used in Concurrent Oberon [60]. This

128 Chapter 7. Application Case Studies

coarse-grained lock controls access to the complete Oberon environment
and is acquired in the main loop and released for short periods of time
when Oberon is idle. In this way active objects can safely be pro-
grammed to call Oberon procedures by surrounding all calls to Oberon
modules with the relevant global lock and unlock operation. This so-
lution is correct, but crude, as it was found to restrict concurrency
significantly. A cleaner, preferred, solution when writing new modules
is to use only pure Aos modules, with reentrant interfaces.

7.2 VNC Viewer

The Aos system with Oberon (cf. 7.1) can be used as its own develop-
ment environment running on a personal computer. It provides various
productivity applications: text editors, graphics editors, email clients,
a web browser, file transfer applications, etc. However, in some cases
an Aos user may still want to access applications running on standard
operating systems like Unix and Windows, because a corresponding ap-
plication is not available.

The virtual network computing (VNC) system [76, 100] provides an
elegant solution to this problem. The remote frame buffer (RFB) proto-
col [101] defined by VNC allows an application and its user interface to
be physically separated by a network. The idea is similar to the client-
server separation in the X Window system [105], but the RFB protocol
is more general and still lightweight and relatively simple to implement,
especially on the client side.

Figure 7.2 shows how the VNC system can be used. Applications run
on the server, using a virtual frame buffer for output. The virtual frame
buffer is displayed on the client using the RFB protocol to communicate
over the network. Likewise, user input on the client is sent to the
application on the server. The system is more flexible than shown here
and optionally allows multiple clients to connect to the same frame
buffer, which enables application sharing. The server could also be a
normal personal computer, which is shared by a local user and one or
more remote users. The RFB protocol is stateless, so a connection can
be closed and re-opened at any time, even from a different client, with
the remote frame buffer still in the same state.

VNC clients and servers have been implemented for a multitude of
systems, allowing application sharing between Unix, Windows, Macin-

7.2. VNC Viewer 129

server

network

1 2 3 4 5 6 7 8 9 0
q w e r t y u i o p
a s d f g h j k l ;
z x c v b n m , . /

7 8 9
4 5 6
1 2 3
0 dl

client

Figure 7.2: VNC example [100].

130 Chapter 7. Application Case Studies

tosh, Windows CE, Palm and other systems [76]. Most of these im-
plementations communicate via TCP/IP, but any reliable streaming
protocol may be used.

To allow Aos users to use applications running on other operating
systems, a VNC viewer (client) has been implemented, based on the
VNC viewer for Oberon [58]. The viewer opens a window that displays
the contents of the remote frame buffer (e.g., a Windows or Unix desk-
top) running under control of a VNC server on another (possibly shared)
computer. Local mouse movements and keyboard events directed to the
window are transmitted to the server, and control the applications run-
ning there. Remote display updates are transmitted by the server and
displayed on the local machine.

The viewer implementation defines two types of active object: a
receiver and a sender. The receiver receives display update events from
the server and draws them in the window. The sender accepts local
window events and sends mouse and keyboard events to the server.
One instance of each of these objects is created for every VNC window
opened. The implementation allows multiple VNC connections to be
opened.

For normal non-multimedia applications the viewer performs well,
even in a low-bandwidth LAN (10Mbps). It can be used over modem
connections, but is not very responsive in this case. Multimedia applica-
tions like video playback require a high-bandwidth connection (100Mbps
or more) for acceptable performance.

7.3 Other Applications

Except for the applications developed by the author and those ported
from Native Oberon, several new applications have been developed by
Aos users. These demonstrate that Aos is a stable development envi-
ronment.

Parallel compiler P. Reali developed a parallel Active Oberon com-
piler [95] as part of his dissertation work [96]. The compiler is
parallelized by instantiating an active object for the parsing and
code generation of each scope in the source program.

Java environment P. Reali and R. Laich developed a Java environ-
ment with a just-in-time compiler [94, 102]. The Java runtime

7.3. Other Applications 131

system is implemented in terms of the Aos kernel. For example,
Java processes are mapped to active objects.

Window manager T. Frey is developing a window manager and text
system based on a general display model [40]. It uses active objects
to concurrently update the display.

VNC server T. Frey developed a VNC server (cf. 7.2) as plugin for
the window manager. The server allows an Aos system to be
remote-controlled via the network and to operate without a phys-
ical display.

Dynamic HTTP server T. Frey expanded the simple agent-based
web server (cf. 6.2.2) into a complete HTTP 1.1 [36] server that
can serve content dynamically generated by Active Oberon plug-
ins.

FAT file system B. Egger developed a FAT file system for Native
Oberon [35] and then ported it to Aos.

XML browser S. Walthert developed a general extended markup lan-
guage (XML) toolkit and a XML/CSS browser [127]. The XML
toolkit is used in the window manager and in the Aos configuration
module.

Remote file system P. Stüdi developed a network file system [116]
allowing Aos users to share files with a Unix system. The file
system consists of a client running as an Aos file system plugin
(cf. 6.1.1) and a server running on a Unix system. The client
and server communicate via a proprietary stateless TCP/IP-based
protocol that can recover from interruptions in the network.

Medical image processing D. Keller is developing a medical image
processing server allowing Windows clients to store, process and
retrieve medical images on an Aos server.

FTP server P. Reali and B. Egger developed an FTP server.

132 Chapter 7. Application Case Studies

Chapter 8

Evaluation

In this chapter the Aos system is evaluated in four ways: section 8.1
makes a conceptual comparison with related operating systems, sec-
tion 8.2 presents performance measurements, section 8.3 evaluates the
portability and flexibility of the system and section 8.4 presents the sizes
of the various subsystems.

8.1 Comparison with Related Systems

The flexible modular design of Aos makes it suitable for many different
application areas and hardware environments, ranging from small em-
bedded systems, through personal computers, to multiprocessor work-
stations and servers. Therefore, the system could be compared with a
wide range of related operating systems. In this section, however, we re-
strict the comparison to a few shared-memory multiprocessor systems of
historical significance, and a few Unix-related systems that are typically
used on commercial multiprocessor machines.

8.1.1 Multiprocessor Research Operating Systems

Hydra

Hydra [136, 137] is the kernel of a multiprocessor operating system de-
veloped in the early seventies at Carnegie-Mellon University for the
C.mmp shared memory multiprocessor. This machine was based on a

133

134 Chapter 8. Evaluation

number of PDP-11 minicomputers with a shared memory connected by
a cross-bar switch.

The goal was to design a “collection of facilities of universal appli-
cability and absolute reliability — a set of mechanisms from which an
arbitrary set of operating system facilities can be conveniently, flexibly,
efficiently and reliably constructed” [136]. This is the essential idea of
a kernel, also strived for in Aos.

A good example of the Hydra design goal to separate mechanism
and policy is its protection mechanism. An object is the unit of protec-
tion, and a capability, which is created and modified only by the kernel,
references an object and defines which operations are valid on it. A call
to a protected object is only possible via the kernel, which verifies that
the capability allows the operation. The specific protection policy used
is not part of the kernel.

Open extensible systems like Oberon and Aos allow parts of the
system to be replaced or extended easily. Consequently there is less need
to explicitly separate mechanism and policy, as required for comparable
flexibility in a microkernel design.

Hydra processes communicate and synchronize with each other with
simple message buffering primitives and Dijkstra-style semaphore op-
erations. In Aos, processes communicate and synchronize by invoking
active object methods and passing references to shared data directly to
each other.

Firefly and Topaz

The Firefly [121] is a shared-memory multiprocessor workstation devel-
oped at DEC SRC in the mid-eighties. Topaz, the associated software
system, provides binary emulation of the Ultrix (Unix) system call in-
terface.

Like Topaz, Aos can also be used in a multiprocessor workstation
environment. Unlike Topaz, it does not attempt any level of applica-
tion compatibility with Unix, except for client-server cooperation via
network protocols (cf. 6.2.2 and 7.2).

The Topaz system is structured as a microkernel. The kernel con-
tains virtual memory management, thread scheduling, simple device
drivers and the interprocess communication mechanism. The operating
system, file system and window manager run as user space services.

8.1. Comparison with Related Systems 135

The main advantages of a microkernel design are flexibility, pro-
tection and well-defined interfaces between services. These goals are
addressed by other means in Aos. Flexibility is obtained with the use
of modules and plugin objects. Hardware-based protection is deemed
less important, because a type-safe language is used throughout, both
for system and application programming. Well-defined interfaces are
accentuated even more by modules, and, in contrast to most microker-
nels, are type-checked. There is no need for stub libraries to serialize
and de-serialize parameters.

As is common in microkernel designs, the Topaz system separates the
thread and address space concepts from the Unix (heavyweight) process
concept. This distinction is made mainly to reduce the cost of creat-
ing processes (threads), so that server programs can service multiple
requests in parallel. Communication between different address spaces
and machines is performed by remote procedure calls. In Aos, creating
an active object is similarly efficient, and servers can be programmed
with multiple active objects (cf. 6.2.2).

The kernel and system are written in the Modula-2+ language, which
extended Modula-2 with garbage collection, exception handling and con-
currency. The applications perform reference counting (implemented by
the compiler), and the garbage collector runs concurrently with them,
performing an additional conservative mark-sweep operation to handle
stack pointers and cyclic structures. A Threads module provides con-
dition variables for synchronization and the language provides a lock
statement for declaring critical regions.

Psyche

Psyche [108] is a parallel operating system that was developed at the
University of Rochester in the late eighties for the BBN Butterfly Plus
multiprocessor. The main emphasis was on experimenting with different
parallel computing models co-existing on the same system, especially in
the context of computer vision and robot control.

The Psyche kernel provides four abstractions: the realm, protection
domain, virtual processor and process. A realm consists of code and
data and is comparable to an object. Each protection domain has its
own page tables, which map those realms that are accessible from the
domain. Processes are threads of control implemented and scheduled at

136 Chapter 8. Evaluation

user level. Virtual processors are implemented by the kernel, and are
used to schedule the user-level processes.

Every realm is at a globally unique virtual address, which allows
processes to share pointers directly. An access to a realm not yet part
of the current domain causes a page fault, allowing the kernel to check
whether the access should be allowed. If an access is allowed, the realm
is mapped into the invoking domain.

The bi-level scheduling allows different application-specific schedul-
ing policies to be applied at user level and to co-exist. Software in-
terrupts are used by the kernel to signal to a user-level scheduler im-
plementation when scheduling decisions has to be made, e.g., when a
process enters a new protection domain, or a timer expires.

In comparison, Aos provides only one kind of process and a single
level of scheduling. It is not clear if the flexibility of different co-existing
user-level scheduling policies in Psyche is really advantageous. If other
scheduling policies are required in Aos, they can be implemented by
modifying the Active module.

The Psyche kernel implementation uses four kinds of synchroniza-
tion. Critical sections involving processor-local data structures are pro-
tected by disabling preemption of virtual processors, and those involving
device handlers are protected by masking out interrupts. Other critical
sections of small, bounded length are protected with spin-locks, which
also disable preemption of virtual processors to comply with the length
bounds. Critical sections involving conditions that are not bounded in
time are implemented with (blocking) semaphores. Synchronization at
user-level is under full control of the specific process scheduling imple-
mentation used.

The synchronization mechanisms used in the Aos kernel implemen-
tation are comparable to that of Psyche, except that semaphores are
not used directly. Instead, active object exclusive blocks and the await
statement are used for higher-level synchronization, also at the applica-
tion (‘user’) level.

Hurricane

The University of Toronto’s Hurricane [122] system was developed in the
mid-nineties specifically to address the issue of scalability in large-scale
multiprocessor operating systems and runs on the prototype Hector mul-

8.1. Comparison with Related Systems 137

tiprocessor. It was argued that multiprocessor operating systems that
evolve from singleprocessor systems only address concurrency issues by
identifying and removing the most important bottlenecks, and do not
address locality issues.

To address the scalability issue, a hierarchical clustering design is
used, in which higher-level entities control resources in a coarse, global
fashion, and lower-level entities control resources in a finer, localized
way. Interaction between distant entities normally occurs at higher
levels of the hierarchy. A cluster in the Hurricane system consists of a
small-scale symmetric-multiprocessing microkernel sharing kernel data
and control structures among a few processors. In a large system, several
clusters are created to manage disjoint sets of ‘neighbouring’ processors,
with replicated kernel structures. The clusters work together to present
a consistent view of the whole system to applications.

Tornado

The University of Toronto’s Tornado [42] system is the late nineties
follow-up of the Hurricane system, also conceived to address the issues
of locality and concurrency in shared-memory multiprocessor operating
systems. It is implemented in C++ and runs on the Toronto NUMAchine
and the SimOS simulator.

Tornado is structured in an object-oriented fashion and handles re-
quests to different resources without accessing any common data struc-
tures or locks. A generalization of the Hurricane system’s replicated
kernel structures, called clustered objects, is used to partition a kernel
object into different representative objects, which handle independent
requests to a resource on different processors by different representative
objects. The kernel sees to it that repeated requests to a service object
by a client are serviced on the same processor as the client, and parallel
requests are automatically served by different service threads.

The Tornado authors note that there are two kinds of locking in
most systems: locks inherently related to concurrency control of shared
data structures, and locks related to providing an existence guarantee
that ensures that a data structure containing a variable is not deallo-
cated during an update. They implemented a semi-automatic garbage
collector for clustered objects, which ensures that a reference to such
an object can be used at any time, even when no locks are held. They

138 Chapter 8. Evaluation

also claim that this removes a primary reason for holding locks across
object invocations, thereby increasing modularity.

The Tornado argument for garbage collection also holds for Aos. In
the presence of a garbage collector, it is never necessary to hold a lock
on an object reference solely to protect the object from deallocation by
another process while it is being used. Holding a reference is sufficient
to ensure the existence of the object.

8.1.2 Unix and Related Operating Systems

Unix in all its flavours is the most widely-used server operating sys-
tem on the Internet. Although the original system was developed for
singleprocessors, Unix has been adapted for multiprocessor machines
by various hardware vendors (e.g., Sun Solaris, SGI IRIX, IBM AIX,
HP/UX) [16, 83, 106].

In this section we summarize implementation characteristics of some
Unix-related operating systems, and make brief comparisons with Aos.
Compared with the complexity of these large ‘real world’ systems, the
transparency of Aos promises to be an advantage in building reliable,
secure, and efficient custom applications.

BSD

As a representative example of a Unix system we look at the influen-
tial BSD (‘Berkeley Software Distribution’) system [65], which played a
major part in popularizing the internet protocols.

Structurally, Aos is very different from BSD, which has a conven-
tional monolithic kernel design, with separation between user and kernel
(privileged) mode. This separation protects the kernel from accidental
or malicious damage from applications, but also incurs overhead when
an application performs a system call, since a cross-domain call is re-
quired, and often data has to be copied specially between user and
kernel mode. In Aos, a kernel call is a normal procedure call to a kernel
module.

Many facilities provided by the BSD kernel are also provided in Aos:
memory management (in the Memory and Heap modules), interrupt and
trap handling (in the Interrupts module), processes, context switching
and time-slicing (in the Active module), and timing services (in the

8.1. Comparison with Related Systems 139

Kernel module). However, in Aos these facilities are reduced in scope.
For example, there are no separate address spaces and virtual memory
(and consequently no explicit shared memory management and mmap
system call), processes are lightweight (there is little process-connected
state and no process groups), there is no user and group management
(permissions, quotas) in the kernel, and no explicit interprocess com-
munication (procedure calls are used instead).

Many other concepts and facilities from the BSD kernel have equiv-
alents in the Aos system.

The interface of the Disks module can be compared with the entry
points of BSD block devices. Common to both interfaces are open, close
and size calls. Both interfaces also provide a function to initiate a data
transfer: Transfer in Aos, and the strategy entry point in BSD. However,
the latter always initiates an asynchronous data transfer, while Aos
always uses synchronous transfers. This is done as they are deterministic
and less error-prone to program, and experience in various microkernel-
based systems have shown that synchronous transfers combined with
lightweight processes are sufficiently powerful for most applications.

Like the BSD block buffer cache, the Cache object from the Caches
module acts as an intermediary between the file system and block device
driver, caching read and write requests. An important difference is that
the cache object is optional, and an application that wants full control
of a disk, e.g., a database system, can do so directly. In BSD, block
device drivers must additionally implement the so-called raw interface
for this case.

The FS module is comparable to the file descriptor management
and vnode layer in BSD that manages file descriptors and provides an
abstract interface to file system implementations. However, the Aos
interface is not encumbered with a tight coupling between processes and
file descriptors, and it focuses on persistent files, avoiding the unification
of network ‘sockets’ and file descriptors. Additionally, multiplexing is
handled by multiple active objects, obviating the need for additional
polling, non-blocking or signalling interfaces.

Part of the reason why Unix processes carry a lot of state information
is to simplify resource management. When a process terminates, the
kernel can deallocate all the related resources, e.g., memory and file
descriptors. In Aos, the system-wide garbage collector assumes this
responsibility.

140 Chapter 8. Evaluation

Solaris

Sun Microsystems’ Solaris operating system, based on Unix System V
Release 4 and BSD, supports symmetric multiprocessing [64]. It runs
on singleprocessor machines and multiprocessors like the Sun Enterprise
series with up to 64 processors. Here we focus briefly on processes
and synchronization in the Solaris kernel. The rest of the kernel is
comparable to the BSD kernel presented above.

Solaris uses a three-level process model, with traditional heavyweight
Unix processes and two kinds of lightweight processes: kernel threads
(also called LWP for lightweight processes) and user-level threads. The
latter are managed by a user-level thread library and are scheduled
by using a shared pool of kernel-level threads to execute them. Kernel
threads can block during I/O operations (comparable to Psyche’s virtual
processors).

The Solaris kernel is preemptable and several kernel threads can
be active in the kernel at the same time. It uses multiple synchro-
nization mechanisms: mutex locks, reader/writer locks, dispatcher locks,
semaphores and condition variables.

Several hundred lock instances are declared statically in the kernel
sources, and several thousand locks can be created dynamically. The
most common kind of lock used in the kernel is the mutex lock, which
protects a simple critical section.

Two kinds of mutex lock are available: spin locks and adaptive locks.
Spin locks operate as described in section 5.4. Adaptive locks are sim-
ilar, with the following difference: when a thread attempts to acquire
an adaptive lock that is held by another thread currently running on
another processor, the first thread will spin waiting for the lock; other-
wise, it will block. The reasoning is that it is likely that a lock held by
a running thread will be released soon, as critical sections are normally
short. Therefore it is not worth blocking the requesting thread and
waking it up again later. Another difference between the two kinds of
mutex lock is that adaptive locks may not be used in high level interrupt
handlers, as they interact with the dispatcher (scheduler). Reportedly,
the blocking case for adaptive locks rarely occurs.

When a mutex lock is released, and other threads are waiting to enter
the critical section, Solaris 7 wakes up all the waiting threads at the same
time. Earlier versions of Solaris only woke up one waiting thread, but

8.1. Comparison with Related Systems 141

this was found to complicate the code unnecessarily. Potentially the
Solaris 7 behaviour can lead to the so-called thundering herd problem,
where many woken threads waste processing time competing in vain for
the lock, because only one can acquire it. Extensive testing has shown
that this does not occur in practice, because critical regions protected
with mutex locks are normally very short. Solaris does not transfer the
lock directly to one of the waiting threads, because this would defeat
the purpose of adaptive locks. If another thread attempts to acquire
the lock before a woken thread is scheduled to run again, it can find the
lock free and quickly enter and leave the short critical section. In case
of a direct transfer, the new thread would have to block and be woken
again later.

Reader/writer locks are used when there is a need to distinguish be-
tween read and write access to a shared data structure. At any time,
several reading threads may be present in a critical section, or alterna-
tively, one writing thread. These locks differ from mutex locks in their
wakeup behaviour. If reader threads are waiting when a lock is released,
all the waiting readers are woken, and if writers are waiting, only the
first writer in the queue is woken. Additionally, the kernel does a direct
transfer of the lock to the woken reader threads or writer thread. The
reasoning is that this kind of lock is used for longer critical sections than
the mutex locks.

The third kind of lock used in the Solaris kernel is the dispatcher
lock. This lock has a simple implementation and is used to protected
the scheduler and locking data structures. The first form of the lock
is a normal spin lock implementation with no blocking option, and the
second form additionally masks out low-level interrupts. High-level (re-
altime) interrupts are allowed to interrupt the scheduler, but their inter-
rupt handlers are not allowed to invoke the scheduler. The dispatcher
lock data structure is simply a byte flag indicating if the lock is held or
not.

In addition to the three kinds of locks presented above, the kernel
uses integer semaphores. The semaphore release operation is similar to
the reader/writer lock release operation in that it wakes up only one
waiting thread. Semaphores are only used in the buffer I/O module,
the kernel module loader and a couple of device drivers.

The Solaris kernel uses condition variables in combination with mu-
tex locks to perform process synchronization. Three operations are de-

142 Chapter 8. Evaluation

fined on condition variables: wait, signal and broadcast. The wait opera-
tion puts the calling process to sleep by removing its descriptor from the
scheduler queue and adding it to a queue associated with the condition
variable. The signal and broadcast operations remove processes from
the condition variable queue and add them to the scheduler queue so
they can run again. The signal operation removes one process, and the
broadcast operation removes all processes that are waiting. The wait
operation has some variations for different exception handling, priority
control and time-out options.

It is interesting to study the evolution of the synchronization mech-
anism implementation in Solaris releases [64]. The kernel has benefitted
from extensive testing over the years, and it is clear to see that the trend
is towards more compact and efficient implementation of synchroniza-
tion primitives like mutex locks.

Windows 2000

Microsoft’s premier operating system, Windows 2000 (formerly named
Windows NT), supports symmetrical multiprocessing and runs on sin-
gleprocessor and multiprocessor Intel IA-32 machines [114].

Structurally, Windows 2000 is similar to Unix. It has a monolithic
kernel that includes operating system services such as memory manage-
ment, process management, I/O, interprocess communication, and also
includes device drivers and the windowing, user-interface and graphics
subsystems. Applications and some system services run as processes in
user mode.

The kernel is divided into two layers: the executive and the kernel
proper. The executive contains system service functions, some of which
are exported to applications, and others that are only callable from
within the kernel. The main services provided by the executive are:
configuration manager, process and thread manager, security reference
manager, plug-and-play device manager, power manager, instrumen-
tation manager, cache manager, virtual memory manager, object man-
ager, interprocess communication facility, run-time library functions and
various executive support functions. The kernel proper provides funda-
mental services such as thread scheduling, synchronization and low-level
hardware support.

For mutual exclusion inside critical sections, the kernel uses spin

8.1. Comparison with Related Systems 143

locks. A few core data structures of the kernel are protected with queued
spin locks. These are spin locks with a waiting queue, which stores
processors waiting for the lock. When a processor releases the lock, it
hands the lock over to the next waiting processor. Queued spin locks
do not access a shared cache line during busy waiting [103].

The Windows 2000 process model is akin to that of Solaris. Heavy-
weight processes act primarily as resource containers, and have separate
address spaces. Threads are kernel-level lightweight processes that can
share the address space of a process. Kernel processes and threads are
complex objects — a process record has approximately 200 data fields,
and a thread record approximately 180 (excluding sub-structures being
pointed to). For comparison, the Aos process record (cf. 5.9.2) contains
about 20 fields.

For thread synchronization, the kernel uses several kinds of so-called
dispatcher objects: mutex, semaphore, queue, event, timer, process,
thread and file. Each object has an associated signalling condition
which changes according to the state changes of the object itself. For
example, a queue object is signalled when an item is placed on the
queue, and a timer object is signalled when a certain time interval has
elapsed. A thread that executes a wait operation on a dispatcher object
is suspended until the associated condition is signalled. Optionally, the
thread can specify a maximum time it is prepared to wait, and it is pos-
sible to wait on multiple objects simultaneously. The approach taken
by Windows is apparently to provide the most common synchroniza-
tion scenarios pre-programmed as different kinds of dispatcher objects.
In Aos, synchronization scenarios corresponding to those provided by
Windows dispatcher objects can be programmed directly using the await
primitive.

In Windows, as in Unix, kernel-mode code has complete access to
system memory and device drivers run in kernel mode. This is not
inherently a problem, but drivers are commonly written entirely in an
unsafe language (C and assembler) and erroneous device drivers are the
most common cause of system failure. Windows 2000 addresses this
vulnerability using a driver certification mechanism. This mechanism
warns the user when a third-party driver is installed that has not been
authorized (and tested) by Microsoft, under the assumption that such
drivers are less reliable [9].

Aos is also vulnerable to this problem, but at least drivers are largely

144 Chapter 8. Evaluation

implemented in a safe language, which excludes whole classes of possible
errors. Furthermore, it is presumed that the vastly simpler kernel re-
duces the complexity of writing drivers, and consequently, the likelihood
of errors.

8.2 Performance Measurements

The main reason for utilizing shared-memory multiprocessors is to im-
prove application performance by parallel processing. Therefore, it
is especially important for a multiprocessor operating system to per-
form well, otherwise the potential improvement through parallelization
is wasted.

Although good performance is the ultimate goal of a multiprocessor
operating system, providing a stable and reliable system should be the
primary mission of any operating system developer, who must guard
against unnecessarily complicating the design and implementation for
the sake of performance. In short, performance is important, but should
never come at the cost of dependability.

To see how Aos compares with an established operating system, mi-
crobenchmarks were used to compare selected parts of the Aos kernel
with corresponding parts of a Unix kernel. The version of Unix used
for the comparisons is Linux, which is widely deployed and highly opti-
mized, due to its open source distributed development model.

A microbenchmark is a simple program that exercises a specific part
of a system. Microbenchmarks are not always an ideal tool for compar-
ing systems, because they are not realistic applications [12]. Nonethe-
less, their simplicity gives them the advantage that they can be used
to compare specific system characteristics, when used carefully. Mi-
crobenchmark results can be useful even in isolation, since they provide
an estimate of the performance of a specific part of the system, which
can aid the development of efficient applications.

As Aos and Linux do not share common programming interfaces and
models, approximately equivalent benchmark programs were developed
in Active Oberon for Aos, and in C for Linux. Where active objects are
used in the Aos benchmarks, Posix threads (not heavyweight processes)
are used in the Linux benchmarks.

All performance measurements were run on a dual-boot Dell Power-
Edge 8450 with 6 Pentium III Xeon processors running at 700MHz, each

8.2. Performance Measurements 145

with 16+16KB L1 and 1MB L2 cache. The configuration had 2GB of
RAM.

The Linux benchmark programs were compiled (with optimization)
using the GNU C compiler and library version 2.95.2, and were run on
Linux kernel version 2.4.1-SMP.

The benchmarking method is as follows. Each benchmark program
executes the tested function repeatedly in a loop sufficiently long to
measure accurate wall-clock time on an otherwise idle machine. The
total elapsed time is divided by the number of iterations to obtain the
time per function (the loop overhead was subtracted, where significant).
Each experiment is repeated at least 5 times and the arithmetic mean,
standard deviation and percentage error are computed for the results.
The mean time approximates the cost of calling the function in an inner
loop of an application program.

Minimal system call. When comparing operating system kernels it
is customary to measure the minimal system call time, which gives an
indication of the minimum overhead to invoke a system service. In
Unix the system call that is usually measured is getpid, which returns
the unique number of the current process. The equivalent in Aos is the
ActiveObject function in the Active module, which returns a pointer to
the active object executing on the current processor.

The results of the minimal system call benchmark (average of 5 runs
of 10 million loops each) are:

µs/call % error
Aos Linux Aos Linux

0.014 0.433 0.3 0.0

The result shows that the overhead of Aos for a simple system call
is approximately 30 times less than that of Linux. This is mainly due
to the fact that Aos is not split into user and kernel mode, and does
not use hardware protection domains. The equivalent of a Linux system
call in Aos is simply a statically bound procedure call.

Process creation. In the active object computing model, an active
object is often created when an application needs to perform a new task.
Therefore, an important performance characteristic of such a system is

146 Chapter 8. Evaluation

10 100 1000 10000

active objects (threads)

0

20

40

60

80

100

120

µ
s/

cr
ea

te

........ Aos

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Linux

N/A

Figure 8.1: Aos active object and Linux thread creation time.

the time taken to create and destroy an active object. The equivalent
in a conventional system is the time it takes to create and destroy a
lightweight process.

The Aos version of the process creation benchmark defines an active
object that does nothing except set a flag showing that it is terminating,
and then terminates. It provides a Join method that can be called to
wait until the termination flag is set. The main loop of the benchmark
creates a number of such active objects, and then calls the Join method
of each active object in turn to synchronize with its termination. The
time measured includes this synchronization, the allocation of the active
object, the invocation of its initializer, the creation of its process and
the context switch to and from its process.

The Linux version of the benchmark uses the LinuxThreads imple-
mentation of Posix threads, included in the GNU C library. The bench-
mark creates a thread (with pthread create), which does nothing but
terminate itself (with pthread exit). The main loop of the benchmark
creates a number of such threads, and then calls pthread join to synchro-
nize with the termination of each thread. The time measured includes
the clone system call to create the thread, the exit system call to termi-
nate the thread and the wait system call to wait for the termination.

The results of the process creation benchmark (average of 50 runs)

8.2. Performance Measurements 147

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

active objects (threads)

0

5

10

15

20

25
µ
s/

co
n
te

x
t

sw
it
ch

........ Aos

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Linux

Aos Linux
1 0.013 0.506
2 0.013 0.879
3 0.013 0.586
4 0.012 0.607
5 0.013 0.596
6 0.013 0.755

Figure 8.2: Aos active object and Linux thread scheduling time.

are shown in figure 8.1. The test was run with 10, 100, 1000 and 10000
simultaneous processes. The graph shows that the test time per pro-
cess is independent of the number of processes already running. The
percentage measurement error was less than 5% in all cases.

As Linux has a limit of approximately 1000 threads per address
space, the test with 10000 simultaneous threads could not be run. In
Aos the number of simultaneous active objects is limited by the con-
figured maximum size of the process stacks. With the default 128KB
maximum stack size per process, approximately 16000 active objects can
be created. Therefore the Aos test could be run with more simultaneous
processes than the Linux test.

For comparison, creating and terminating an active object in Aos is
approximately 5 times faster than creating and terminating a thread in
Linux.

Scheduling. The basic execution time overhead of processes are char-
acterized by the context switch time, which is the minimum time re-
quired to switch execution from one process to another, including the
cost of scheduling.

The Aos version of the scheduling benchmark defines an active object
that loops calling the Yield procedure in the Active module, which re-

148 Chapter 8. Evaluation

leases the processor to another process that is ready to run. The main
procedure of the benchmark creates a number of such active objects,
and then pauses for a fixed number of seconds while the test objects
run. Then it sets a global flag requesting the test objects to terminate,
and synchronizes with their termination, similar to the process creation
benchmark. Each test object counts the number of times it has looped,
and from this the average time per context switch is computed.

The Linux version of the benchmark is similar, except that it cre-
ates Posix threads, and uses the sched yield system call to release the
processor.

The results of the scheduling benchmark (average of 5 runs) are
shown in figure 8.2. The test was run with 1 to 18 simultaneous pro-
cesses. Once again, the graph shows that the test time per process is
independent of the number of processes already running. The percent-
age measurement error was less than 1%, except in the first 6 cases,
where the Linux test showed a measurement error of up to 15%.

The measurements with up to six processes shows a special case
of scheduling — when there are enough processors to service all ready
processes (the test machine has six processors). The Aos and Linux
schedulers test for this common case and avoid any additional work by
directly returning to the current process. Consequently these cases are
phenomenally faster than the rest — by a factor 1700 in Aos and factor
35 in Linux. The reason for the excellent performance of the special case
in Aos is that it consists of a single test of an integer variable, which is
pre-computed cheaply during normal operation. In Linux, the required
parameter is not available directly, and has to be computed by looping
over the per-processor data structures.

The results show that when the system is under light load (the ex-
ceptional case described above), the Aos scheduler is up to 60 times
faster than Linux. When the system is under heavier load, the time per
reschedule and context switch is roughly the same for Aos and Linux.
The latter case could possibly be improved in Aos by splitting the sched-
uler critical section, thereby increasing the potential parallelism.

Locking. Using multiple processes can speed up an application,
because it increases the potential parallelism. However, the application
pays a price for this parallelism, in the form of locking overhead for
critical sections in the manipulation of shared resources used by the

8.2. Performance Measurements 149

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

active objects (threads)

0

50

100

150

200

250

300
n
s/

cr
it
ic

a
l
se

ct
io

n

........ Aos

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Linux

Figure 8.3: Aos exclusive region and Linux mutex lock time (indepen-
dent critical sections).

processes when they interact. To design efficient parallel applications
it is therefore important to know the cost of locking operations. The
locking benchmark was designed to measure this cost, both in the case
of no lock contention and in the case of heavy lock contention.

The Aos version of the locking benchmark defines an active object
with an exclusive method that is called repeatedly from a loop in the
body of the object. The main procedure of the benchmark creates
several such objects that run simultaneously. In the first variation of the
benchmark, each object calls its own exclusive method, independently
of the other objects, and in the second variation, all objects call the
exclusive method of the first object, which results in heavy contention
of that object’s lock. In both cases, the test objects terminate after a
fixed number of iterations. The total time from when the first object
is created until when the last one has terminated is measured and from
this the average overhead per critical section is computed.

The Linux version of the benchmark is similar, except that it creates
Posix threads, and uses mutex locks from the Posix thread library to
perform the locking operations.

The results of the locking benchmark (average of 5 runs) in the case
of no contention and heavy contention are shown in figures 8.3 and 8.4,

150 Chapter 8. Evaluation

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

active objects (threads)

0

10

20

30

40

50

60

70

80

90

100

µ
s/

cr
it
ic

a
l
se

ct
io

n

........ Aos

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Linux

Figure 8.4: Aos exclusive region and Linux mutex lock time (with heavy
contention).

respectively. The performance of Aos exclusive regions are somewhat
slower, but still comparable with Linux pthread mutex locks. This could
be attributed to the additional overhead of condition checking, but it is
more likely due to the use of a fine-grained lock to protect the scheduler
data structures. There are still opportunities to simplify and improve
the performance of the locking implementation.

8.3 Portability and Flexibility

An appropriate way to evaluate the portability and flexibility of a sys-
tem is to let someone other than the author adapt it to a different
environment or purpose. The portability of the Aos system was evalu-
ated by a port to the DNARD computer, summarized in section 8.3.1.
Although the Aos kernel was designed to primarily support the Active
Oberon language, it proved capable of supporting another language en-
vironment, as summarized in section 8.3.2.

8.3. Portability and Flexibility 151

8.3.1 DNARD port

B. Egger ported the Aos system to the DNARD (Shark) network com-
puter [99] in an ETH diploma thesis project [34] supervised by the
author. The full system was ported, including the active object run-
time system, the Active Oberon compiler, the device driver and file sys-
tem frameworks, the TCP/IP services, the window manager and XML
browser, and the Oberon system and applications. Device drivers were
developed for the display, keyboard, mouse and ethernet controller. The
project was completed in four months of full-time work.

The Shark machine was chosen as a target because it uses an ARM
processor [109]. These RISC processors are used in many mobile de-
vices because of their low power requirements and relatively high per-
formance. The port validated the applicability of the Aos design on a
modestly-sized singleprocessor machine.

The work also serves as a guideline for porting Aos to other plat-
forms, highlighting which parts of the system are less portable.

A major part of the porting effort was the development of an ARM
backend with simple optimizations and an assembler for the parallel
Active Oberon compiler (cf. 7.3). The compiler was first used as a cross-
compiler running on a personal computer with Aos, and later ported to
the Shark Aos system itself.

The adaption of the active object runtime system formed another
major part of the work, of which memory management, interrupt han-
dling and process management formed the largest subparts.

The development of device drivers was simplified by the PC-style ar-
chitecture of the Shark, and the existence of a Native Oberon port [111].
As the Shark is disk-less, a simple hybrid RAM/TFTP file system was
developed.

Once the compiler, runtime system and device drivers were done,
porting the rest of the system was relatively simple, with only minor
problems presented by some modules that use low-level language fea-
tures (e.g., the SYSTEM module and inline assembler) for efficiency.

This project demonstrated that Aos can be ported to another archi-
tecture relatively easily. A possible improvement identified is to split the
Active module into a processor-dependent and a processor-independent
part. This would simplify future ports as only the processor-dependent
part would need to be modified.

152 Chapter 8. Evaluation

8.3.2 Java Environment

P. Reali, R. Laich and Gianni Banfi developed a Java virtual machine for
Aos as part of a language interoperability research project [10, 96, 102].

The Java environment takes advantage of Aos kernel memory man-
agement, garbage collection, type support, method support and process
support. A Java class library was ported, and its native methods were
implemented in Active Oberon with the help of Aos system services.

The Aos module loader was generalized slightly to support module
loader plugins. The Java environment uses such a plugin to integrate
a byte code compiler that compiles Java class files on-the-fly. This
allows Java classes to be loaded similarly to Active Oberon modules
and enables bi-directional interoperability between Active Oberon and
Java.

The Java language includes an interface concept, which allows a class
to implement one or more pre-declared interfaces. A similar concept is
not present in the standard version of the Active Oberon language and
Aos runtime system. Therefore an additional runtime module was im-
plemented to support interfaces, and the module loader was modified
to automatically load this module when required. This mechanism was
also used to develop an experimental version of the Active Oberon lan-
guage that includes a similar interface concept.

The Java environment for Aos demonstrates the flexibility of the
Aos core.

8.4 System Size

The sizes of the various Aos subsystems are shown in table 8.1. The
middle three columns specify the size in bytes of the global variables,
global constants (including strings), and the Intel IA-32 object code,
respectively. The last column specifies the number of lines of (Active)
Oberon source. More detailed figures are shown in appendix A.

For a native multiprocessor operating system, Aos is small, with a
kernel of 7,210 lines of source or about 50KB of object code. For com-
parison, the 4.4BSD kernel (cf. 8.1.2) consists of 58,289 lines of C code
(excluding file systems, network protocols and device drivers, which
add another 143,962 lines) [65]. Version 2.4 of the Linux kernel consists
of approximately 420,000 lines of C code (excluding drivers, file sys-

8.4. System Size 153

Subsystem Var Const Code Lines
Kernel 18088 1296 48434 7210
Service support 164 1620 30001 2532
File system 96 1928 55462 4624
User interface 128 792 20468 2204
Network 1512 3368 62126 6200
Oberon for Aos 2396 3332 112893 8667
Total 22384 12336 329384 31437

Table 8.1: Aos subsystem sizes.

tems and architecture-specific code, which bring the total to 2.4 million
lines) [128], and has a minimum size of around 500KB on Intel proces-
sors. Microsoft boasts that Windows 2000 “consists of over 29 million
lines of code”, but does not say what is included in this figure, so it is
not possible to compare specifics.

154 Chapter 8. Evaluation

Chapter 9

Conclusion

This chapter summarizes the work that has been done and outlines
possible future work. Specific contributions of this work are listed at
the end of chapter 1.

9.1 Summary

Our goal was to develop an operating system as lean and transparent as
Oberon, but more powerful and widely applicable, not only for single-
user workstations, but also for servers, embedded control systems and
small devices. The resulting system, called Aos, is based on the Ac-
tive Oberon language which unifies objects and processes in the active
object concept. The kernel of the system consists of a native runtime
environment for Active Oberon.

The Active Oberon language is an extension of the Oberon language
that allows the representation of concurrent processes as active objects,
which are objects with intrinsic concurrent activity. For synchronizing
processes, the unusual await primitive is used which allows the program-
mer to directly specify an arbitrary boolean precondition for continued
execution of a process. Our contribution to the language development
is a small, efficient and reliable multiprocessor runtime system running
natively on modern machines.

The Aos operating system is a modular, extensible system in the
style of Oberon, with modules arranged in three conceptual layers: the
active object runtime system (kernel), shared system services, and ap-

155

156 Chapter 9. Conclusion

plications. Except for the kernel, all modules are dynamically loadable,
which allows flexible configuration and extension of the system at run-
time. System service modules and their clients are decoupled with a
simple plugin module technique, which facilitates interchangeable sys-
tem services based on standard interfaces to increase flexibility. A more
general implementation of the Oberon command concept is used to in-
stantiate plugin modules and the objects under their control.

The primary purpose of the Aos kernel is to be a complete run-
time environment for the Active Oberon language that also allows the
programming of system-level services, e.g., device drivers. The ker-
nel is tuned for this language, but has also been used to support the
Java language. The object model supported by the kernel includes type
extension (single-inheritance subclassing), type-bound procedures (vir-
tual methods), exclusive type-bound procedures (synchronized meth-
ods), object-bound processes and general condition synchronization.

The first version of the Aos kernel was implemented for the Intel
IA-32 multiprocessor system architecture, which has a typical small-
scale (2–8 processor) symmetric multiprocessing architecture. The ker-
nel is composed of several relatively small modules, each with a distinc-
tive purpose and simple interface, which contributes to the transparency
of the system. The areas covered by the various modules are (bottom-
up): boot loader and hardware environment interface, fine-grained locks
for kernel data structures, serial console output for debugging, virtual
address space management, object storage management (heap and gar-
bage collection), low-level interrupt handling, modules and types, active
objects, multiple processors and portable kernel interface.

The middle layer of the system contains the shared operating sys-
tem services (e.g., the file and communication subsystems) and their
device drivers. Service modules typically export an abstract object-
based interface, which is then implemented in a plugin module that is
not directly imported by the client. This design helps to reduce the
size of the system. The file subsystem defines a system-wide file name
space, with names consisting of a file system specifier and a local file
name. The specifier is a prefix used to locate a specific file system ob-
ject, which then interprets the local file name part. This allows the
name space to be extended at runtime with different kinds of file sys-
tem implementations, e.g., the Aos disk file system that has a flat name
space and the FAT file system that has a hierarchical name space. Disk

9.1. Summary 157

devices are abstracted with a simple, but general, interface. The com-
munication subsystem is responsible for communication with external
machines. It defines and implements interfaces for the TCP/IP inter-
net protocols based on abstract link layer device driver objects. The
user interface subsystem provides basic support for user interfaces in
the form of abstract display and input device objects.

The top layer of the system contains user applications. The most
important example application developed by the author is a port of the
Native Oberon system to Aos. This allows existing ETH Oberon ap-
plications to run on the new system, which also allows the new system
to host its own development tools. The Oberon system can run as a
full-screen application or in a window co-existing with other Aos appli-
cations. All in all, the implementation of only nine low-level modules of
the Oberon system had to be modified and one additional driver mod-
ule implemented. Another important application is the VNC viewer,
which allows remote-controlling of applications running on other oper-
ating systems like Unix and Windows. Users of Aos have developed
several other services and applications (including a parallel compiler,
window manager, XML document-based user interface toolkit, Java en-
vironment, VNC server, dynamic HTTP server, XML browser, etc.),
demonstrating the capabilities of the system.

The flexible modular design of the system makes it suitable for many
different application areas and hardware environments, inviting compar-
ison with a wide range of systems. The main advantage compared with
large systems is its transparency, which promises to be an advantage
when building reliable, secure, and efficient custom applications.

Specific characteristics of the Aos and Linux kernels were compared
using microbenchmarks. In measurements of basic system call overhead
and process creation overhead, Aos is 30 times and 5 times faster, re-
spectively. These results show the reduced overhead of the extensible
system approach. In measurements of scheduling and locking overhead,
it compares favourably with the highly-optimized Linux threads imple-
mentation.

Users of the system have demonstrated its portability and flexibility
in two projects. In the first, the system was ported to a different proces-
sor and system architecture in four months, including the development
of a new compiler backend and device drivers. This is a significant devel-
opment, because the relevant processor is used in many mobile devices,

158 Chapter 9. Conclusion

a possible application area for Aos. The second project demonstrated
the flexibility of the runtime system through the development of a Java
environment based on the kernel. This allows Java and Active Oberon
programs to interoperate by sharing data and procedures.

9.2 Future Work

The aim of any operating system is to be a platform for further work.
The various applications and extensions developed by users of Aos have
demonstrated its applicability as a platform, but of course there is al-
ways room for improvement.

Conceptual improvements. An open question is how the Active
Oberon language could be improved. In a parallel-running project [26],
the type extension concept has been replaced with a definition concept,
which enables object orientation based on interfaces instead of subclass-
ing. A possible project is the reimplementation of the system using the
new dialect, and a comparison of the size, complexity and performance
of the two implementations.

A concept that was considered during the design of the system, but
not realized in the end, is hierarchical namespaces for modules. It is still
not conclusive whether a namespace facility is really needed, since the
relatively small scale of the system allows simpler solutions. The solu-
tion taken was to name the modules of different subsystems or authors
with short unique prefixes, thereby avoiding module name conflicts.

The cooperative environment assumption (cf. 3.1) was made con-
sciously to simplify the system design and implementation. The strong
typing and range checking built into the language avoids most problems
caused by erroneous programs. However, if programs that use low-level
facilities of the language or system have errors, they can cause the sys-
tem to become unstable, e.g., due to memory corruption. One way to
avoid this is to avoid using these low-level features. Conformance is easy
to check by checking the import list of the modules concerned. Another
solution might be to add a derivative of the domain concept of the
Vamos system [84], allowing resources to be allocated on a domain-by-
domain basis, and sections of the shared address space to be assigned to
different programs, thereby containing faults to specific domains. But
instead of complicating the system in this way, one might investigate

9.2. Future Work 159

where and why low-level features are used and replace them with safe
alternatives, eventually removing all such unsafe features from the lan-
guage.

Implementation improvements. The implementation of some por-
tions of the system could probably be improved.

A minor point is that the size of the runtime system implementation
can be reduced by removing some tracing and testing code. This would
have the side effect of moving the Out module to a higher level of the
module hierarchy, possibly to the system services layer, which would be
conceptually cleaner.

Although the microbenchmarks of object locking have shown that
its performance is comparable to that of Linux threads, it can probably
be improved somewhat. A first step could be to simplify the implemen-
tation of locks even further, especially the interaction with fine-grained
locks. There are also opportunities for tuning, e.g., inlining the most
common locking operations, but it is questionable if this should be done:
it would couple the runtime system and the compiler more closely, which
would reduce flexibility.

The garbage collection algorithm (cf. 5.6) could be improved. The
main problem is that it is a stop-and-collect algorithm that can not run
concurrently with mutator processes. Although it is adequate for inter-
active and server use, for realtime use the delays in the order of tens of
milliseconds may be too intrusive. Several possible improvements could
be investigated [15, 50, 55]. The virtual memory manager could be uti-
lized to perform a mostly-parallel collection, where the marking process
runs concurrently with the mutator. Pseudo-incremental garbage col-
lection could be used so that when the system is idle, a non-intrusive
restartable garbage collection is initiated. The pointer rotation algo-
rithm could be made non-intrusive (which probably only requires an
additional tag field per heap block), so that it can run concurrently
with mutator processes. Sweeping could be delayed until allocation
time (lazy sweeping) to amortize sweep time and reduce the pause time
of the collector. The cache performance of the algorithm might be
improved by rearranging the heap structures. By using slightly more
storage (e.g., one word extra per heap block) and not trying to save
every bit, the algorithms could be simplified more and perhaps speeded
up in the process.

160 Chapter 9. Conclusion

Porting to other environments. A big strength of a small system
is the ease with which it can be ported to new architectures and envi-
ronments. A further advantage is that the type-safe language provides a
clean abstraction for application programs and increases their portabil-
ity also. Therefore a new port of the system can often immediately be
used to run many existing applications without modification. This was
demonstrated by the Shark port, which supported most existing appli-
cations once the basic system was finished. Ports to other ARM-based
devices are under way, specifically a handheld device and an experimen-
tal wearable device.

Extended system services. The services provided by the system
could be extended.

More standard network protocols and file systems could be imple-
mented, as well as drivers for more devices. However, the amount of
work to be done should not be underestimated. Standards are often de-
veloped by large corporations that have an entrenched interest in com-
plexity, in order to frustrate competition [86]. The decision to imple-
ment Aos first for industry-standard hardware had the advantage that
it could run on powerful and inexpensive machines, but also brought the
burden of a wide variety of incompatible hardware components requir-
ing custom drivers. For further development it would be advantageous
to focus on niche applications where a small system has advantages,
e.g., custom-built devices and embedded systems with a stable hard-
ware composition.

The Java language environment could be developed further and
other similar language environments implemented, but the same caveats
as above hold for these environments.

Applications. Regardless of possible improvements, the system could
be used in more applications, either for their own sake, or to further
evaluate its strengths and weaknesses. A fruitful area might be the
development of internet servers and network applications, perhaps in
an embedded or mobile environment with small devices.

Appendix A

Module Sizes

Section 8.4 gives an overview of the sizes of various Aos subsystems.
This appendix presents the module sizes in more detail.

The following tables show the sizes of the various modules that make
up the Aos kernel and system. In each table, the first column specifies
the module name. The middle three columns specify the size in bytes of
the global variables, global constants (including strings), and the Intel
IA-32 object code, respectively. The last column specifies the number
of lines of (Active) Oberon source. The modules have all been compiled
with the parallel Active Oberon compiler and include some debugging
and testing code. The modules of the Aos kernel and system are prefixed
with ‘Aos’ in the implementation, to prevent name clashes with existing
Native Oberon modules.

Table A.1 shows the modules of the active object runtime kernel.
These are defined as the minimum set of modules that can be taken
together as a unit to support Active Oberon programs running on a
bare IA-32 machine.

Table A.2 shows the modules that provide support for system ser-
vices modules. They are not essential for the execution of Active Oberon
programs and are therefore not considered part of the runtime system
kernel.

Tables A.3 through A.5 show independent modules of the system
services layer and table A.6 shows the base modules of Oberon for Aos.

161

162 Appendix A. Module Sizes

Module Var Const Code Lines
AosBoot 2180 40 3462 808
AosLocks 4268 16 2227 428
AosOut 2048 96 3484 413
AosMemory 2916 24 6344 962
AosHeap 4236 424 9661 1127
AosInterrupts 1736 44 2930 609
AosModules 100 148 4698 503
AosActive 376 120 8900 1346
AosProcessors 220 280 5057 717
AosKernel 8 104 1671 297
Total 18088 1296 48434 7210

Table A.1: Runtime kernel module sizes.

Module Var Const Code Lines
AosPlugins 4 84 1999 176
AosCommands 4 148 2507 170
AosIO 60 92 7333 788
AosTrap 92 1004 8071 628
AosLoader 4 292 10091 770
Total 164 1620 30001 2532

Table A.2: Service support module sizes.

Module Var Const Code Lines
AosDisks 4 80 3455 310
AosATADisks 28 848 14166 1329
AosCaches 0 76 2457 220
AosFS 12 148 10058 1120
AosDiskVolumes 48 332 5266 337
AosRAMVolumes 4 56 1152 103
AosDiskFS 0 388 18908 1205
Total 96 1928 55462 4624

Table A.3: File system module sizes.

163

Module Var Const Code Lines
AosInputs 24 128 1846 298
AosKeyboard 40 80 5223 510
AosMousePS2 12 32 1472 169
AosDisplays 8 68 2485 267
AosDisplayPermedia2 40 336 8570 868
AosDisplayLinear 4 148 872 92
Total 128 792 20468 2204

Table A.4: User interface module sizes.

Module Var Const Code Lines
AosNet 36 76 1892 385
Aos3Com509 84 160 4756 455
Aos3Com90x 152 1260 8449 758
AosIP 184 336 5807 809
AosUDP 40 20 3239 317
AosDNS 120 104 5923 413
AosTCP 440 208 22289 2148
AosDHCP 0 600 3742 289
AosTCPServices 0 16 974 179
AosTestServer 20 76 1383 161
AosHTTPServer 436 512 3672 286
Total 1512 3368 62126 6200

Table A.5: Network module sizes.

164 Appendix A. Module Sizes

Module Var Const Code Lines
Kernel 60 28 1214 422
Disks 0 16 744 158
FileDir 4 8 264 32
Files 12 44 5779 601
Modules 268 24 474 66
Objects 124 92 10276 882
AosOberonInput 4 120 1816 178
Display 1120 124 7217 666
Input 20 20 826 140
Viewers 28 24 4057 308
Fonts 16 76 4207 281
Texts 304 548 20485 1293
Oberon 120 252 8272 842
MenuViewers 4 64 5349 311
TextFrames 204 264 21888 1145
System 108 1628 20025 1342
Total 2396 3332 112893 8667

Table A.6: Oberon for Aos module sizes.

Appendix B

Technical Notes

This appendix describes the layout of heap blocks in detail. It is in-
tended for reference when reading the Oberon source of the Heap module
(cf. 5.6).

Object Storage Layout

Figures B.1 through B.6 show the layout of heap blocks. Every heap
block has a tag word in front of it pointing to a type descriptor for the
block. The layout is based on Native Oberon, except for the protected
record block (figure B.6), which is unique to Aos. The type descriptors
were slightly modified to allow pointer offsets to be negative. The Native
Oberon structures are based on those of other ETH Oberon systems [27].

All heap blocks start with a tag, which is a pointer to a separate type
descriptor block or a meta-type descriptor contained in the heap block
itself. Bit 0 of the tag — the mark bit — is used during the mark phase
of the collector to mark a block that has been reached by the traversal.
It is cleared during the sweep phase, so that type tests can be performed
without having to mask the low bits. Bit 1 — the array bit — is set on
an ArrBlk and cleared on all other blocks. With the low two bits masked
off, the tag value points to the size of the block, which is stored in the
type descriptor or meta-type descriptor (the masked bits are indicated
with an ‘M’ in the figures). The field offsets of pointer values in the heap
block are stored directly following the size value (see figure B.5), and are
terminated by a sentinel that also encodes the number of pointer offset
values. During the mark phase the tag (excluding the low two bits) is

165

166 Appendix B. Technical Notes

modified to step through the pointer offset table and thereby store the
recursion state of the traversal [85]. When the garbage collector is not
running, Bit 2 of the tag is always cleared, and Bit 3 is set if the block
has a real type descriptor, and cleared if it has a meta-type descriptor.

The alignment of heap block fields are indicated on the right-hand
side of the diagrams. The first data field of a heap block is always aligned
so that any basic data type can be placed at that address (address
divisible by 8). In some cases the garbage collector uses the alignment
restrictions to recognize what kind of block a pointer is pointing to, by
examining the low bits of the pointer value. These bits are indicated in
the diagrams, with ‘X’ characters indicating don’t-care bits.

The SysBlk, TypeDesc and ProtRecBlk have a meta-type descriptor
included at the start of the block. This serves only to describe the size of
the block itself, and includes an empty pointer offset list. It is possible
that the conservative marking algorithm used for process stacks finds
a phantom pointer to the type descriptor, and care has to be taken to
handle these cases in the garbage collector. Possible phantom pointers
are indicated with dashed boxes in the figures.

In Native Oberon, a negative sentinel value is used to encode the
number of pointer offsets in a type descriptor and meta-type descriptor.
In Aos, this is not possible as a ProtRecBlk also has legitimate negative
pointer offsets in the object header. Instead, a small negative constant
(MPO), which is less than the smallest negative pointer offset, is used as
sentinel. When the garbage collector finds a pointer offset less than this
value, it has reached the end of the pointer offset list, and can retrieve
the number of pointer offsets from the value found by subtracting MPO.

167

−4
tag X100Mq�6

TypeDesc

0

record fields

[padding]

pointer 00000 q - 6

?

recSize

adr = 28(mod 32)

adr = 0(mod 32)

adr = 28(mod 32)

Figure B.1: A RecBlk is used for a record.

−4
tag 0000M

0
size

4
MPO− 4

8

padding

20
indirect 00000q�

��� qq -

pointer 11000 q -

pointer 00000

adr = 28(mod 32)

adr = 0(mod 32)

adr = 8(mod 16)24

data

[padding]

6

?

size

adr = 28(mod 32)

Figure B.2: A SysBlk is normally allocated with SYSTEM.NEW.

168 Appendix B. Technical Notes

−4
tag X101M

0
lastElem

4
currElem

8
firstElem

12
lend−1 = n

.

..
len0 = m

4(3 + d)
[padding]

4(3 + d + (d − 1) mod 2)

elem0,...,0

elem0,...,1

..

.

elemm−1,...,n−1

[padding]

adr = 0(mod 8)

adr = 28(mod 32)

q�6
Element TypeDesc

6

?
recSize

00000pointer q - q �

��

q �

��

adr = 28(mod 32)

adr = 0(mod 32)

Figure B.3: An ArrBlk is used for an array when the elements contain
pointers.

169

−4
tag 0000M

0
size

4
MPO− 4

8

padding

20
indirect 00000q�

��� qq -

pointer 11000 q -

pointer 00000

adr = 28(mod 32)

adr = 0(mod 32)

adr = 8(mod 16)

12
lend−1 = n

.

..
len0 = m

4(3 + d)
[padding]

4(3 + d + (d − 1) mod 2)

elem0,...,0

elem0,...,1

.

..

elemm−1,...,n−1

[padding]

adr = 0(mod 8)

adr = 28(mod 32)

24/0

padding

6

?

size

Figure B.4: A SysBlk is used for an array when the elements do not
contain pointers.

170 Appendix B. Technical Notes

−4
tag 0000M

0
size

4
MPO− 4

8
self

12
flags

16
[moduleAdr]

20
name

.

..
[padding]

.

.

.

methodm−1
.
.
.

method0
−72

−68
tag15

..

.−8
tag0−4

indirect 00000
0

recSize
4

ptrOfs0
.
.
.

ptrOfsn−1

MPO− 4(n + 1)

[padding]

pointer X1000 q -

pointer 00000 q - 6

?

size

q �

��
q�

��� q adr = 28(mod 32)

adr = 0(mod 32)

adr = 8(mod 16)

adr = 28(mod 32)

Figure B.5: A TypeDesc for a record type is similar to a SysBlk.

171

−4
tag 0000M

0
size

4
MPO− 4

8
lockCount

12
awaitingLock.head

16
awaitingLock.tail

20
awaitingCond.head

24
awaitingCond.tail

28
lockedBy

32

padding

44
recTag X1000q�6

TypeDesc

48

record fields

[padding]

pointer 10000 q -

pointer 00000 q -
q�� 6

?

size

6

?

recSize

adr = 28(mod 32)

adr = 0(mod 32)

adr = 16(mod 32)

adr = 28(mod 32)

Figure B.6: A ProtRecBlk is used for a protected record.

172 Appendix B. Technical Notes

Appendix C

Alternative Interrupt Handling

Model

Section 4.3.3 describes a high-level interrupt handling model that was
implemented in the kernel. Here an alternative model is presented. This
model was not implemented, due to its complexity in comparison to the
implemented model.

Await-Interrupt Model

It is appropriate to view a device driver as a cyclic process that awaits
and reacts to interrupts [129]. The handler process communicates with
its client processes using the normal interprocess communication facili-
ties.

The await-interrupt model for interrupt handling uses active objects,
augmented with the await-interrupt statement, which suspends the cur-
rent process until a specified interrupt occurs.

Figure C.1 is an example of an await-interrupt model device driver
for a device periodically producing unsolicited data. The device has two
states: uninitialized and initialized, and generates an interrupt when it
has been initialized. After initialization, the device can be programmed
to generate an interrupt when unsolicited data becomes available. The
driver is an active object, with a body for handling interrupts, and
methods for its clients, who communicate with the interrupt handler
via exclusive blocks and await statements (cf. 2.2.2).

173

174 Appendix C. Alternative Interrupt Handling Model

TYPE Driver = OBJECT
VAR ”driver state”(* shared by client and driver processes *)

PROCEDURE Read(...); (* client process calls this to read data *)
BEGIN {EXCLUSIVE} (* mutually exclusive with driver process *)

”return state information”
END Read;

BEGIN {ACTIVE} (* this is the life-cycle of the driver process *)
”initialize device”
”await-interrupt”(* wait for device to respond *)
LOOP

”set up device to interrupt when data available”
”await-interrupt”(* wait for device to generate interrupt *)
BEGIN {EXCLUSIVE} (* mutually exclusive with client *)

”get data from device and modify driver state”
END

END
END Driver;

Figure C.1: Active Oberon pseudo-code of a device driver using the
await-interrupt model.

175

The main advantage of the await-interrupt model is that the device
driver can be structured to directly reflect the state machine model of
the device, without resorting to an event-driven programming style.

Non-Sharable Await-Interrupt Algorithm

Under the assumption that at most one process handles an interrupt
(i.e., interrupts are not sharable between processes), the await-interrupt
statement of the await-interrupt model can be implemented as a call to
a runtime procedure that does the following:

1. The running process (the interrupt-handling process) is attached
to the specified interrupt. This means that an entry is made in
the interrupt vector table to associate the handler process with
the interrupt.

2. The interrupt is unmasked by programming the interrupt con-
troller.

3. The running process is suspended.

4. The scheduler is invoked to select another process to run, and
a context switch is made to continue it from where it was last
suspended.

When the specified interrupt occurs, the runtime system does the
following:

1. The interrupt is masked. This is required to give the interrupt
handler process time to remove the source of the interrupt signal.
Otherwise, the interrupt would be signalled continually and will
lock up the processor.

2. The suspended process is detached from the interrupt and enabled.

3. The scheduler is invoked, and if the newly enabled process has a
sufficiently high priority, a context switch is made to it immedi-
ately. Otherwise, the interrupted process continues to run until it
is suspended, or its time slice expires.

Even though it requires the masking of interrupts, this algorithm
can also be applied to handle nonmaskable interrupts. A nonmaskable

176 Appendix C. Alternative Interrupt Handling Model

interrupt is similar to a normal interrupt, except that it has a very high
priority, and can interrupt the processor even when it has disabled other
interrupts. Despite the name, a nonmaskable interrupt can usually be
masked by the interrupt controller (but not directly by the processor).

Sharable Await-interrupt Algorithm

Here the algorithm is generalized for the case where several processes
can wait on the same interrupt (i.e., the interrupt is shared between
different devices and their driver objects). We consider disjunctive sets
of processes: each interrupt number has a waiting set and a processing
set, and there is a global satisfied set.

• Initially all processes are in the satisfied set, meaning that they
are not awaiting any interrupts.

• When a process in the satisfied set executes the AwaitInterrupt(n)
call, it moves to the waiting set for interrupt n and is suspended
until interrupt n next occurs.

• When interrupt n occurs, all processes in its waiting set are en-
abled and moved to its processing set. Then the scheduler is in-
voked, similar to the case described in the non-sharing algorithm.
The handling processes can be scheduled to run in parallel on one
or more processors.

• When a process in the processing set of interrupt n executes Await-
Interrupt(m), it is moved to waiting set m, and suspended until
interrupt m next occurs. In the common case, m is equal to n.

• When a process in the processing set of interrupt n terminates, it
is moved to the satisfied set.

The reason for distinguishing the sets of processes is that the rule
for masking interrupts can be stated as: Interrupt n is unmasked if, and
only if, its waiting set is non-empty and its processing set is empty. In
other words, an interrupt is unmasked if at least one process is waiting
for it, unless some processes are still handling a previous occurrence. If
a process enters the waiting set while the processing set is non-empty,
it has no effect on the masking of the interrupt.

177

�� �
waiting n

6
N1 ?

N6

� -

?

�
N2

N3�� �
processing n -
N4

�� �
satisfied � M4

��

M5�� �
processing m

?
M16

M6
�

6
M2

M3�� �
waiting m� -

N5

Figure C.2: State transitions in the active interrupt handling model.

The following data structures are used to implement the await-
interrupt model efficiently:

• For every interrupt number there is a list of processes, and two
integer counters each for the cardinality of the waiting set and the
processing set, respectively. The list is initially empty, and the
counters are zero. The list is used to store the processes in the
waiting set and processing set.

• Every process has an integer storing its currently bound interrupt,
which is initially -1, signifying that no interrupt is bound. Inter-
rupt numbers are non-negative.

Figure C.2 shows all possible state transitions for interrupt handling.
In reality, there are waiting and processing states for every possible
interrupt number, but it suffices to describe two of each (n and m).
The possible state transitions for interrupt n are:

N1 AwaitInterrupt(n) is executed by a process in the satisfied set.

N2 Interrupt n occurs.

N3 AwaitInterrupt(n) is executed by a process in processing set n.

N4 The process terminates itself.

N5 AwaitInterrupt(m) is executed by a process in processing set n.

178 Appendix C. Alternative Interrupt Handling Model

Waiting Processing Bound Scheduler and
Counter Counter Interrupt Process List

N1 w′
n = wn + 1 φ b′r = n suspend(r)

l′n = ln + r
N2 w′

n = 0 p′n = wn φ ∀q ∈ ln : enter(q)
N3 w′

n = wn + 1 p′n = pn − 1 φ suspend(r)
N4 φ p′n = pn − 1 b′r = −1 suspend(r)

l′n = ln − r
N5 w′

m = wm + 1 p′n = pn − 1 b′r = m suspend(r)
l′n = ln − r
l′m = lm + r

N6 w′
n = wn − 1 φ b′r = −1 l′n = ln − q

Figure C.3: State transition actions in the active interrupt handling
model.

N6 The waiting process is terminated from outside by another process.

The state transitions for other interrupt numbers, M1–M6, etc., are
symmetric to N1–N6.

Figure C.3 shows the actions corresponding to the state transitions
for interrupt handling. wn is the value of interrupt n’s waiting counter
before the transition, and w′

n is the value after the transition. Similarly,
pn is the value of the processing counter and ln is the process list of
interrupt n. r is the running process, and br is its bound interrupt
number. The suspend(r) operation suspends the running process and
the enter(q) operation enables suspended process q by entering it in the
scheduler queue. φ indicates no operation.

The interrupt masking rule can now be paraphrased as: M ′
n = (w′

n =
0) ∨ (p′n 6= 0). The values of the counters before and after a transition
are used in the implementation to decide whether to mask or unmask
an interrupt.

The tabular notation precisely documents the implementation that
was sketched at the start of this section. For example, transition N1 in-
crements the waiting counter, binds interrupt n to the running process,
suspends it and adds it to the list of interrupt n. This corresponds with
a process being moved to the waiting set.

The AwaitInterrupt(n) (for any interrupt n) system call implements
transitions N1, N3 and N5, so its first task is to determine which tran-
sition is relevant. N1 can be recognized by the running process’s bound

179

interrupt being −1. It is easy to see from figures C.2 and C.3 that this
characterizes the satisfied state. N3 can be recognized by the bound
interrupt being equal to the parameter n, and N5 is the case where the
bound interrupt is not equal to the parameter n.

Transitions N2 and N4 are implemented straightforwardly by the
interrupt handler procedure for interrupt n, and the process termination
system call, respectively.

Transition N6 is required when cleaning up a device driver object. A
special TerminateInterrupt system call can be provided for this purpose.

180 Appendix C. Alternative Interrupt Handling Model

List of Figures

2.1 Objects and processes: two viewpoints. 8
2.2 Example population of communicating objects. 10
2.3 A generic bounded buffer in Active Oberon. 12
2.4 An active object that awaits and reacts to messages on a

network connection. 15
2.5 Extending a bounded buffer to form an active producer

object. 16
2.6 A test module for the bounded buffer of figure 2.3. . . . 17

3.1 Overview of the Aos system structure. 22
3.2 Plugin object registry example: disk drivers. 26

4.1 Runtime system location (traditional left, Aos right). . 32
4.2 Active Oberon pseudo-code of a device driver. 47

5.1 Intel SMP multiprocessor architecture (simplified). . . 50
5.2 Aos runtime system module structure. 52
5.3 Typical IA-32 system physical memory layout. 60
5.4 Address space organization (32MB RAM shown). . . . 61
5.5 Address space organization (4GB RAM shown). 63
5.6 All process states and state transitions. 75
5.7 Overview of the process data structures. 78

6.1 File subsystem structure. 100
6.2 Communication subsystem structure. 107
6.3 TCP object call graph. 111
6.4 User interface subsystem structure. 119

181

182 List of Figures

7.1 Oberon for Aos user interface modules. 126
7.2 VNC example [100]. 129

8.1 Aos active object and Linux thread creation time. . . . 146
8.2 Aos active object and Linux thread scheduling time. . . 147
8.3 Aos exclusive region and Linux mutex lock time (inde-

pendent critical sections). 149
8.4 Aos exclusive region and Linux mutex lock time (with

heavy contention). 150

B.1 A RecBlk is used for a record. 167
B.2 A SysBlk is normally allocated with SYSTEM.NEW. . . 167
B.3 An ArrBlk is used for an array when the elements contain

pointers. 168
B.4 A SysBlk is used for an array when the elements do not

contain pointers. 169
B.5 A TypeDesc for a record type is similar to a SysBlk. . 170
B.6 A ProtRecBlk is used for a protected record. 171

C.1 Active Oberon pseudo-code of a device driver using the
await-interrupt model. 174

C.2 State transitions in the active interrupt handling model. 177
C.3 State transition actions in the active interrupt handling

model. 178

List of Tables

5.1 Aos runtime system module responsibilities. 53
5.2 IA-32 architecture paging options. 59

8.1 Aos subsystem sizes. 153

A.1 Runtime kernel module sizes. 162
A.2 Service support module sizes. 162
A.3 File system module sizes. 162
A.4 User interface module sizes. 163
A.5 Network module sizes. 163
A.6 Oberon for Aos module sizes. 164

183

184 List of Tables

Bibliography

[1] 3Com Inc., 5400 Bayfront Plaza, Santa Clara, CA 95052-8145.
Etherlink III Parallel Tasking ISA, EISA, Micro Channel and
PCMCIA Adapter Drivers Technical Reference, 1994.

[2] 3Com Inc., 5400 Bayfront Plaza, Santa Clara, CA 95052-8145.
3C90x Network Interface Cards Technical Reference, 1997.

[3] 3Dlabs Inc. Permedia 2 Programmer’s Reference Manual, 1997.

[4] Adaptec Inc., 691 South Milpitas Blvd., Milpitas, California
95035. SCSI ASIC Solutions: AIC-7890, AIC-7891, AIC-3860
Design-in Handbook, 1997.

[5] G. A. Agha. ACTORS: A Model of Concurrent Computation in
Distributed Systems. The MIT Press, 1986.

[6] G. A. Agha. Concurrent Object-Oriented Programming. Com-
munications of the ACM, 33(9), September 1990.

[7] G. R. Andrews. Foundations of Multithreaded, Parallel, and Dis-
tributed Programming. Addison-Wesley, 2000.

[8] ANSI. T13-1153D Working Draft: Information Technology —
AT Attachment with Packet Interface Extension (ATA/ATAPI-
4), 1997.

[9] A. Baker and J. Lozano. Gerätetreiber unter Windows 2000.
Markt+Technik Verlag, 2001. Translation of The Windows 2000
Device Driver Book, Prentice Hall PTR, 2001.

[10] G. Banfi. Just Another Way to Run Java Programs. Semester
project, Department of Computer Science, ETH Zurich, 1997.

185

186 Bibliography

[11] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Trans-
fer Protocol — HTTP/1.0. RFC 1945, Network Working Group,
1996.

[12] B. N. Bershad, R. P. Draves, and A. Forin. Using Microbench-
marks to Evaluate System Performance. In Proceedings of the
Third Workshop on Workstation Operating Systems (WWOS-3),
April 1992.

[13] H. Boehm. A Garbage Collector for C and C++. http://www.-
hpl.hp.com/personal/Hans_Boehm/gc/.

[14] H. Boehm. Space Efficient Conservative Garbage Collection. In
Proceedings of the ACM SIGPLAN ’93 Conference on Program-
ming Language Design and Implementation, 1993. ACM SIG-
PLAN Notices, 28(6), June 1993.

[15] H. Boehm, A. J. Demers, and S. Shenker. Mostly Parallel Garbage
Collection. ACM SIGPLAN Notices, 26(6), 1991.

[16] J. Boykin and A. Langerman. The Parallelization of Mach/-
4.3BSD: Design Philosophy and Performance Analysis. In Dis-
tributed and Multiprocessor Systems Workshop. USENIX Associ-
ation, 1989.

[17] J. M. Bradshaw (ed.). Software Agents. The MIT Press, 1997.

[18] P. Brinch Hansen. Structured Multiprogramming. Communica-
tions of the ACM, 15(7), July 1972. Reprinted in [22].

[19] P. Brinch Hansen. Operating System Principles. Prentice-Hall,
1973.

[20] P. Brinch Hansen. Experience with Modular Concurrent Program-
ming. IEEE Transactions on Software Engineering, 3(2), March
1977. Reprinted in [22].

[21] P. Brinch Hansen. Efficient Parallel Recursion. ACM SIGPLAN
Notices, 30(12):9–16, December 1995. Reprinted in [22].

[22] P. Brinch Hansen. The Search for Simplicity: Essays in Parallel
Programming. IEEE Computer Society Press, 1996.

Bibliography 187

[23] P. Brinch Hansen. Classic Operating Systems. Springer Verlag,
2001.

[24] T. Burri. Sound System für Oberon System 3 (Native Oberon).
Semester project, Department of Computer Science, ETH Zurich,
1996.

[25] T. Burri. Development of a concurrent dynamic memory manager.
Diploma thesis, Department of Computer Science, ETH Zurich,
1997.

[26] Computer Systems Institute, ETH Zurich. Active Oberon for
.NET. http://www.oberon.ethz.ch/oberon.net/.

[27] R. Crelier. TDescs on the Heap and Subobjects (DECOberon
heap blocks). Unpublished sketch, Computer Systems Institute,
ETH Zurich.

[28] O. J. Dahl. Monitors Revisited. In A.W. Roscoe, editor, A Clas-
sical Mind — Essays in Honour of C.A.R. Hoare. Prentice-Hall,
1994.

[29] E. W. Dijkstra. The Structure of the ‘THE’ Multiprogramming
System. Communications of the ACM, 11(5):341–346, May 1968.
Reprinted in [23].

[30] A. R. Disteli. Integration aktiver Objekte in Oberon am Beispiel
eines Serversystems. PhD thesis, Computer Systems Institute,
ETH Zurich, 1997.

[31] A. R. Disteli and P. Reali. Combining Oberon with Active Ob-
jects. In [72], 1997.

[32] R. Droms. Dynamic Host Configuration Protocol. RFC 2131,
Network Working Group, 1997.

[33] M. Dubois and C. Scheurich. Synchronization, Coherence and
Event Ordering in Multiprocessors. IEEE Computer, February
1988.

[34] B. Egger. Development of an Aos Operating System for the
DNARD Network Computer. Diploma thesis, Department of
Computer Science, ETH Zurich, August 2001.

188 Bibliography

[35] B. Egger. Simple Installation and Windows Interoperability for
ETH Oberon. Semester project, Department of Computer Science,
ETH Zurich, 2001.

[36] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee.
Hypertext Transfer Protocol — HTTP/1.1. RFC 2068, Network
Working Group, 1997.

[37] M. Franz. Code-Generation On-the-Fly: A Key for Portable Soft-
ware. PhD thesis, Computer Systems Institute, ETH Zurich, 1994.

[38] M. Franz. Oberon — The Overlooked Jewel. In L. Böszörményi,
J. Gutknecht, and G. Pomberger, editors, The School of Niklaus
Wirth. dpunkt.verlag, 2000.

[39] M. Frei. Konzipierung eines Display Systems für Active Oberon.
Semester project, Department of Computer Science, ETH Zurich,
1999.

[40] T. Frey. A Modern Graphical User Interface for the Aos System.
Unpublished report, Computer Systems Institute, ETH Zurich,
January 2002.

[41] T. Frey, H. Högger, O. Joos, and P. Kramer. Development of an
Oberon System for the hyperstone E1 CPU. Semester project,
Department of Computer Science, ETH Zurich, 1998.

[42] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado:
Maximizing Locality and Concurrency in a Shared Memory Mul-
tiprocessor Operating System. In Third Symposium on Operating
System Design and Implementation (OSDI ’99). USENIX Associ-
ation, 1999.

[43] R. Griesemer. On the Linearization of Graphs and Writing Sym-
bol Files. Yellow Report 156, Computer Systems Institute, ETH
Zurich, March 1991. Published with [85].

[44] J. Gutknecht. Oberon, Gadgets and Some Archetypal Aspects
of Persistent Objects. Technical Report 243, Computer Systems
Institute, ETH Zurich, February 1996.

Bibliography 189

[45] J. Gutknecht. Do the Fish Really Need Remote Control? A Pro-
posal for Self-Active Objects in Oberon. In [72], 1997.

[46] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter.
The Performance of µ-Kernel-Based Systems. In Proceedings of
the Sixteenth ACM Symposium on Operating Systems Principles,
October 1997. ACM Operating Systems Review 31(5), December
1997.

[47] C.A.R. Hoare. Monitors: An Operating System Structuring Con-
cept. Communications of the ACM, 17(10):549–557, October
1974.

[48] C.A.R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

[49] F. Hrebabetzky. Closed-Loop Control with Oberon. Software —
Concepts and Tools, 18:73–79, 1997.

[50] IECC. The Garbage Collection List. Mailing list. Archive at
http://www.iecc.com/gclist/.

[51] Intel Corp. Pentium Pro Family Developer’s Manual Volume 3:
Operating System Writer’s Guide, 1996.

[52] Intel Corp. 82371 FB (PIIX) and 82371SB (PIIX3) PCI ISA IDE
Xcelerator Data Book, 1997.

[53] Intel Corp. IA-32 Intel Architecture Software Developer’s Manual
Volume 3: System Programming Guide, 2001. Order Number
245472, http://developer.intel.com/.

[54] Internet Engineering Task Force, Network Working Group. Inter-
net Official Protocol Standards, 2001. RFC 3000.

[55] R. Jones and R. Lins. Garbage Collection: Algorithms for Auto-
matic Dynamic Memory Management. Wiley, 1996.

[56] J.L. Keedy. On Structuring Operating Systems With Monitors.
ACM Operating Systems Review, 13(1), January 1979.

[57] C. Kleiner. Four Dimensional Dreams. Diploma thesis, Depart-
ment of Computer Science, ETH Zurich, March 1999.

190 Bibliography

[58] J. Kreienbühl. VNC Viewer for Oberon. Semester project, De-
partment of Computer Science, ETH Zurich, 1999.

[59] F. Kuhn. Accellerated Display Driver and 3D Graphics Library for
the Permedia 2 chip. Semester project, Department of Computer
Science, ETH Zurich, 1999.

[60] S. Lalis and B. A. Sanders. Adding Concurrency to the Obe-
ron System. In J. Gutknecht, editor, Lecture Notes in Computer
Science 782: Programming Languages and System Architectures,
pages 328–344. Springer Verlag, March 1994.

[61] B. W. Lampson and D. D. Redell. Experience with Processes and
Monitors in Mesa. Communications of the ACM, 23(2):105–117,
February 1980.

[62] A.M. Lister and P.J. Sayer. Hierarchical Monitors. Software —
Practice and Experience, 7:613–623, 1977.

[63] J. Marais. Design and Implementation of a Component Architec-
ture for Oberon. PhD thesis, Computer Systems Institute, ETH
Zurich, 1996.

[64] J. Mauro and R. McDougall. Solaris Internals. Prentice-Hall,
2001.

[65] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman.
The Design and Implementation of the 4.4BSD Operating System.
Addison-Wesley, 1996.

[66] B. Meyer. Systematic Concurrent Object-Oriented Programming.
Communications of the ACM, 36(9), September 1993.

[67] P. Mockapetris. Domain Names — Concepts and Facilities. RFC
1034, Information Sciences Institute, University of Southern Cal-
ifornia, 1987.

[68] P. Mockapetris. Domain Names — Implementation and Specifi-
cation. RFC 1035, Information Sciences Institute, University of
Southern California, 1987.

Bibliography 191

[69] D. Mosberger. Memory Consistency Models. Technical Report
TR 93/11, Department of Computer Science, The University of
Arizona, 1993.

[70] H. P. Mössenböck, J. Templ, and R. Griesemer. Object Oberon:
An Object-Oriented Extension of Oberon. Yellow Report 109,
Computer Systems Institute, ETH Zurich, June 1989.

[71] H. P. Mössenböck and N. Wirth. The Programming Language
Oberon-2. Structured Programming, 12(4), 1991.

[72] H. P. Mössenböck (ed.). Lecture Notes in Computer Science
1204: Proceedings of the Joint Modular Languages Conference,
JMLC’97. Springer Verlag, March 1997.

[73] D. Müller. Development of a 64-bit MIPS Implementation of the
Oberon System. Diploma thesis, Department of Computer Sci-
ence, ETH Zurich, 1997.

[74] P. J. Muller. Native Oberon Operating System. Web site. http://-
www.oberon.ethz.ch/native/.

[75] P. J. Muller and P. J. A. de Villiers. Using Oberon to Design a Hi-
erarchy of Extensible Device Drivers. In P. Schulthess, editor, Pro-
ceedings of the Joint Modular Languages Conference, JMLC’94,
Ulm, Germany, September 1994. Universitätsverlag Ulm.

[76] Olivetti Research. Virtual Network Computing. http://www.uk.-
research.att.com/vnc/.

[77] E. Oswald. A Generic 2D Graphics API with Object Framework
and Applications. PhD thesis, Computer Systems Institute, ETH
Zurich, 2000.

[78] D. L. Parnas. Designing Software for Ease of Extension and Con-
traction. IEEE Transactions on Software Engineering, SE-5(2),
March 1979.

[79] D. L. Parnas. Why Software Jewels Are Rare. IEEE Computer,
29(2), February 1996.

192 Bibliography

[80] D. L. Parnas and D. P. Siewiorek. Use of the Concept of Trans-
parency in the Design of Hierarchically Structured Systems. Com-
munications of the ACM, 18(7), July 1975.

[81] D.L. Parnas. On the Criteria to be Used in Decomposing Systems
into Modules. Communications of the ACM, 15(12), December
1972.

[82] PCI Special Interest Group. PCI Local Bus Specification, Revision
2.2, 1998. http://www.pcisig.com/.

[83] J. K. Peacock. File System Multithreading in System V Release
4 MP. In USENIX Summer 1992 Technical Conference, pages
19–29. USENIX Association, June 1992.

[84] F. V. Peschel. Vamos — Entwurf und Realisierung eines erweiter-
baren Betriebssystems für Arbeitsplatzrechner. PhD thesis, Com-
puter Systems Institute, ETH Zurich, 1989.

[85] C. Pfister (ed.), B. Heeb, and J. Templ. Oberon Technical Notes.
Yellow Report 156, Computer Systems Institute, ETH Zurich,
March 1991. Published with [43].

[86] R. Pike. Systems Software Research is Irrelevant. Presentation at
the Symposium on Operating Systems Principles (SOSP), Febru-
ary 2000. http://www.cs.bell-labs.com/who/rob/utah2000.pdf.

[87] C. Plattner. Universal Serial Bus Unterstützung für ETH Oberon.
Semester project, Department of Computer Science, ETH Zurich,
2000.

[88] D. C. Plummer. An Ethernet Address Resolution Protocol. RFC
826, Network Working Group, 1982.

[89] J. Postel. Echo Protocol. RFC 862, Information Sciences Institute,
University of Southern California, 1983.

[90] J. Postel (ed.). User Datagram Protocol. RFC 768, Information
Sciences Institute, University of Southern California, 1980.

[91] J. Postel (ed.). Internet Control Message Protocol. RFC 792,
Information Sciences Institute, University of Southern California,
1981.

Bibliography 193

[92] J. Postel (ed.). Internet Protocol. RFC 791, Information Sciences
Institute, University of Southern California, 1981.

[93] J. Postel (ed.). Transmission Control Protocol. RFC 793, In-
formation Sciences Institute, University of Southern California,
1981.

[94] P. Reali. Jaos. Web site. http://www.oberon.ethz.ch/jaos/.

[95] P. Reali. Structuring a Compiler with Active Objects. In Joint
Modular Languages Conference. Springer Verlag, September 2000.

[96] P. Reali. Language Interoperability. PhD thesis, Computer Sys-
tems Institute, ETH Zurich, 2002.

[97] Realtek Semiconductor Corp. Realtek RTL8139(A/B) Program-
ming Guide, 1999.

[98] M. Reiser and N. Wirth. Programming in Oberon: Steps beyond
Pascal and Modula. Addison-Wesley, 1992.

[99] Digital Research. The DIGITAL Network Appliance Reference
Design. Web site. http://www.research.compaq.com/SRC/iag/.

[100] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper.
Virtual Network Computing. IEEE Internet Computing, 2(1),
January/February 1998.

[101] T. Richardson and K. R. Wood. The RFB Protocol. Technical
report, Olivetti Research Lab, Cambridge, 1998.

[102] R.Laich. Eine Java Virtual Machine für Aos. Diploma thesis,
Department of Computer Science, ETH Zurich, 2001.

[103] M. Russinovich. Win2K Queued Spinlocks. http://www.compu-
ware.com/products/driverstudio/resources/% -papers/spinlocks.-
htm.

[104] S3 Inc., Santa Clara, CA 95052-8058. Trio64V+ Integrated Graph-
ics/Video Accelerator, 1996.

[105] R. W. Scheifler, J. Gettys, D. Converse, and A. Mento. X Window
System: Core Libraries and Standards. Butterworth-Heinemann,
1996.

194 Bibliography

[106] C. Schimmel. Unix Systems for Modern Architectures. Addison-
Wesley, 1994.

[107] H. Schorr and W. Waite. An Efficient Machine-Independent Pro-
cedure for Garbage Collection in Various List Structures. Com-
munications of the ACM, 10(8), August 1967.

[108] M. L. Scott, T. J. LeBlanc, B. D. Marsh, T. G. Becker, C. Dub-
nicki, E. P. Markatos, and N. G. Smithline. Implementation Issues
for the Psyche Multiprocessor Operating System. Computing Sys-
tems, 3(1), Winter 1990.

[109] D. Seal (ed.). ARM Architecture Reference Manual. Addison-
Wesley, second edition, 2001.

[110] J. Sedlacek. Project C2: A Survey of an Industrial Embedded
Application with PC Native Oberon. In Joint Modular Languages
Conference. Springer Verlag, September 2000.

[111] A. Signer. Development of an Oberon System 3 for the DNARD
Network Computer. Diploma thesis, Department of Computer
Science, ETH Zurich, 1999.

[112] A. Silberschatz and P. B. Galvin. Operating System Concepts.
Addison-Wesley, fifth edition, 1998.

[113] W. Simpson (ed.). The Point-to-Point Protocol (PPP). RFC 1661,
Network Working Group, 1994.

[114] D. A. Solomon and M. E. Russinovich. Inside Microsoft Windows
2000. Microsoft Press, third edition, 2000.

[115] R. Strobl. Optimizing the Native Oberon NetSystem. Semester
project, Department of Computer Science, ETH Zurich, 1999.

[116] P. Stüdi. Ein Client-Server Filesystem für Aos. Semester project,
Department of Computer Science, ETH Zurich, 2001.

[117] J. Supcik. HP-Oberon – The Oberon Implementation for HP 9000
Series 700. Yellow Report 212, Computer Systems Institute, ETH
Zurich, 1994.

Bibliography 195

[118] C. A. Szyperski. Insight ETHOS: On Object-Orientation in Op-
erating Systems. PhD thesis, Computer Systems Institute, ETH
Zurich, 1992.

[119] A. S. Tanenbaum. Modern Operating Systems. Prentice-Hall,
1992.

[120] J. Templ. Metaprogramming in Oberon. PhD thesis, Computer
Systems Institute, ETH Zurich, 1994.

[121] C. P. Thacker and L. C. Stewart. Firefly: A Multiprocessor Work-
station. In Proceedings of the Second International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS II), October 1987.

[122] R. C. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Hierarchical
Clustering: A Structure for Scalable Multiprocessor Operating
System Design. The Journal of Supercomputing, 9:105–136, 1995.

[123] USB Org. Universal Serial Bus (USB) Specification Rev. 2.0,
2000. http://www.usb.org/.

[124] F. van Gilluwe. The Undocumented PC: A Programmer’s Guide.
Addison-Wesley, second edition, 1997.

[125] Video Electronics Standards Association, 2150 North First Street,
Suite 440, San Jose, CA 95131-2029. Vesa BIOS Extension (VBE)
Core Functions Version 2.0.

[126] C. von Praun and T. Gross. Compiler-based Object Consistency.
In Workshop on Caching, Coherency and Consistency (WC3 ’01),
June 2001.

[127] S. Walthert. Entwicklung eines Style Layers und Renderers für
die XML-basierte GUI-Shell des Aos Systems. Diploma thesis,
Department of Computer Science, ETH Zurich, 2001.

[128] D. A. Wheeler. More Than a Gigabuck: Estimating GNU/Linux’s
Size. http://www.dwheeler.com/sloc/.

[129] N. Wirth. Modula: A Language for Modular Multiprogramming.
Software — Practice and Experience, 7:3–35, 1977.

196 Bibliography

[130] N. Wirth. The Use of Modula. Software — Practice and Experi-
ence, 7:37–65, 1977.

[131] N. Wirth. Programming in Modula-2. Springer Verlag, third,
corrected edition, 1985.

[132] N. Wirth. The Programming Language Oberon. Software —
Practice and Experience, 18(7):671–690, July 1988.

[133] N. Wirth. A Plea for Lean Software. IEEE Computer, February
1995.

[134] N. Wirth and J. Gutknecht. Project Oberon: The Design of an
Operating System and Compiler. Addison-Wesley, 1992.

[135] G. R. Wright and W. R. Stevens. TCP/IP Illustrated, volume 2.
Addison-Wesley, 1995.

[136] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson,
and F. Pollack. HYDRA: The Kernel of a Multiprocessor Oper-
ating System. Communications of the ACM, 17(6), June 1974.

[137] W. A. Wulf, R. Levin, and S. P. Harbison. HYDRA/C.mmp —
An Experimental Computer System. McGraw-Hill, 1981.

[138] B. G. Zorn. Comparative Performance Evaluation of Garbage Col-
lection Algorithms. PhD thesis, University of California at Berke-
ley, December 1989.

Curriculum Vitae

Pieter Johannes Muller

11th July 1968 Born in Nababeep, South Africa. Son of Andries
and Coerie Muller.

1975–1983 High School Nababeep, South Africa.

1984–1986 Paul Roos Gimnasium, Stellenbosch, South Africa.

1987–1989 B.Sc. Mathematical Sciences, Stellenbosch University,
South Africa.

1990–1991 B.Sc. Hons. Computer Science, Stellenbosch University,
South Africa.

1991–1994 M.Sc. (cum laude) Computer Science, Stellenbosch
University, South Africa.

1991–1995 Research assistant, Instituut vir Toegepaste
Rekenaarwetenskap, Stellenbosch University, South Africa.

1995–2001 Research and teaching assistant, Computer Systems
Institute, ETH Zurich.

2002 Research and development engineer, MCT Lab GmbH, Zurich.

197

