MODULE Machine; (** AUTHOR "pjm"; PURPOSE "Bootstrapping, configuration and machine interface"; *) (* The code of this module body must be the first in the statically linked boot file. *) IMPORT SYSTEM, Trace; CONST Version = "A2 Revision 2958 (26.02.2010)"; MaxCPU* = 8; (** maximum number of processors (up to 16) *) DefaultObjectFileExtension* = ".Abx"; (** bits in features variable *) MTTR* = 12; MMX* = 23; HTT* = 28; MaxDisks = 2; (* maximum number of disks with BIOS parameters *) HeapAdr = 100000H; MaxMemTop = 4000000H * 4000000H; (* maximal 52bit wide physical address (architectural limit) *) DefaultDMASize = 20; (* default size of ISA DMA area in KB *) CONST StrongChecks = FALSE; (* perform strong checks *) Stats* = FALSE; (* acquire statistics *) TimeCount = 0 (* 100000 *); (* number of lock tries before checking timeout - 0 to disable *) (** standard lock levels (in order) *) (* also refer to Traps.Show *) TraceOutput* = 0; (* Trace output *) Memory* = 1; (* Virtual memory management, stack and page allocation *) Heaps* = 2; (* Storage allocation and Garbage collection *) Interrupts* = 3 ; (* Interrupt handling. *) Modules* = 4; (* Module list *) Objects* = 5; (* Ready queue *) Processors* = 6; (* Interprocessor interrupts *) KernelLog* = 7; (* Atomic output *) (** highest level is all object locks *) Preemption* = 31; (** flag for BreakAll *) MaxLocks = 8; (* { <= 32 } *) LowestLock = 0; HighestLock = MaxLocks-1; CONST TraceVerbose = TRUE; (* write out verbose trace info *) AddressSize = SIZEOF(ADDRESS); SetSize = MAX (SET) + 1; (** error codes *) Ok* = 0; (* standard multipliers *) K = 1024; M = 100000H; (* 1K, 1M *) (* paging sizes *) PS = 4096; (* page size in bytes *) PSlog2 = 12; (* ASH(1, PSlog2) = PS *) TPS = 4096; (* translation page size *) PTEs = TPS DIV AddressSize; (* number of entries per translation page table *) RS = PTEs * PS; (* region covered by a page table in bytes *) ReservedPages = 8; (* pages reserved on page heap (not for normal heap use) *) NilAdr* = -1; (** nil value for addresses (not same as pointer NIL value) *) (* free page stack page node layout *) NodeSP = 0; NodeNext = AddressSize; NodePrev = AddressSize*2; MinSP = AddressSize*3; MaxSP = PS; (* 0 sp AddressSize nextAdr AddressSize*2 prevAdr AddressSize*3 first entry 4092 last entry *) (* virtual memory layout. no area will cross the 2G boundary, to avoid LONGINT sign problems. *) MapAreaAdr = (80000000H); (* dynamic mappings: bottom part of 2G..4G *) MapAreaSize = 64*M; IntelAreaAdr = (0FEE00000H); (* reserved by Intel for APIC: 4G-18M..4G-18M+4K *) IntelAreaSize = 00001000H; StackAreaAdr = MapAreaAdr+MapAreaSize; (* stacks: middle part of 2G..4G *) StackAreaSize = IntelAreaAdr-StackAreaAdr; (* stack sizes *) KernelStackSize = 2*PS; (* multiple of PS *) MaxUserStackSize = 128*K; (* multiple of PS *) InitUserStackSize = PS; (* must be PS (or change NewStack) *) UserStackGuardSize = PS; (* multiple of PS left unallocated at bottom of stack virtual area *) MaxUserStacks = StackAreaSize DIV MaxUserStackSize; (* physical memory layout *) LowAdr = PS; (* lowest physical address used *) LinkAdr = M; (* address where kernel is linked, also address where heap begins *) StaticBlockSize = 32; (* static heap block size *) BlockHeaderSize = 2 * AddressSize; RecordDescSize = 3 * AddressSize; (* needs to be adapted in case Heaps.RecordDesc is changed *) (* gdt indices *) TSSOfs = 8; (* offset in GDT of TSSs *) StackOfs = TSSOfs + MaxCPU; (* offset in GDT of stacks *) GDTSize = TSSOfs + MaxCPU * 2; (* TSS descriptors need 16 bytes each *) (* gdt selectors *) Kernel32CodeSel = 1*8; (* selector 1 in gdt, RPL 0 *) Kernel64CodeSel = 2*8; (* selector 2 in gdt, RPL 0 *) User32CodeSel = 3*8 + 3; (* selector 3 in gdt, RPL 3 *) User64CodeSel = 4*8 + 3; (* selector 4 in gdt, RPL 3 *) KernelStackSel = 5*8; (* selector 5 in gdt, RPL 0 *) UserStackSel = 6*8 + 3; (* selector 6 in gdt, RPL 3 *) DataSel = 7*8; (* selector 7 in gdt, RPL 0 *) KernelTR = TSSOfs*8; (* selector in gdt, RPL 0 *) (* paging flags *) PageNotPresent = 0; (* not present page *) KernelPage = 3; (* supervisor, present, r/w *) UserPage = 7; (* user, present, r/w *) HeapMin = 50; (* "minimum" heap size as percentage of total memory size (used for heap expansion in scope of GC ) *) HeapMax = 95; (* "maximum" heap size as percentage of total memory size (used for heap expansion in scope of GC) *) ExpandRate = 1; (* always extend heap with at least this percentage of total memory size *) Threshold = 10; (* periodic GC initiated when this percentage of total memory size bytes has "passed through" NewBlock *) InitialHeapIncrement = 4096; HeaderSize = 40H; (* cf. Linker0 *) EndBlockOfs = 38H; (* cf. Linker0 *) MemoryBlockOfs = BlockHeaderSize + RecordDescSize + BlockHeaderSize; (* memory block (including header) starts at offset HeaderSize *) CONST (** pre-defined interrupts 0-31, used with InstallHandler *) DE* = 0; DB* = 1; NMI* = 2; BP* = 3; OVF* = 4; BR* = 5; UD* = 6; NM* = 7; DF* = 8; TS* = 10; NP* = 11; SSF* = 12; GP* = 13; PF* = 14; MF*= 16; AC*= 17; MC* = 18; IRQ0* = 32; (* {IRQ0 MOD 8 = 0} *) IRQ2 = IRQ0 + 2; IRQ7 = IRQ0 + 7; IRQ8 = IRQ0 + 8; IRQ15 = 47; MaxIRQ* = IRQ15; (** hardware interrupt numbers *) MPKC* = 49; (** SMP: kernel call *) SoftInt* = 58; (** temporary software interrupt *) MPIPCLocal* = 59; (** SMP: local interprocessor interrupt *) MPTMR* = 60; (** SMP: timer interrupt *) MPIPC* = 61; (** SMP: interprocessor interrupt *) MPERR* = 62; (** SMP: error interrupt *) MPSPU* = 63; (** SMP: spurious interrupt {MOD 16 = 15} *) IDTSize = 64; MaxNumHandlers = 16; TraceSpurious = FALSE; (* no message on spurious hardware interrupts *) HandleSpurious = TRUE OR TraceSpurious; (* do not trap on spurious interrupts *) IntA0 = 020H; IntA1 = 021H; (* Interrupt Controller 1 *) IntB0 = 0A0H; IntB1 = 0A1H; (* Interrupt Controller 2 *) (** RFLAGS bits *) IFBit* = 9; VMBit* = 17; KernelLevel* = 0; UserLevel* = 3; (** CS MOD 4 *) Second* = 1000; (* frequency of ticks increments in Hz *) CONST Self* = 0; FrontBarrier* = 1; BackBarrier* = 2; (** Broadcast flags. *) TraceApic = FALSE; TraceProcessor = FALSE; (* remove this hack! *) ClockRateDelay = 50; (* ms - delay when timing bus clock rate *) TimerClock = 1193180; (* timer clock is 1.19318 MHz *) CONST (* low level tracing *) TraceV24 = 2; TraceScreen = 0; TraceWidth = 80; TraceHeight = 25; TraceLen = TraceWidth * SIZEOF (INTEGER); TraceSize = TraceLen * TraceHeight; TYPE Vendor* = ARRAY 13 OF CHAR; IDMap* = ARRAY 16 OF SHORTINT; TYPE Stack* = RECORD (** values are read-only *) low: ADDRESS; (* lowest virtual address that may be allocated for stack *) adr*: ADDRESS; (* lowest address on allocated stack *) (* exported for Objects only *) high*: ADDRESS; (* next virtual address after stack *) (* exported for Objects only *) END; (* task state segment *) TSSDesc = RECORD (* 1, p. 485 and p. 612 for required fields *) Reserved1: LONGINT; RSP0 {ALIGNED(4)}, RSP1{ALIGNED(4)}, RSP2{ALIGNED(4)}: HUGEINT; Reserved2, Reserved3: LONGINT; IST1 {ALIGNED(4)}, IST2 {ALIGNED(4)}, IST3 {ALIGNED(4)}, IST4{ALIGNED(4)}, IST5{ALIGNED(4)}, IST6{ALIGNED(4)}, IST7{ALIGNED(4)}: HUGEINT; Reserved4, Reserved5: LONGINT; Reserved6, IOMapBaseAddress: INTEGER; (* Implicit: IOBitmap: ARRAY 8192 DIV 4 OF SET *) END; Startup* = PROCEDURE; (** can not be a method *) (* global descriptor table *) SegDesc = RECORD low, high: LONGINT END; GDT = ARRAY GDTSize OF SegDesc; Range* = RECORD adr*: ADDRESS; size*: SIZE; END; TYPE (** processor state, ordering of record fields is predefined! *) State* = RECORD (* offsets used in FieldInterrupt, FieldIRQ and Objects.RestoreState *) R15*, R14*, R13*, R12*, R11*, R10*, R9*, R8*: HUGEINT; RDI*, RSI*, ERR*, RSP0*, RBX*, RDX*, RCX*, RAX*: HUGEINT; (** RSP0 = ADR(s.INT) *) INT*, BP*, PC*, CS*: HUGEINT; (* RBP and ERR are exchanged by glue code, for procedure link *) FLAGS*: SET; SP*, SS*: HUGEINT; END; (** exception state, ordering of record fields is predefined! *) ExceptionState* = RECORD halt*: SIZE; (** halt code *) pf*: ADDRESS; (** page fault address *) locks*: SET; (** active locks *) SP*: ADDRESS; (** actual RSP value at time of interrupt *) CR*: ARRAY 16 OF HUGEINT; (** control registers *) DR*: ARRAY 16 OF HUGEINT; (** debug registers *) FPU*: ARRAY 7 OF SET (** floating-point state *) END; Handler* = PROCEDURE {DELEGATE} (VAR state: State); HandlerRec = RECORD valid: BOOLEAN; (* offset 0 *) handler {ALIGNED(4)}: Handler (* offset 4 *) END; GateDescriptor = RECORD offsetBits0to15: INTEGER; selector: INTEGER; gateType: INTEGER; offsetBits16to31: INTEGER; offsetBits32to63: LONGINT; reserved: LONGINT; END; IDT = ARRAY IDTSize OF GateDescriptor; SSEState* = ARRAY (512+16) OF CHAR; TYPE MemoryBlock* = POINTER TO MemoryBlockDesc; MemoryBlockDesc* = RECORD next- {UNTRACED}: MemoryBlock; startAdr-: ADDRESS; (* unused field for I386 *) size-: SIZE; (* unused field for I386 *) beginBlockAdr-, endBlockAdr-: ADDRESS END; TYPE EventHandler = PROCEDURE (id: LONGINT; CONST state: State); Message* = POINTER TO RECORD END; (** Broadcast message. *) BroadcastHandler = PROCEDURE (id: LONGINT; CONST state: State; msg: Message); TimeArray = ARRAY MaxCPU OF HUGEINT; Address32* = LONGINT; VAR lowTop*: ADDRESS; (** top of low memory *) memTop*: ADDRESS; (** top of memory *) dmaSize*: SIZE; (** size of ISA dma area, above lowTop (for use in Aos.Diskettes) *) configMP: ADDRESS; (** MP spec config table physical address (outside reported RAM) *) revMP: CHAR; (** MP spec revision *) featureMP: ARRAY 5 OF CHAR; (** MP spec feature bytes 1-5 *) version-: ARRAY 64 OF CHAR; (** Aos version *) SSESupport-: BOOLEAN; SSE2Support-: BOOLEAN; features-, features2-: SET; (** processor features *) fcr*: SET; (** default floating-point control register value (default rounding mode is towards -infinity, for ENTIER) *) mhz*: HUGEINT; (** clock rate of GetTimer in MHz, or 0 if not known *) chs: ARRAY MaxDisks OF RECORD cyls, hds, spt: LONGINT END; initRegs0, initRegs1: HUGEINT; fbadr*, fbInfoPtr*: ADDRESS; initRegs: ARRAY 2 OF HUGEINT; (* kernel parameters *) config: ARRAY 2048 OF CHAR; (* config strings *) bootFlag: ADDRESS; idAdr: ADDRESS; (* address of processor ID register *) map: IDMap; bootID: LONGINT; (* ID of boot processor (0) *) numberOfProcessors: LONGINT; (* number of processors installed during start up *) coresPerProcessor : LONGINT; (* number of cores per physical package *) threadsPerCore : LONGINT; (* number of threads per core *) CONST CacheLineSize = 128; TYPE (* Synchronization variables should reside in own cache line. This data structure should be aligned to CacheLineSize. *) Lock = RECORD locked : BOOLEAN; filler : ARRAY CacheLineSize - 1 OF CHAR; END; VAR lock: ARRAY MaxLocks OF Lock; (** all locks *) (* Every element in the proc array belongs to one processor. It is therefore sufficient to disable interrupts to protect the consistency of these elements. Race conditions with interrupts handled on the same processor are avoided by disabling interrupts for the entire time that a lock is held (using locksHeld & state). The data structures are padded to CacheLineSize to separate the locks out on cache lines of their own, to avoid false sharing. *) proc-, trapState-: ARRAY MaxCPU OF RECORD locksHeld-: SET; (** locks held by a processor *) state-: SET; (** processor flags (interrupt state) at entry to its first lock *) preemptCount-: LONGINT; (** if 0, preemption is allowed *) padding : ARRAY CacheLineSize - 20 OF CHAR; END; (* the data structures above should be aligned to CacheLineSize *) padding : ARRAY 92 OF CHAR; trapLocksBusy-: SET; maxTime: HUGEINT; VAR gdt: GDT; (* global descriptor table *) procm: ARRAY MaxCPU OF RECORD (* indexed by ID () *) tss: TSSDesc; sp: ADDRESS; (* snapshot for GC *) stack: Stack END; kernelPML4: ADDRESS; (* physical address of page directory *) freeLowPage: ADDRESS; (* free low page stack pointer (link at offset 0 in page). All addresses physical. NIL = -1 *) freeLowPages, freeHighPages, totalPages: HUGEINT; (* number of free pages and total number of pages *) mapTop: ADDRESS; (* virtual address of end of memory mapping area *) heapEndAdr: ADDRESS; (* virtual address of end of heap (page aligned) *) topPageNum: HUGEINT; (* page containing byte memTop-1 *) pageHeapAdr: ADDRESS; (* address (physical and virtual) of bottom of page heap area *) pageStackAdr: ADDRESS; (* virtual address of top page of free page stack *) freeStack: ARRAY (MaxUserStacks+SetSize-1) DIV SetSize OF SET; (* free stack bitmap *) freeStackIndex: HUGEINT; (* current position in bitmap (rotates) *) Nbigskips-: LONGINT; (* number of times a stack was extended leaving a hole *) Nfilled-: LONGINT; (* number of times a "hole" in a stack was filled *) NnewStacks-, NnewStackLoops-, NnewStackInnerLoops-, NdisposeStacks-, NlostPages-, NreservePagesUsed-, NmaxUserStacks-: HUGEINT; VAR idt: IDT; (* interrupt descriptor table *) glue: ARRAY IDTSize OF ARRAY 15 OF CHAR; (* code *) intHandler: ARRAY IDTSize, MaxNumHandlers OF HandlerRec; (* array of handlers for interrupts, the table is only filled up to MaxNumHandlers - 1, the last element in each row acts as a sentinel *) stateTag: ADDRESS; default: HandlerRec; i, j, ticks*: LONGINT; (** timer ticks. Use Kernel.GetTicks() to read, don't write *) VAR ipcBusy, ipcFlags, ipcFrontBarrier, ipcBackBarrier: SET; ipcHandler: BroadcastHandler; ipcMessage: Message; numProcessors-: LONGINT; (* number of processors we attempted to boot (some may have failed) *) maxProcessors: LONGINT; (* max number of processors we are allowed to boot (-1 for uni) *) allProcessors-: SET; (* IDs of all successfully booted processors *) localAPIC: ADDRESS; (* address of local APIC, 0 if not present *) apicVer: ARRAY MaxCPU OF LONGINT; (* APIC version *) started: ARRAY MaxCPU OF BOOLEAN; (* CPU started successfully / CPU halted *) busHz0, busHz1: ARRAY MaxCPU OF LONGINT; (* unrounded and rounded bus speed in Hz *) timer: EventHandler; timerRate: LONGINT; (* Hz - rate at which CPU timers run - for timeslicing and profiling *) stopped: BOOLEAN; (* StopAll was called *) idMap: IDMap; revIDmap: ARRAY MaxCPU OF SHORTINT; time: TimeArray; eventCount, eventMax: LONGINT; event: Handler; expandMin, heapMinKB, heapMaxKB : SIZE; gcThreshold-: SIZE; memBlockHead-{UNTRACED}, memBlockTail-{UNTRACED}: MemoryBlock; (* refer to the same memory block for I386, not traced by GC *) initialMemBlock: MemoryBlockDesc; traceProcessorProc*: EventHandler; (** temp tracing *) traceProcessor: BOOLEAN; Timeslice*: Handler; start*: PROCEDURE; VAR traceMode: SET; (* tracing mode: Screen or V24 *) traceBase: ADDRESS; (* screen buffer base address *) tracePos: SIZE; (* current screen cursor *) tracePort: LONGINT; (* serial base port *) traceColor: SHORTINT; (* current screen tracing color *) (** -- Processor identification -- *) (** Return current processor ID (0 to MaxNum-1). *) PROCEDURE ID* (): LONGINT; CODE {SYSTEM.AMD64} ; todo: use MOV instead of LEA as soon as assembler returns address for global variables LEA RAX, idAdr ; get address of idAdr MOV RAX, [RAX] ; get value of idAdr MOV EAX, [RAX] ; dereference idAdr LEA RBX, map ; address of map SHR EAX, 24 AND EAX, 15 MOV AL, [RBX + RAX] END ID; (** -- Miscellaneous -- *) (** This procedure should be called in all spin loops as a hint to the processor (e.g. Pentium 4). *) PROCEDURE -SpinHint*; CODE {SYSTEM.AMD64} PAUSE END SpinHint; (** Fill "size" bytes at "destAdr" with "filler". "size" must be multiple of 4. *) PROCEDURE Fill32* (destAdr: ADDRESS; size: SIZE; filler: LONGINT); CODE {SYSTEM.AMD64} MOV RDI, [RBP + destAdr] MOV RCX, [RBP + size] MOV EAX, [RBP + filler] TEST RCX, 3 JZ ok PUSH 8 ; ASSERT failure INT 3 ok: SHR RCX, 2 CLD REP STOSD END Fill32; (** Return timer value of the current processor, or 0 if not available. *) (* e.g. ARM does not have a fine-grained timer *) PROCEDURE -GetTimer* (): HUGEINT; CODE {SYSTEM.AMD64} XOR RAX, RAX RDTSC ; set EDX:EAX SHL RDX, 32 OR RAX, RDX END GetTimer; (** Disable interrupts and return old interrupt state. *) PROCEDURE -DisableInterrupts* (): SET; CODE {SYSTEM.AMD64} PUSHFQ CLI POP RAX END DisableInterrupts; (** Restore interrupt state. Parameter s must be return value of earlier DisableInterrupts call on same processor. *) PROCEDURE -RestoreInterrupts* (s: SET); CODE {SYSTEM.AMD64} POPFQ END RestoreInterrupts; (** Return TRUE iff interrupts are enabled on the current processor. *) PROCEDURE -InterruptsEnabled* (): BOOLEAN; CODE {SYSTEM.AMD64} PUSHFQ POP RAX SHR RAX, 9 AND AL, 1 END InterruptsEnabled; (** -- Processor initialization -- *) PROCEDURE -SetFCR (s: SET); CODE {SYSTEM.AMD64, SYSTEM.FPU} FLDCW WORD [RSP] ; parameter s POP RAX END SetFCR; PROCEDURE -FCR (): SET; CODE {SYSTEM.AMD64, SYSTEM.FPU} PUSH 0 FNSTCW WORD [RSP] FWAIT POP RAX END FCR; PROCEDURE -InitFPU; CODE {SYSTEM.AMD64, SYSTEM.FPU} FNINIT END InitFPU; (** Setup FPU control word of current processor. *) PROCEDURE SetupFPU*; BEGIN InitFPU; SetFCR(fcr) END SetupFPU; (* Set up flags (3, p. 20) Bit 1,3,5,15,19..31 - no change 0,2,4,6..7,11 - CF,PF,AF,ZF,SF,OF off 8 - TF off 9 - IF off (no interrupts) 10 - DF off 12..13 - IOPL = 3 14 - NT off (no Windows) 16 - RF off (no Interference) 17- VM off (no virtual 8086 mode) 18 - AC off (no 486 alignment checks) *) PROCEDURE -SetupFlags; CODE {SYSTEM.AMD64} PUSHFD AND DWORD [RSP], 0FFF8802AH OR DWORD [RSP], 3000H POPFD END SetupFlags; (* Set up various 486-specific flags (3, p. 23) 1. Enable exception 16 on math errors. 2. Disable supervisor mode faults on write to read-only pages (386-compatible for stack checking). 3. Enable the Alignment Check field in RFLAGS *) PROCEDURE -Setup486Flags; CODE {SYSTEM.486, SYSTEM.Privileged} MOV EAX, CR0 OR EAX, 00040020H AND EAX, 0FFFEFFFFH MOV CR0, EAX END Setup486Flags; (* Set up 586-specific things *) PROCEDURE -Setup586Flags; CODE {SYSTEM.586, SYSTEM.Privileged} MOV EAX, CR4 BTR EAX, 2 ; clear TSD MOV CR4, EAX END Setup586Flags; (* Disable exceptions caused by math in new task. (1, p. 479) *) PROCEDURE -DisableMathTaskEx; CODE {SYSTEM.386, SYSTEM.Privileged} MOV EAX,CR0 AND AL, 0F5H MOV CR0, EAX END DisableMathTaskEx; (* Disable math emulation (1, p. 479) , bit 2 of CR0 *) PROCEDURE -DisableEmulation; CODE {SYSTEM.386, SYSTEM.Privileged} MOV EAX, CR0 AND AL, 0FBH MOV CR0, EAX END DisableEmulation; (** CPU identification *) PROCEDURE CPUID*(function : LONGINT; VAR eax, ebx, ecx, edx : SET); CODE {SYSTEM.AMD64} MOV EAX, [RBP+function] ; CPUID function parameter MOV RSI, [RBP+ecx] ; copy ecx into ECX (sometimes used as input parameter) MOV ECX, [RSI] CPUID ; execute CPUID MOV RSI, [RBP+eax] ; copy EAX into eax; MOV [RSI], EAX MOV RSI, [RBP+ebx] ; copy EBX into ebx MOV [RSI], EBX MOV RSI, [RBP+ecx] ; copy ECX into ecx MOV [RSI], ECX MOV RSI, [RBP+edx] ; copy EDX into edx MOV [RSI], EDX END CPUID; (* If the CPUID instruction is supported, the ID flag (bit 21) of the EFLAGS register is r/w *) PROCEDURE CpuIdSupported*() : BOOLEAN; CODE {SYSTEM.AMD64} PUSHFQ ; save RFLAGS POP RAX ; store RFLAGS in RAX MOV EBX, EAX ; save EBX for later testing XOR EAX, 00200000H ; toggle bit 21 PUSH RAX ; push to stack POPFQ ; save changed RAX to RFLAGS PUSHFQ ; push RFLAGS to TOS POP RAX ; store RFLAGS in RAX CMP EAX, EBX ; see if bit 21 has changed SETNE AL; ; return TRUE if bit 21 has changed, FALSE otherwise END CpuIdSupported; (** Initialise current processor. Must be called by every processor. *) PROCEDURE InitProcessor*; BEGIN SetupFlags; Setup486Flags; Setup586Flags; DisableMathTaskEx; DisableEmulation; SetupFPU; END InitProcessor; (** Initialize APIC ID address. *) PROCEDURE InitAPICIDAdr* (adr: ADDRESS; CONST m: IDMap); VAR s: SET; BEGIN s := DisableInterrupts (); idAdr := adr; map := m; RestoreInterrupts (s) END InitAPICIDAdr; PROCEDURE InitBoot; VAR largestFunction, i: LONGINT; eax, ebx, ecx, edx : SET; logicalProcessorCount : LONGINT; u: ARRAY 8 OF CHAR; vendor : Vendor; PROCEDURE GetString(VAR string : ARRAY OF CHAR; offset : LONGINT; register : SET); BEGIN string[offset] :=CHR(SYSTEM.VAL(LONGINT, register * {0..7})); string[offset+1] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {8..15}, -8))); string[offset+2] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {16..23}, -16))); string[offset+3] := CHR(SYSTEM.VAL(LONGINT, LSH(register * {24..31}, -24))); END GetString; BEGIN vendor := "Unknown"; features := {}; features2 := {}; coresPerProcessor := 1; threadsPerCore := 1; IF CpuIdSupported() THEN (* Assume that all processors are the same *) (* CPUID standard function 0 returns: eax: largest CPUID standard function supported, ebx, edx, ecx: vendor string *) CPUID(0, eax, ebx, ecx, edx); largestFunction := SYSTEM.VAL(LONGINT, eax); ASSERT(LEN(vendor) >= 13); GetString(vendor, 0, ebx); GetString(vendor, 4, edx); GetString(vendor, 8, ecx); vendor[12] := 0X; IF (largestFunction >= 1) THEN (* CPUID standard function 1 returns: CPU features in ecx & edx *) CPUID(1, eax, ebx, ecx, edx); features := SYSTEM.VAL(SET, edx); features2 := SYSTEM.VAL(SET, ecx); (* The code below is used to determine the number of threads per processor core (hyperthreading). This is required since processors supporting hyperthreading are listed only once in the MP tables, so we need to know the exact number of threads per processor to start the processor correctly *) IF (HTT IN features) THEN (* multithreading supported by CPU *) (* logical processor count = number of cores * number of threads per core = total number of threads supported *) logicalProcessorCount := SYSTEM.VAL(LONGINT, LSH(ebx * {16..23}, -16)); IF (vendor = "GenuineIntel") THEN IF (largestFunction >= 4) THEN (* CPUID standard function 4 returns: number of processor cores -1 on this die eax[26.31] *) ecx := SYSTEM.VAL(SET, 0); (* input parameter - must be set to 0 *) CPUID(4, eax, ebx, ecx, edx); coresPerProcessor := SYSTEM.VAL(LONGINT, LSH(eax * {26..31}, -26)) + 1; threadsPerCore := logicalProcessorCount DIV coresPerProcessor; ELSE threadsPerCore := logicalProcessorCount; END; ELSIF (vendor = "AuthenticAMD") THEN (* CPUID extended function 1 returns: largest extended function *) CPUID(LONGINT(80000000H), eax, ebx, ecx, edx); largestFunction := SYSTEM.VAL(LONGINT, eax - {31}); (* remove sign *) IF (largestFunction >= 8) THEN (* CPUID extended function 8 returns: *) CPUID(LONGINT(80000008H), eax, ebx, ecx, edx); coresPerProcessor := SYSTEM.VAL(LONGINT, ecx * {0..7}) + 1; threadsPerCore := logicalProcessorCount DIV coresPerProcessor; ELSIF (largestFunction >= 1) THEN (* CPUID extended function 1 returns CmpLegacy bit in ecx *) CPUID(LONGINT(80000001H), eax, ebx, ecx, edx); IF 1 IN ecx THEN (* CmpLegacy bit set -> no hyperthreading *) coresPerProcessor := logicalProcessorCount; threadsPerCore := 1; END; ELSE (* single-core, single-thread *) END; ELSE Trace.String("Machine: "); Trace.Yellow; Trace.String("Warning: Cannot detect hyperthreading, unknown CPU vendor "); Trace.String(vendor); Trace.Ln; Trace.Default; END; END; END; END; Trace.String("Machine: "); Trace.Int(coresPerProcessor, 0); Trace.String(" cores per physical package, "); Trace.Int(threadsPerCore, 0); Trace.String(" threads per core."); Trace.Ln; InitFPU; fcr := (FCR () - {0, 2, 3, 10, 11}) + {0 .. 5, 8, 9}; (* default FCR RC=00B *) bootID := 0; map[0] := 0; idAdr := ADDRESSOF (bootID); (* allow user to specify GetTimer rate, for tracing purposes *) GetConfig ("MHz", u); i := 0; mhz := StrToInt (i, u); END InitBoot; (** -- Configuration and bootstrapping -- *) (** Return the value of the configuration string specified by parameter name in parameter val. Returns val = "" if the string was not found, or has an empty value. *) PROCEDURE GetConfig* (CONST name: ARRAY OF CHAR; VAR val: ARRAY OF CHAR); VAR i, src: LONGINT; ch: CHAR; BEGIN ASSERT (name[0] # "="); (* no longer supported, use GetInit instead *) src := 0; LOOP ch := config[src]; IF ch = 0X THEN EXIT END; i := 0; LOOP ch := config[src]; IF (ch # name[i]) OR (name[i] = 0X) THEN EXIT END; INC (i); INC (src) END; IF (ch = 0X) & (name[i] = 0X) THEN (* found: (src^ = 0X) & (name[i] = 0X) *) i := 0; REPEAT INC (src); ch := config[src]; val[i] := ch; INC (i); IF i = LEN(val) THEN val[i - 1] := 0X; RETURN END (* val too short *) UNTIL ch = 0X; val[i] := 0X; RETURN ELSE WHILE ch # 0X DO (* skip to end of name *) INC (src); ch := config[src] END; INC (src); REPEAT (* skip to end of value *) ch := config[src]; INC (src) UNTIL ch = 0X END END; val[0] := 0X END GetConfig; (** Get CHS parameters of first two BIOS-supported hard disks. *) PROCEDURE GetDiskCHS* (d: LONGINT; VAR cyls, hds, spt: LONGINT); BEGIN cyls := chs[d].cyls; hds := chs[d].hds; spt := chs[d].spt END GetDiskCHS; (** Get parameter values from Init string. If n = 0, return val = ASH(bx, 16) + ax, and if n = 1, return val = ASH(dx, 16) + cx, where ax, bx, cx, dx are the register values after the OBL boot loader or noboot.exe have executed the 16-bit x86 code in the Init string. *) PROCEDURE GetInit* (n: LONGINT; VAR val: LONGINT); BEGIN val := LONGINT(initRegs[n]) END GetInit; (** Convert a string to an integer. Parameter i specifies where in the string scanning should begin (usually 0 in the first call). Scanning stops at the first non-valid character, and i returns the updated position. Parameter s is the string to be scanned. The value is returned as result, or 0 if not valid. Syntax: number = ["-"] digit {digit} ["H" | "h"] . digit = "0" | ... "9" | "A" .. "F" | "a" .. "f" . If the number contains any hexdecimal letter, or if it ends in "H" or "h", it is interpreted as hexadecimal. *) PROCEDURE StrToInt* (VAR i: LONGINT; CONST s: ARRAY OF CHAR): LONGINT; VAR vd, vh, sgn, d: LONGINT; hex: BOOLEAN; BEGIN vd := 0; vh := 0; hex := FALSE; IF s[i] = "-" THEN sgn := -1; INC (i) ELSE sgn := 1 END; LOOP IF (s[i] >= "0") & (s[i] <= "9") THEN d := ORD (s[i])-ORD ("0") ELSIF (CAP (s[i]) >= "A") & (CAP (s[i]) <= "F") THEN d := ORD (CAP (s[i]))-ORD ("A") + 10; hex := TRUE ELSE EXIT END; vd := 10*vd + d; vh := 16*vh + d; INC (i) END; IF CAP (s[i]) = "H" THEN hex := TRUE; INC (i) END; (* optional H *) IF hex THEN vd := vh END; RETURN sgn * vd END StrToInt; (* Delay for IO *) PROCEDURE -Wait*; CODE {SYSTEM.AMD64} JMP N1 N1: JMP N2 N2: JMP N3 N3: END Wait; (* Reset processor by causing a double fault. *) PROCEDURE Reboot; CODE {SYSTEM.AMD64, SYSTEM.Privileged} PUSH DWORD 0 PUSH DWORD 0 LIDT [RSP] INT 3 END Reboot; (** Shut down the system. If parameter reboot is set, attempt to reboot the system. *) PROCEDURE Shutdown* (reboot: BOOLEAN); VAR i: LONGINT; BEGIN Cli; IF reboot THEN (* attempt reboot *) Portout8 (70H, 8FX); (* Reset type: p. 5-37 AT Tech. Ref. *) Wait; Portout8 (71H, 0X); (* Note: soft boot flag was set in InitMemory *) Wait; Portout8 (70H, 0DX); Wait; Portout8 (64H, 0FEX); (* reset CPU *) FOR i := 1 TO 10000 DO END; Reboot END; LOOP END END Shutdown; (* Get hard disk parameters. *) PROCEDURE GetPar (p: ADDRESS; ofs: LONGINT): LONGINT; VAR ch: CHAR; BEGIN SYSTEM.GET (p + 12 + ofs, ch); RETURN ORD (ch) END GetPar; (* Read boot table. *) PROCEDURE ReadBootTable (bt: ADDRESS); VAR i, p: ADDRESS; j, d, type, addr, size, heapSize: LONGINT; ch: CHAR; BEGIN heapSize := 0; lowTop := 0; p := bt; d := 0; LOOP SYSTEM.GET (p, type); IF type = -1 THEN EXIT (* end *) ELSIF type = 3 THEN (* boot memory/top of low memory *) SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size); lowTop := addr + size ELSIF type = 4 THEN (* free memory/extended memory size *) SYSTEM.GET (p + 8, addr); SYSTEM.GET (p + 12, size); IF addr = HeapAdr THEN heapSize := size END ELSIF type = 5 THEN (* HD config *) IF d < MaxDisks THEN chs[d].cyls := GetPar (p, 0) + 100H * GetPar (p, 1); chs[d].hds := GetPar (p, 2); chs[d].spt := GetPar (p, 14); INC (d) END ELSIF type = 8 THEN (* config strings *) i := p + 8; j := 0; (* copy the config strings over *) LOOP SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j); IF ch = 0X THEN EXIT END; REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X; (* end of name *) REPEAT SYSTEM.GET (i, ch); config[j] := ch; INC (i); INC (j) UNTIL ch = 0X (* end of value *) END END; SYSTEM.GET (p + 4, size); INC (p, size) END; ASSERT((heapSize # 0) & (lowTop # 0)); memTop := HeapAdr + heapSize END ReadBootTable; (** Read a byte from the non-volatile setup memory. *) PROCEDURE GetNVByte* (ofs: LONGINT): CHAR; VAR c: CHAR; BEGIN Portout8 (70H, CHR(ofs)); Wait; Portin8(71H, c); RETURN c END GetNVByte; (** Write a byte to the non-volatile setup memory. *) PROCEDURE PutNVByte* (ofs: LONGINT; val: CHAR); BEGIN Portout8 (70H, CHR(ofs)); Wait; Portout8 (71H, val) END PutNVByte; (** Compute a checksum for the Intel SMP spec floating pointer structure. *) PROCEDURE ChecksumMP* (adr: ADDRESS; size: SIZE): LONGINT; VAR sum: LONGINT; x: ADDRESS; ch: CHAR; BEGIN sum := 0; FOR x := adr TO adr + size-1 DO SYSTEM.GET (x, ch); sum := (sum + ORD(ch)) MOD 256 END; RETURN sum END ChecksumMP; (* Search for MP floating pointer structure. *) PROCEDURE SearchMem (adr: ADDRESS; size: SIZE): ADDRESS; VAR x, len: LONGINT; ch: CHAR; BEGIN WHILE size > 0 DO SYSTEM.GET (adr, x); IF x = 05F504D5FH THEN (* "_MP_" found *) SYSTEM.GET (adr + 8, ch); len := ORD(ch)*16; IF len > 0 THEN SYSTEM.GET (adr + 9, ch); IF (ch = 1X) OR (ch >= 4X) THEN (* version 1.1 or 1.4 or higher *) IF ChecksumMP(adr, len) = 0 THEN RETURN adr (* found *) END END END END; INC (adr, 16); DEC (size, 16) END; RETURN NilAdr (* not found *) END SearchMem; (* Search for MP spec info. *) PROCEDURE SearchMP; VAR adr: ADDRESS; BEGIN adr := 0; SYSTEM.GET (040EH, SYSTEM.VAL (INTEGER, adr)); (* EBDA address *) adr := adr*16; IF adr < 100000H THEN adr := SearchMem(adr, 1024) (* 1. look in EBDA *) ELSE adr := NilAdr END; IF adr = NilAdr THEN (* 2. look in last kb of base memory *) adr := SearchMem(lowTop + (-lowTop) MOD 10000H - 1024, 1024); IF adr = NilAdr THEN (* 3. look at top of physical memory *) adr := SearchMem(memTop - 1024, 1024); IF adr = NilAdr THEN (* 4. look in BIOS ROM space *) adr := SearchMem(0E0000H, 20000H) END END END; IF adr = NilAdr THEN revMP := 0X; configMP := NilAdr ELSE SYSTEM.GET (adr + 9, revMP); SYSTEM.MOVE(adr + 11, ADDRESSOF(featureMP[0]), 5); (* feature bytes *) configMP := SYSTEM.GET32 (adr + 4); (* physical address outside reported RAM (spec 1.4 p. 4-2) *) IF configMP = 0 THEN configMP := NilAdr END END END SearchMP; (* Allocate area for ISA DMA. *) PROCEDURE AllocateDMA; VAR old: ADDRESS; BEGIN old := lowTop; dmaSize := DefaultDMASize*1024; ASSERT((dmaSize >= 0) & (dmaSize <= 65536)); IF (lowTop-dmaSize) DIV 65536 # (lowTop-1) DIV 65536 THEN (* crosses 64KB boundary *) DEC (lowTop, lowTop MOD 65536) (* round down to 64KB boundary *) END; DEC (lowTop, dmaSize); (* allocate memory *) dmaSize := old - lowTop (* how much was allocated (including rounding) *) END AllocateDMA; (* Check if the specified address is RAM. *) PROCEDURE IsRAM(adr: ADDRESS): BOOLEAN; CONST Pattern1 = (0BEEFC0DEH); Pattern2 = (0AA55FF00H); VAR save, x: ADDRESS; ok: BOOLEAN; BEGIN ok := FALSE; SYSTEM.GET (adr, save); SYSTEM.PUT (adr, Pattern1); (* attempt 1st write *) x := Pattern2; (* write something else *) SYSTEM.GET (adr, x); (* attempt 1st read *) IF x = Pattern1 THEN (* first test passed *) SYSTEM.PUT (adr, Pattern2); (* attempt 2nd write *) x := Pattern1; (* write something else *) SYSTEM.GET (adr, x); (* attempt 2nd read *) ok := (x = Pattern2) END; SYSTEM.PUT (adr, save); RETURN ok END IsRAM; (* Map the physical address in the second virtual page *) PROCEDURE -InvalidateTLB (address: ADDRESS); CODE {SYSTEM.AMD64, SYSTEM.Privileged} POP RAX INVLPG [RAX] END InvalidateTLB; PROCEDURE -GetPML4Base (): ADDRESS; CODE {SYSTEM.AMD64} MOV RAX, CR3 END GetPML4Base; PROCEDURE -INVLPG (adr: ADDRESS); CODE {SYSTEM.AMD64, SYSTEM.Privileged} POP RAX INVLPG [RAX] END INVLPG; (* Check amount of memory available and update memTop. *) PROCEDURE CheckMemory; CONST K = 1024; M = K * K; PS = 2 * M; ExtMemAdr = M; TPS = 4 * K; UserPage = 7; PageNotPresent = 0; VAR s: ARRAY 16 OF CHAR; i: LONGINT; physicalAddress, pml4Base, pdpBase, pdBase: ADDRESS; pml4e, pdpe, pde, lastTable: ADDRESS; PROCEDURE AllocateTranslationTable (VAR baseAddress, firstEntry: ADDRESS); BEGIN baseAddress := lastTable; firstEntry := baseAddress; INC (lastTable, TPS); Fill32 (baseAddress, TPS, PageNotPresent) END AllocateTranslationTable; BEGIN GetConfig("ExtMemSize", s); (* in MB *) IF s[0] # 0X THEN (* override detection *) i := 0; memTop := ExtMemAdr + LONG (StrToInt(i, s)) * M END; pml4Base := GetPML4Base (); DEC (pml4Base, pml4Base MOD TPS); SYSTEM.GET (pml4Base, pdpBase); DEC (pdpBase, pdpBase MOD TPS); SYSTEM.GET (pdpBase, pdBase); DEC (pdBase, pdBase MOD TPS); physicalAddress := PS; lastTable := pdBase + TPS; pml4e := pml4Base; pdpe := pdpBase; pde := pdBase; WHILE (pml4e < pml4Base + TPS) DO WHILE (pdpe < pdpBase + TPS) DO WHILE (pde < pdBase + TPS) DO INC (pde, 8); SYSTEM.PUT (pde, physicalAddress + UserPage + 80H); INVLPG (physicalAddress); INC (physicalAddress, PS); IF physicalAddress >= memTop THEN RETURN END; END; INC (pdpe, 8); AllocateTranslationTable (pdBase, pde); SYSTEM.PUT (pdpe, pde + UserPage); END; INC (pml4e, 8); AllocateTranslationTable (pdpBase, pdpe); SYSTEM.PUT (pml4e, pdpe + UserPage); END; HALT (99); END CheckMemory; (* Initialize locks. *) PROCEDURE InitLocks; VAR i: LONGINT; s: ARRAY 12 OF CHAR; BEGIN IF TimeCount # 0 THEN GetConfig("LockTimeout", s); i := 0; maxTime := StrToInt(i, s); IF maxTime > MAX(LONGINT) DIV 1000000 THEN maxTime := MAX(LONGINT) ELSE maxTime := maxTime * 1000000 END END; FOR i := 0 TO MaxCPU-1 DO proc[i].locksHeld := {}; proc[i].preemptCount := 0 END; FOR i := 0 TO MaxLocks-1 DO lock[i].locked := FALSE END END InitLocks; (* Return flags state. *) PROCEDURE -GetFlags (): SET; CODE {SYSTEM.AMD64} PUSHFQ POP RAX END GetFlags; (* Set flags state. *) PROCEDURE -SetFlags (s: SET); CODE {SYSTEM.AMD64} POPFQ END SetFlags; PROCEDURE -PushFlags*; CODE {SYSTEM.AMD64} PUSHFQ END PushFlags; PROCEDURE -PopFlags*; CODE {SYSTEM.AMD64} POPFQ END PopFlags; (** Disable preemption on the current processor (increment the preemption counter). Returns the current processor ID as side effect. *) PROCEDURE AcquirePreemption* (): LONGINT; VAR id: LONGINT; BEGIN PushFlags; Cli; id := ID (); INC (proc[id].preemptCount); PopFlags; RETURN id END AcquirePreemption; (** Enable preemption on the current processor (decrement the preemption counter). *) PROCEDURE ReleasePreemption*; VAR id: LONGINT; BEGIN PushFlags; Cli; id := ID (); IF StrongChecks THEN ASSERT(proc[id].preemptCount > 0) END; DEC (proc[id].preemptCount); PopFlags END ReleasePreemption; (** Return the preemption counter of the current processor (specified in parameter). *) PROCEDURE PreemptCount* (id: LONGINT): LONGINT; BEGIN IF StrongChecks THEN (*ASSERT(~(9 IN GetFlags ()));*) (* interrupts off *) (* commented out because check is too strong *) ASSERT(id = ID ()) (* caller must specify current processor *) END; RETURN proc[id].preemptCount END PreemptCount; (* Spin waiting for a lock. Return AL = 1X iff timed out. *) PROCEDURE AcquireSpinTimeout(VAR locked: BOOLEAN; count: LONGINT; flags: SET): CHAR; CODE {SYSTEM.AMD64} MOV RSI, [RBP + flags] ; RSI := flags MOV EDI, [RBP + count] ; RDI := count MOV RBX, [RBP + locked] ; RBX := ADR(locked) MOV AL, 1 ; AL := 1 CLI ; switch interrupts off before acquiring lock test: CMP [RBX], AL ; locked? { AL = 1 } JE wait ; yes, go wait XCHG [RBX], AL ; set and read the lock atomically. LOCK prefix implicit. CMP AL, 1 ; was locked? JNE exit ; no, we have it now, interrupts are off, and AL # 1 wait: ; ASSERT(AL = 1) XOR RCX, RCX ; just in case some processor interprets REP this way REP NOP ; PAUSE instruction (* see SpinHint *) TEST RSI, 200H ; bit 9 - IF JZ intoff STI ; restore interrupt state quickly to allow pending interrupts (e.g. AosProcessors.StopAll/Broadcast) NOP ; NOP required, otherwise STI; CLI not interruptable CLI ; disable interrupts intoff: DEC EDI ; counter JNZ test ; not timed out yet OR EDI, [RBP + count] ; re-fetch original value & set flags JZ test ; if count = 0, retry forever ; timed out (AL = 1) exit: END AcquireSpinTimeout; (** Acquire a spin-lock and disable interrupts. *) PROCEDURE Acquire* (level: LONGINT); VAR id, i: LONGINT; flags: SET; start: HUGEINT; BEGIN id := AcquirePreemption (); flags := GetFlags (); (* store state of interrupt flag *) IF StrongChecks THEN ASSERT(~(9 IN flags) OR (proc[id].locksHeld = {})); (* interrupts enabled => no locks held *) ASSERT(~(level IN proc[id].locksHeld)) (* recursive locks not allowed *) END; IF (TimeCount = 0) OR (maxTime = 0) THEN IF AcquireSpinTimeout(lock[level].locked, 0, flags) = 0X THEN END; (* {interrupts off} *) ELSE start := GetTimer (); WHILE AcquireSpinTimeout(lock[level].locked, TimeCount, flags) = 1X DO IF GetTimer () - start > maxTime THEN trapState := proc; trapLocksBusy := {}; FOR i := 0 TO MaxLocks-1 DO IF lock[i].locked THEN INCL(trapLocksBusy, i) END END; HALT(1301) (* Lock timeout - see Traps *) END END END; IF proc[id].locksHeld = {} THEN proc[id].state := flags END; INCL(proc[id].locksHeld, level); (* we now hold the lock *) IF StrongChecks THEN (* no lower-level locks currently held by this processor *) ASSERT((level = 0) OR (proc[id].locksHeld * {0..level-1} = {})) END END Acquire; (** Release a spin-lock. Switch on interrupts when last lock released. *) PROCEDURE Release* (level: LONGINT); VAR id: LONGINT; flags: SET; BEGIN (* {interrupts off} *) id := ID (); IF StrongChecks THEN ASSERT(~(9 IN GetFlags ())); (* {interrupts off} *) ASSERT(lock[level].locked); ASSERT(level IN proc[id].locksHeld) END; EXCL(proc[id].locksHeld, level); IF proc[id].locksHeld = {} THEN flags := proc[id].state ELSE flags := GetFlags () END; lock[level].locked := FALSE; SetFlags(flags); ReleasePreemption END Release; (** Acquire all locks. Only for exceptional cases. *) PROCEDURE AcquireAll*; VAR lock: LONGINT; BEGIN FOR lock := HighestLock TO LowestLock BY -1 DO Acquire(lock) END END AcquireAll; (** Release all locks. Reverse of AcquireAll. *) PROCEDURE ReleaseAll*; VAR lock: LONGINT; BEGIN FOR lock := LowestLock TO HighestLock DO Release(lock) END END ReleaseAll; (** Break all locks held by current processor (for exception handling). Returns levels released. *) PROCEDURE BreakAll* (): SET; VAR id, level: LONGINT; released: SET; BEGIN id := AcquirePreemption (); PushFlags; Cli; released := {}; FOR level := 0 TO MaxLocks-1 DO IF level IN proc[id].locksHeld THEN lock[level].locked := FALSE; (* break the lock *) EXCL(proc[id].locksHeld, level); INCL(released, level) END END; IF proc[id].preemptCount > 1 THEN INCL(released, Preemption) END; proc[id].preemptCount := 0; (* clear preemption flag *) PopFlags; RETURN released END BreakAll; (** Acquire a fine-grained lock on an active object. *) PROCEDURE AcquireObject* (VAR locked: BOOLEAN); CODE {SYSTEM.AMD64} PUSHFQ MOV RBX, [RBP + locked] ; RBX := ADR(locked) MOV AL, 1 test: CMP [RBX], AL ; locked? { AL = 1 } JNE try STI PAUSE ; PAUSE instruction (* see SpinHint *) CLI JMP test try: XCHG [RBX], AL ; set and read the lock atomically. LOCK prefix implicit. CMP AL, 1 ; was locked? JE test ; yes, try again POPFQ END AcquireObject; (** Release an active object lock. *) PROCEDURE ReleaseObject* (VAR locked: BOOLEAN); CODE {SYSTEM.AMD64} MOV RBX, [RBP + locked] ; RBX := ADR(locked) MOV BYTE [RBX], 0 END ReleaseObject; (* Load global descriptor table *) PROCEDURE LoadGDT(base: ADDRESS; size: SIZE); CODE {SYSTEM.AMD64, SYSTEM.Privileged} ; LGDT needs 10 bytes: 2 for the 16-bit limit and 8 for the 64-bit base address in this order ; Assumption: size argument in front of base -> promote size value to upper 48 bits of size SHL QWORD [RBP + size], 64-16 LGDT [RBP + size + (64-16) / 8] END LoadGDT; (* Load segment registers *) PROCEDURE LoadSegRegs(data: INTEGER); CODE {SYSTEM.AMD64} MOV AX, [RBP + data] MOV DS, AX XOR AX, AX MOV ES, AX MOV FS, AX MOV GS, AX END LoadSegRegs; (* Return CS. *) PROCEDURE -CS* (): INTEGER; CODE {SYSTEM.AMD64} MOV AX, CS END CS; (** -- Memory management -- *) (* Allocate a physical page below 1M. Parameter adr returns physical and virtual address (or NilAdr).*) PROCEDURE NewLowPage(VAR adr: ADDRESS); BEGIN adr := freeLowPage; IF freeLowPage # NilAdr THEN SYSTEM.GET (freeLowPage, freeLowPage); (* freeLowPage := freeLowPage.next *) DEC(freeLowPages) END END NewLowPage; (* Allocate a directly-mapped page. Parameter adr returns physical and virtual address (or NilAdr). *) PROCEDURE NewDirectPage(VAR adr: ADDRESS); BEGIN IF pageHeapAdr # heapEndAdr THEN DEC(pageHeapAdr, PS); adr := pageHeapAdr; DEC(freeHighPages) ELSE adr := NilAdr END END NewDirectPage; (* Allocate a physical page. *) PROCEDURE NewPage(VAR physAdr: ADDRESS); VAR sp, prev: ADDRESS; BEGIN SYSTEM.GET(pageStackAdr + NodeSP, sp); ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *) IF sp > MinSP THEN (* stack not empty, pop entry *) DEC(sp, AddressSize); SYSTEM.GET (pageStackAdr+sp, physAdr); SYSTEM.PUT (pageStackAdr+NodeSP, sp); SYSTEM.GET (pageStackAdr+NodePrev, prev); IF (sp = MinSP) & (prev # NilAdr) THEN pageStackAdr := prev END; DEC(freeHighPages) ELSE NewDirectPage(physAdr) END END NewPage; (* Deallocate a physical page. *) PROCEDURE DisposePage(physAdr: ADDRESS); VAR sp, next, newAdr: ADDRESS; BEGIN SYSTEM.GET (pageStackAdr + NodeSP, sp); ASSERT((sp >= MinSP) & (sp <= MaxSP) & (sp MOD AddressSize = 0)); (* index check *) IF sp = MaxSP THEN (* current stack full *) SYSTEM.GET (pageStackAdr + NodeNext, next); IF next # NilAdr THEN (* next stack exists, make it current *) pageStackAdr := next; SYSTEM.GET (pageStackAdr+NodeSP, sp); ASSERT(sp = MinSP) (* must be empty *) ELSE (* allocate next stack *) NewDirectPage(newAdr); IF newAdr = NilAdr THEN NewLowPage(newAdr); (* try again from reserve *) IF newAdr = NilAdr THEN IF Stats THEN INC(NlostPages) END; RETURN (* give up (the disposed page is lost) *) ELSE IF Stats THEN INC(NreservePagesUsed) END END END; sp := MinSP; (* will be written to NodeSP below *) SYSTEM.PUT (newAdr + NodeNext, next); SYSTEM.PUT (newAdr + NodePrev, pageStackAdr); pageStackAdr := newAdr END END; (* push entry on current stack *) SYSTEM.PUT (pageStackAdr + sp, physAdr); SYSTEM.PUT (pageStackAdr + NodeSP, sp + AddressSize); INC(freeHighPages) END DisposePage; (* Allocate virtual address space for mapping. Parameter size must be multiple of page size. Parameter virtAdr returns virtual address or NilAdr on failure. *) PROCEDURE NewVirtual(VAR virtAdr: ADDRESS; size: SIZE); BEGIN ASSERT(size MOD PS = 0); (* IF mapTop+size > MapAreaAdr+MapAreaSize THEN virtAdr := NilAdr (* out of virtual space *) ELSE virtAdr := mapTop; INC(mapTop, size) END *) (* this code is commented because PACO produces weird behaviour when used with 64-bit ADDRESS*) virtAdr := mapTop; INC(mapTop, size) END NewVirtual; PROCEDURE DisposeVirtual(virtAdr: ADDRESS; size: SIZE); (* to do *) END DisposeVirtual; (* Map a physical page into the virtual address space. Parameter virtAdr is mapped address and phys is mapping value. Returns TRUE iff mapping successful. *) PROCEDURE MapTable (base, index: ADDRESS): ADDRESS; VAR pt: ADDRESS; BEGIN SYSTEM.GET (base + index * AddressSize, pt); IF ODD (pt) THEN (* pt present *) DEC (pt, pt MOD TPS) ELSE NewPage(pt); IF pt = NilAdr THEN RETURN NilAdr END; SYSTEM.PUT (base + index * AddressSize, pt + UserPage); Fill32 (pt, TPS, PageNotPresent) END; RETURN pt; END MapTable; PROCEDURE MapPage(virtAdr, phys: ADDRESS): BOOLEAN; VAR i, pt: ADDRESS; pml4e, pdpe, pde, pte: ADDRESS; BEGIN virtAdr := virtAdr DIV PS; pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs; pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs; pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs; pml4e := virtAdr MOD PTEs; pt := MapTable (kernelPML4, pml4e); IF pt = NilAdr THEN RETURN FALSE END; pt := MapTable (pt, pdpe); IF pt = NilAdr THEN RETURN FALSE END; pt := MapTable (pt, pde); IF pt = NilAdr THEN RETURN FALSE END; SYSTEM.PUT(pt + pte * AddressSize, phys); RETURN TRUE; END MapPage; (* Return mapped page address for a given virtual address (ODD if mapped) *) PROCEDURE MappedPage(virtAdr: ADDRESS): ADDRESS; VAR pt: ADDRESS; pml4e, pdpe, pde, pte: ADDRESS; BEGIN virtAdr := virtAdr DIV PS; pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs; pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs; pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs; pml4e := virtAdr MOD PTEs; SYSTEM.GET(kernelPML4 + pml4e * AddressSize, pt); IF ~ODD(pt) THEN RETURN 0 END; DEC (pt, pt MOD 1000H); SYSTEM.GET(pt + pdpe * AddressSize, pt); IF ~ODD(pt) THEN RETURN 0 END; DEC (pt, pt MOD 1000H); SYSTEM.GET(pt + pde * AddressSize, pt); IF ~ODD(pt) THEN RETURN 0 END; DEC (pt, pt MOD 1000H); SYSTEM.GET (pt + pte * AddressSize, pt); RETURN pt; END MappedPage; (* Unmap a page and return the previous mapping, like MappedPage (). Caller must flush TLB. *) PROCEDURE UnmapPage(virtAdr: ADDRESS): ADDRESS; VAR t, pt: ADDRESS; pml4e, pdpe, pde, pte: ADDRESS; BEGIN virtAdr := virtAdr DIV PS; pte := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs; pde := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs; pdpe := virtAdr MOD PTEs; virtAdr := virtAdr DIV PTEs; pml4e := virtAdr MOD PTEs; SYSTEM.GET(kernelPML4 + pml4e * AddressSize, pt); IF ~ODD(pt) THEN RETURN 0 END; DEC (pt, pt MOD 1000H); SYSTEM.GET(pt + pdpe * AddressSize, pt); IF ~ODD(pt) THEN RETURN 0 END; DEC (pt, pt MOD 1000H); SYSTEM.GET(pt + pde * AddressSize, pt); IF ~ODD(pt) THEN RETURN 0 END; DEC (pt, pt MOD 1000H); SYSTEM.GET(pt + pte * AddressSize, t); SYSTEM.PUT(pt + pte * AddressSize, NIL); INVLPG (t); RETURN t; END UnmapPage; (* Map area [virtAdr..virtAdr+size) directly to area [Adr(phys)..Adr(phys)+size). Returns TRUE iff successful. *) PROCEDURE MapDirect(virtAdr: ADDRESS; size: SIZE; phys: ADDRESS): BOOLEAN; BEGIN Trace.String("MapDirect "); Trace.Address (virtAdr); Trace.Char(' '); Trace.Address (phys); Trace.Char (' '); Trace.Int (size, 0); Trace.Int(size DIV PS, 8); Trace.Ln; ASSERT((virtAdr MOD PS = 0) & (size MOD PS = 0)); TRACE(virtAdr, phys, size); WHILE size # 0 DO IF ~ODD(MappedPage(virtAdr)) THEN IF ~MapPage(virtAdr, phys) THEN RETURN FALSE END; END; INC(virtAdr, PS); INC(phys, PS); DEC(size, PS) END; TRACE(virtAdr, phys, size); RETURN TRUE END MapDirect; (* Policy decision for heap expansion. NewBlock for the same block has failed try times. *) PROCEDURE ExpandNow(try: LONGINT): BOOLEAN; VAR size: SIZE; BEGIN size := LSH(memBlockTail.endBlockAdr - memBlockHead.beginBlockAdr, -10); (* heap size in KB *) RETURN (~ODD(try) OR (size < heapMinKB)) & (size < heapMaxKB) END ExpandNow; (* Try to expand the heap by at least "size" bytes *) PROCEDURE ExpandHeap*(try: LONGINT; size: SIZE; VAR memBlock: MemoryBlock; VAR beginBlockAdr, endBlockAdr: ADDRESS); BEGIN IF ExpandNow(try) THEN IF size < expandMin THEN size := expandMin END; beginBlockAdr := memBlockHead.endBlockAdr; endBlockAdr := beginBlockAdr; INC(endBlockAdr, size); SetHeapEndAdr(endBlockAdr); (* in/out parameter *) memBlock := memBlockHead; (* endBlockAdr of memory block is set by caller after free block has been set in memory block - this process is part of lock-free heap expansion *) ELSE beginBlockAdr := memBlockHead.endBlockAdr; endBlockAdr := memBlockHead.endBlockAdr; memBlock := NIL END END ExpandHeap; (* Set memory block end address *) PROCEDURE SetMemoryBlockEndAddress*(memBlock: MemoryBlock; endBlockAdr: ADDRESS); BEGIN ASSERT(endBlockAdr >= memBlock.beginBlockAdr); memBlock.endBlockAdr := endBlockAdr END SetMemoryBlockEndAddress; (* Free unused memory block *) PROCEDURE FreeMemBlock*(memBlock: MemoryBlock); BEGIN HALT(515) (* impossible to free heap in I386 native A2 version *) END FreeMemBlock; (** Attempt to set the heap end address to the specified address. The returned value is the actual new end address (never smaller than previous value). *) PROCEDURE SetHeapEndAdr(VAR endAdr: ADDRESS); VAR n, m: SIZE; BEGIN Acquire(Memory); n := LSH(endAdr+(PS-1), -PSlog2) - LSH(heapEndAdr, -PSlog2); (* pages requested *) m := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2) - ReservedPages; (* max pages *) IF n > m THEN n := m END; IF n > 0 THEN INC(heapEndAdr, n*PS); DEC(freeHighPages, n) END; endAdr := heapEndAdr; Release(Memory) END SetHeapEndAdr; (** Map a physical memory area (physAdr..physAdr+size-1) into the virtual address space. Parameter virtAdr returns the virtual address of mapped region, or NilAdr on failure. *) PROCEDURE MapPhysical*(physAdr: ADDRESS; size: SIZE; VAR virtAdr: ADDRESS); VAR ofs: ADDRESS; BEGIN IF (LSH(physAdr, -PSlog2) <= topPageNum) & (LSH(physAdr+size-1, -PSlog2) <= topPageNum) & (LSH(physAdr, -PSlog2) >= LSH(LowAdr, -PSlog2)) THEN virtAdr := physAdr (* directly mapped *) ELSE ofs := physAdr MOD PS; DEC(physAdr, ofs); INC(size, ofs); (* align start to page boundary *) INC(size, (-size) MOD PS); (* align end to page boundary *) Acquire(Memory); NewVirtual(virtAdr, size); IF virtAdr # NilAdr THEN IF ~MapDirect(virtAdr, size, physAdr + UserPage) THEN DisposeVirtual(virtAdr, size); virtAdr := NilAdr END END; Release(Memory); IF TraceVerbose THEN Acquire (TraceOutput); Trace.String("Mapping "); Trace.IntSuffix(LONGINT(size), 1, "B"); Trace.String(" at "); Trace.Address (physAdr); Trace.String (" - "); Trace.Address (physAdr+size-1); IF virtAdr = NilAdr THEN Trace.String(" failed") ELSE Trace.String (" to "); Trace.Address (virtAdr); IF ofs # 0 THEN Trace.String (", offset "); Trace.Int((ofs), 0) END END; Trace.Ln; Release (TraceOutput); END; IF virtAdr # NilAdr THEN INC(virtAdr, ofs) END (* adapt virtual address to correct offset *) END END MapPhysical; (** Unmap an area previously mapped with MapPhysical. *) PROCEDURE UnmapPhysical*(virtAdr: ADDRESS; size: SIZE); (* to do *) END UnmapPhysical; (** Return the physical address of the specified range of memory, or NilAdr if the range is not contiguous. It is the caller's responsibility to assure the range remains allocated during the time it is in use. *) PROCEDURE PhysicalAdr*(adr: ADDRESS; size: SIZE): ADDRESS; VAR physAdr, mapped, expected: ADDRESS; BEGIN IF (LSH(adr, -PSlog2) <= topPageNum) & (LSH(adr+size-1, -PSlog2) <= topPageNum) THEN RETURN adr (* directly mapped *) ELSE Acquire(Memory); mapped := MappedPage(adr); Release(Memory); IF ODD(mapped) & (size > 0) THEN (* mapped, and range not empty or too big *) physAdr := mapped - mapped MOD PS + adr MOD PS; (* strip paging bits and add page offset *) (* now check if whole range is physically contiguous *) DEC(size, PS - adr MOD PS); (* subtract distance to current page end *) IF size > 0 THEN (* range crosses current page end *) expected := LSH(mapped, -PSlog2)+1; (* expected physical page *) LOOP INC(adr, PS); (* step to next page *) Acquire(Memory); mapped := MappedPage(adr); Release(Memory); IF ~ODD(mapped) OR (LSH(mapped, -PSlog2) # expected) THEN physAdr := NilAdr; EXIT END; DEC(size, PS); IF size <= 0 THEN EXIT END; (* ok *) INC(expected) END ELSE (* ok, skip *) END ELSE physAdr := NilAdr END; RETURN physAdr END END PhysicalAdr; (** Translate a virtual address range to num ranges of physical address. num returns 0 on error. *) PROCEDURE TranslateVirtual*(virtAdr: ADDRESS; size: SIZE; VAR num: LONGINT; VAR physAdr: ARRAY OF Range); VAR ofs, phys1: ADDRESS; size1: SIZE; BEGIN Acquire(Memory); num := 0; LOOP IF size = 0 THEN EXIT END; IF num = LEN(physAdr) THEN num := 0; EXIT END; (* index check *) ofs := virtAdr MOD PS; (* offset in page *) size1 := PS - ofs; (* distance to next page boundary *) IF size1 > size THEN size1 := size END; phys1 := MappedPage(virtAdr); IF ~ODD(phys1) THEN num := 0; EXIT END; (* page not present *) physAdr[num].adr := phys1 - phys1 MOD PS + ofs; physAdr[num].size := size1; INC(num); INC(virtAdr, size1); DEC(size, size1) END; IF num = 0 THEN physAdr[0].adr := NilAdr; physAdr[0].size := 0 END; Release(Memory) END TranslateVirtual; (** Return information on free memory in Kbytes. *) PROCEDURE GetFreeK*(VAR total, lowFree, highFree: SIZE); CONST KperPage = PS DIV 1024; BEGIN Acquire(Memory); total := totalPages * KperPage; lowFree := freeLowPages * KperPage; highFree := freeHighPages * KperPage; Release(Memory) END GetFreeK; (** -- Stack -- *) (** Extend the stack to include the specified address, if possible. Returns TRUE iff ok. *) PROCEDURE ExtendStack*(VAR s: Stack; virtAdr: ADDRESS): BOOLEAN; VAR phys: ADDRESS; ok: BOOLEAN; BEGIN Acquire(Memory); ok := FALSE; IF (virtAdr < s.high) & (virtAdr >= s.low) THEN DEC(virtAdr, virtAdr MOD PS); (* round down to page boundary *) IF Stats & (virtAdr < s.adr-PS) THEN INC(Nbigskips) END; IF ODD(MappedPage(virtAdr)) THEN (* already mapped *) ok := TRUE ELSE NewPage(phys); IF phys # NilAdr THEN IF MapPage(virtAdr, phys + UserPage) THEN IF virtAdr < s.adr THEN s.adr := virtAdr ELSE IF Stats THEN INC(Nfilled) END END; ok := TRUE ELSE DisposePage(phys) END END END END; Release(Memory); RETURN ok END ExtendStack; (** Allocate a stack. Parameter initSP returns initial stack pointer value. *) PROCEDURE NewStack*(VAR s: Stack; process: ANY; VAR initSP: ADDRESS); VAR adr, phys: ADDRESS; old: HUGEINT; free: SET; BEGIN ASSERT(InitUserStackSize = PS); (* for now *) Acquire(Memory); IF Stats THEN INC(NnewStacks) END; old := freeStackIndex; LOOP IF Stats THEN INC(NnewStackLoops) END; free := freeStack[freeStackIndex]; IF free # {} THEN adr := 0; WHILE ~(adr IN free) DO INC(adr) END; (* BTW: BSF instruction is not faster *) IF Stats THEN INC(NnewStackInnerLoops, adr+1) END; EXCL(freeStack[freeStackIndex], SIZE(adr)); adr := 10000000H + (freeStackIndex*SetSize + adr)*MaxUserStackSize; (*StackAreaAdr *) EXIT END; INC(freeStackIndex); IF freeStackIndex = LEN(freeStack) THEN freeStackIndex := 0 END; IF freeStackIndex = old THEN HALT(1503) END (* out of stack space *) END; NewPage(phys); ASSERT(phys # NilAdr); (* allocate one physical page at first *) s.high := adr + MaxUserStackSize; s.low := adr + UserStackGuardSize; s.adr := s.high - InitUserStackSize; (* at the top of the virtual area *) initSP := s.high-AddressSize; IF ~MapPage(s.adr, phys + UserPage) THEN HALT(99) END; SYSTEM.PUT (initSP, process); Release(Memory) END NewStack; (** Return the process pointer set when the current user stack was created (must be running on user stack). *) PROCEDURE -GetProcessPtr* (): ANY; CODE {SYSTEM.AMD64} MOV RAX, -MaxUserStackSize AND RAX, RSP MOV RAX, [RAX + MaxUserStackSize - 8] POP RBX; pointer return passed via stack MOV [RBX], RAX END GetProcessPtr; (** True iff current process works on a kernel stack *) PROCEDURE WorkingOnKernelStack* (): BOOLEAN; VAR id: LONGINT; sp: ADDRESS; BEGIN ASSERT(KernelStackSize # MaxUserStackSize - UserStackGuardSize); (* detection does only work with this assumption *) sp := SYSTEM.GetStackPointer (); id := ID (); RETURN (sp >= procm[id].stack.low) & (sp <= procm[id].stack.high) END WorkingOnKernelStack; (** Deallocate a stack. Current thread should not dispose its own stack. Uses privileged instructions. *) PROCEDURE DisposeStack*(CONST s: Stack); VAR adr, phys: ADDRESS; BEGIN (* First make sure there are no references to virtual addresses of the old stack in the TLBs. This is required because we are freeing the pages, and they could be remapped later at different virtual addresses. DisposeStack will only be called from the thread finalizer, which ensures that the user will no longer be referencing this memory. Therefore we can make this upcall from outside the locked region, avoiding potential deadlock. *) GlobalFlushTLB; (* finalizers are only called after Processors has initialized this upcall *) Acquire(Memory); IF Stats THEN INC(NdisposeStacks) END; adr := s.adr; (* unmap and deallocate all pages of stack *) REPEAT phys := UnmapPage(adr); (* TLB was flushed and no intermediate references possible to unreachable stack *) IF ODD(phys) THEN DisposePage(phys - phys MOD PS) END; INC(adr, PS) UNTIL adr = s.high; adr := (adr - MaxUserStackSize - StackAreaAdr) DIV MaxUserStackSize; INCL(freeStack[adr DIV 32], SIZE(adr) MOD 32); Release(Memory) END DisposeStack; (** Check if the specified stack is valid. *) PROCEDURE ValidStack*(CONST s: Stack; sp: ADDRESS): BOOLEAN; VAR valid: BOOLEAN; BEGIN Acquire(Memory); valid := (sp MOD 4 = 0) & (sp >= s.adr) & (sp <= s.high); WHILE valid & (sp < s.high) DO valid := ODD(MappedPage(sp)); INC(sp, PS) END; Release(Memory); RETURN valid END ValidStack; (** Update the stack snapshot of the current processor. (for Processors) *) PROCEDURE UpdateState*; VAR id: LONGINT; BEGIN ASSERT(CS () MOD 4 = 0); (* to get kernel stack pointer *) id := ID (); ASSERT(procm[id].stack.high # 0); (* current processor stack has been assigned *) procm[id].sp := SYSTEM.GetFramePointer () (* instead of ESP, just fetch EBP of current procedure (does not contain pointers) *) END UpdateState; (** Get kernel stack regions for garbage collection. (for Heaps) *) PROCEDURE GetKernelStacks*(VAR stack: ARRAY OF Stack); VAR i: LONGINT; BEGIN (* {UpdateState has been called by each processor} *) FOR i := 0 TO MaxCPU-1 DO stack[i].adr := procm[i].sp; stack[i].high := procm[i].stack.high END END GetKernelStacks; (* Init page tables (paging still disabled until EnableMM is called). *) PROCEDURE InitPages; VAR i, j: HUGEINT; phys, lTop, mTop: ADDRESS; BEGIN (* get top of high and low memory *) mTop := memTop; DEC(mTop, mTop MOD PS); (* mTop MOD PS = 0 *) topPageNum := LSH(mTop-1, -PSlog2); lTop := lowTop; DEC(lTop, lTop MOD PS); (* lTop MOD PS = 0 *) (* initialize NewDirectPage and SetHeapEndAdr (get kernel range) *) (* SYSTEM.GET (LinkAdr + EndBlockOfs, heapEndAdr);*) heapEndAdr := 0; (* ug *) (* SYSTEM.PUT (heapEndAdr, NIL); (* set tag to NIL *) INC(heapEndAdr, AddressSize); (* space for NIL *) *) (* ug: not needed, extension of heap done in GetStaticHeap anyway INC(heapEndAdr, K); (* space for free heap block descriptor of type Heaps.HeapBlockDesc at heapEndAdr, initialization is done in Heaps *) INC(heapEndAdr, (-heapEndAdr) MOD PS); (* round up to page size *) *) pageHeapAdr := mTop; freeHighPages := LSH(pageHeapAdr, -PSlog2) - LSH(heapEndAdr, -PSlog2); IF TraceVerbose THEN Trace.String("Kernel: "); Trace.Address (LinkAdr); Trace.String(" .. "); Trace.Address (heapEndAdr-1); Trace.Ln; Trace.String ("High: "); Trace.Address (heapEndAdr); Trace.String(" .. "); Trace.Address (pageHeapAdr-1); Trace.String(" = "); Trace.Int ((freeHighPages),0); Trace.StringLn (" free pages") END; (* initialize empty free page stack *) NewDirectPage(pageStackAdr); ASSERT(pageStackAdr # NilAdr); SYSTEM.PUT (pageStackAdr+NodeSP, SYSTEM.VAL (ADDRESS, MinSP)); SYSTEM.PUT (pageStackAdr+NodeNext, SYSTEM.VAL (ADDRESS, NilAdr)); SYSTEM.PUT (pageStackAdr+NodePrev, SYSTEM.VAL (ADDRESS, NilAdr)); (* free low pages *) freeLowPage := NilAdr; freeLowPages := 0; i := lTop DIV PS; j := LowAdr DIV PS; IF TraceVerbose THEN Trace.String("Low: "); Trace.Address (j*PS); Trace.String (".."); Trace.Address (i*PS-1) END; REPEAT DEC(i); phys := i*PS; SYSTEM.PUT (phys, freeLowPage); (* phys.next := freeLowPage *) freeLowPage := phys; INC(freeLowPages) UNTIL i = j; IF TraceVerbose THEN Trace.String(" = "); Trace.Int(freeLowPages, 1); Trace.StringLn (" free pages") END; totalPages := LSH(memTop - M + lowTop + dmaSize + PS, -PSlog2); (* what BIOS gave us *) (* stacks *) ASSERT((StackAreaAdr MOD MaxUserStackSize = 0) & (StackAreaSize MOD MaxUserStackSize = 0)); FOR i := 0 TO LEN(freeStack)-1 DO freeStack[i] := {0..SetSize-1} END; FOR i := MaxUserStacks TO LEN(freeStack)*SetSize-1 DO EXCL(freeStack[i DIV SetSize], i MOD SetSize) END; freeStackIndex := 0; (* mappings *) mapTop := MapAreaAdr; (* IF fbadr + 1024 * PS * 10 > mapTop THEN mapTop := fbadr + 1024 * PS * 10 END; (* frame buffer ! *)*) (* create the address space *) NewPage(kernelPML4); ASSERT(kernelPML4 # NilAdr); Fill32(kernelPML4, TPS, PageNotPresent); IF ~MapDirect(LowAdr, memTop-LowAdr, LowAdr + UserPage) THEN HALT(99) END; (* map heap direct *) (* IF ~MapDirect(fbadr, PS*1024*1, fbadr + UserPage) THEN (* map frame buffer direct *) Trace.String("map direct failed at fbadr"); Trace.Address(fbadr); Trace.Ln; ELSE Trace.String("fbuffer mapped"); Trace.Address(fbadr); Trace.Ln; END; *) END InitPages; (* Generate a memory segment descriptor. type IN {0..7} & dpl IN {0..3}. type 0 data, expand-up, read-only 1 data, expand-up, read-write 2 data, expand-down, read-only 3 data, expand-down, read-write 4 code, non-conforming, execute-only 5 code, non-conforming, execute-read 6 code, conforming, execute-only 7 code, conforming, execute-read *) PROCEDURE GenCodeSegDesc (dpl, base, limit: LONGINT; conforming, longmode: BOOLEAN; VAR sd: SegDesc); VAR s: SET; BEGIN sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H; s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) + ASH(dpl, 13) + ASH(base, -16) MOD 100H); s := s + {9, 11, 12, 15, 23}; (* present=1, D = 0*) IF conforming THEN INCL(s, 10) END; IF longmode THEN INCL(s, 21) ELSE INCL (s, 22) END; (* long mode flag or default 32-bit operand *) sd.high := SYSTEM.VAL(LONGINT, s) END GenCodeSegDesc; PROCEDURE GenDataSegDesc (dpl, base, limit: LONGINT; VAR sd: SegDesc); VAR s: SET; BEGIN sd.low := ASH(base MOD 10000H, 16) + limit MOD 10000H; s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) + ASH(dpl, 13) + ASH(base, -16) MOD 100H); s := s + {9, 12, 15, 22, 23}; (* present=1 *) sd.high := SYSTEM.VAL(LONGINT, s) END GenDataSegDesc; (* Generate a 64-bit TSS descriptor (16bytes). *) PROCEDURE GenTSSDesc(base: ADDRESS; limit, dpl: LONGINT; VAR sdl, sdh: SegDesc); VAR s: SET; BEGIN sdl.low := SYSTEM.VAL(LONGINT, ASH(base MOD 10000H, 16) + limit MOD 10000H); s := SYSTEM.VAL(SET, ASH(ASH(base, -24), 24) + ASH(ASH(limit, -16), 16) + ASH(dpl, 13) + ASH(base, -16) MOD 100H); s := s + {8, 11, 15}; (* type=non-busy TSS, present=1, AVL=0, 32-bit=0 *) sdl.high := SYSTEM.VAL(LONGINT, s); sdh.low := SYSTEM.VAL(LONGINT, base DIV 10000000H); sdh.high := 0; END GenTSSDesc; (* Initialize segmentation. *) PROCEDURE InitSegments; VAR i: LONGINT; BEGIN (* limits and bases are ignored in 64-bit mode *) (* GDT 0: Null segment *) gdt[0].low := 0; gdt[0].high := 0; (* GDT 1: 32-bit Kernel code: non-conforming, execute-read, base 0, limit 4G, PL 0 *) GenCodeSegDesc(0, 0, M-1, FALSE, FALSE, gdt[1]); (* GDT 2: 64-bit Kernel code: non-conforming, execute-read, base 0, limit 4G, PL 0 *) GenCodeSegDesc(0, 0, M-1, FALSE, TRUE, gdt[2]); (* GDT 3: 32-bit User code: non-conforming, execute-read, base 0, limit 4G, PL 0 *) GenCodeSegDesc(0, 0, M-1, TRUE, FALSE, gdt[3]); (* GDT 4: 64-bit User code: conforming, execute-read, base 0, limit 4G, PL 0 *) GenCodeSegDesc(0, 0, M-1, TRUE, TRUE, gdt[4]); (* GDT 5: Kernel stack: read-write, base 0, limit 4G, PL 0 *) GenDataSegDesc(0, 0, M-1, gdt[5]); (* GDT 6: User stack: read-write, base 0, limit 4G, PL 3 *) GenDataSegDesc(3, 0, M-1, gdt[6]); (* GDT 7: User/Kernel data: expand-up, read-write, base 0, limit 4G, PL 3 *) GenDataSegDesc(3, 0, M-1, gdt[7]); FOR i := 0 TO MaxCPU-1 DO GenTSSDesc(ADDRESSOF(procm[i].tss), SIZEOF(TSSDesc)-1, 0, gdt[TSSOfs+i*2], gdt[TSSOfs+i*2 + 1]); procm[i].sp := 0; procm[i].stack.high := 0 END END InitSegments; (* Enable segmentation on the current processor. *) PROCEDURE EnableSegments; BEGIN LoadGDT(ADDRESSOF(gdt[0]), SIZEOF(GDT)-1); LoadSegRegs(DataSel) END EnableSegments; (* Allocate a kernel stack. *) PROCEDURE NewKernelStack(VAR stack: Stack); VAR phys, virt: ADDRESS; size: SIZE; BEGIN size := KernelStackSize; NewVirtual(virt, size + PS); (* add one page for overflow protection *) ASSERT(virt # NilAdr, 1502); INC(virt, PS); (* leave page open at bottom *) stack.low := virt; stack.adr := virt; (* return stack *) REPEAT NewPage(phys); ASSERT(phys # NilAdr); IF ~MapPage(virt, phys + KernelPage) THEN HALT(99) END; DEC(size, PS); INC(virt, PS) UNTIL size = 0; stack.high := virt END NewKernelStack; (* Set task register *) PROCEDURE -SetTR(tr: ADDRESS); CODE {SYSTEM.AMD64, SYSTEM.Privileged} POP RAX LTR AX END SetTR; (* Enable memory management and switch to new stack in virtual space. Stack layout: caller1 return caller1 RBP <-- caller0 RBP [caller0 locals] 04 caller0 return 00 caller0 RBP <-- RBP locals <-- RSP *) PROCEDURE -EnableMM(pml4Base, rsp: ADDRESS); CODE {SYSTEM.AMD64, SYSTEM.Privileged} POP RBX POP RAX MOV RCX, [RBP + 8] ; caller0 return MOV RDX, [RBP] ; caller0 RBP MOV RDX, [RDX + 8] ; caller 1 return MOV CR3, RAX ; pml4 page translation base address XOR RAX, RAX MOV [RBX - 8], RAX ; not UserStackSel (cf. GetUserStack) MOV [RBX - 16], RDX ; caller1 return on new stack MOV [RBX - 24], RAX ; caller1 RBP on new stack LEA RBP, [RBX - 24] ; new stack top MOV RSP, RBP JMP RCX END EnableMM; (** -- Initialization -- *) (** Initialize memory management. o every processor calls this once during initialization o mutual exclusion with other processors must be guaranteed by the caller o interrupts must be off o segmentation and paging is enabled o return is on the new stack => caller must have no local variables *) PROCEDURE InitMemory*; VAR id: LONGINT; BEGIN EnableSegments; (* allocate stack *) id := ID (); NewKernelStack(procm[id].stack); procm[id].sp := 0; (* initialize TSS *) Fill32(ADDRESSOF(procm[id].tss), SIZEOF(TSSDesc), 0); procm[id].tss.RSP0 := procm[id].stack.high; (* kernel stack org *) procm[id].tss.IOMapBaseAddress := -1; (* no bitmap *) (* enable paging and switch stack *) SetTR(KernelTR + id*16); EnableMM(kernelPML4, procm[id].tss.RSP0) END InitMemory; (** Initialize a boot page for MP booting. Parameter physAdr returns the physical address of a low page. *) PROCEDURE InitBootPage*(start: Startup; VAR physAdr: ADDRESS); CONST BootOfs = 800H; VAR adr, a: ADDRESS; BEGIN Acquire(Memory); NewLowPage(physAdr); Release(Memory); ASSERT((physAdr # NilAdr) & (physAdr >= 0) & (physAdr < M) & (physAdr MOD PS = 0)); adr := physAdr + BootOfs; a := adr; (* put binary code copy of SMP.Bin to address a (cf. BinToCode.Mod ) *) SYSTEM.PUT32(a, 0002F10EBH); INC (a, 4); SYSTEM.PUT32(a, 000000000H); INC (a, 4); SYSTEM.PUT32(a, 000000000H); INC (a, 4); SYSTEM.PUT32(a, 000000000H); INC (a, 4); SYSTEM.PUT32(a, 031660000H); INC (a, 4); SYSTEM.PUT32(a, 066C88CC0H); INC (a, 4); SYSTEM.PUT32(a, 02E04E0C1H); INC (a, 4); SYSTEM.PUT32(a, 04A060966H); INC (a, 4); SYSTEM.PUT32(a, 0010F2E08H); INC (a, 4); SYSTEM.PUT32(a, 02E08081EH); INC (a, 4); SYSTEM.PUT32(a, 00216010FH); INC (a, 4); SYSTEM.PUT32(a, 0C4896608H); INC (a, 4); SYSTEM.PUT32(a, 000C48166H); INC (a, 4); SYSTEM.PUT32(a, 00F000008H); INC (a, 4); SYSTEM.PUT32(a, 00F66C020H); INC (a, 4); SYSTEM.PUT32(a, 00F00E8BAH); INC (a, 4); SYSTEM.PUT32(a, 0662EC022H); INC (a, 4); SYSTEM.PUT32(a, 0080E1E8BH); INC (a, 4); SYSTEM.PUT32(a, 00850EA66H); INC (a, 4); SYSTEM.PUT32(a, 000080000H); INC (a, 4); SYSTEM.PUT32(a, 00FE0200FH); INC (a, 4); SYSTEM.PUT32(a, 00F05E8BAH); INC (a, 4); SYSTEM.PUT32(a, 0220FE022H); INC (a, 4); SYSTEM.PUT32(a, 00080B9DBH); INC (a, 4); SYSTEM.PUT32(a, 0320FC000H); INC (a, 4); SYSTEM.PUT32(a, 008E8BA0FH); INC (a, 4); SYSTEM.PUT32(a, 0200F300FH); INC (a, 4); SYSTEM.PUT32(a, 0E8BA0FC0H); INC (a, 4); SYSTEM.PUT32(a, 0C0220F1FH); INC (a, 4); SYSTEM.PUT32(a, 0000000EAH); INC (a, 4); SYSTEM.PUT16(a, 01000H); INC (a, 2); SYSTEM.PUT8(a, 000H); INC (a); (* the following offsets must be patched and can be reported by the assembler when assembling SMP.S with: PCAAMD64.Assemble SMP.S l~ *) SYSTEM.PUT32 (adr+14, SYSTEM.VAL (LONGINT, kernelPML4)); (* cf. label PML4BASE *) SYSTEM.PUT32 (adr+117, SYSTEM.VAL (LONGINT, start)); (* not a method *) (* cf. label KENTRY *) SYSTEM.PUT32 (adr+4, SYSTEM.VAL (LONGINT, ADDRESSOF(gdt[0]))); (* cf. label GDT *) (* jump at start *) SYSTEM.PUT8(physAdr, 0EAX); (* jmp far *) SYSTEM.PUT32(physAdr + 1, ASH(physAdr, 16-4) + BootOfs) (* seg:ofs *) END InitBootPage; (** The BP in a MP system calls this to map the APIC physical address directly. *) PROCEDURE InitAPICArea*(adr: ADDRESS; size: SIZE); BEGIN (* ASSERT((size = PS) & (adr >= IntelAreaAdr) & (adr+size-1 < IntelAreaAdr+IntelAreaSize)); *) IF ~MapDirect(adr, size, adr + UserPage) THEN HALT(99) END END InitAPICArea; (* Set machine-dependent parameters gcThreshold, expandMin, heapMinKB and heapMaxKB *) PROCEDURE SetGCParams*; VAR size, t: SIZE; BEGIN GetFreeK(size, t, t); (* size is total memory size in KB *) heapMinKB := size * HeapMin DIV 100; heapMaxKB := size * HeapMax DIV 100; expandMin := size * ExpandRate DIV 100 * 1024; IF expandMin < 0 THEN expandMin := MAX(LONGINT) END; gcThreshold := size * Threshold DIV 100 * 1024; IF gcThreshold < 0 THEN gcThreshold := MAX(LONGINT) END END SetGCParams; (** Get first memory block and first free address, heap area in first memory block is automatically expanded to account for the first few calls to NEW *) PROCEDURE GetStaticHeap*(VAR beginBlockAdr, endBlockAdr, freeBlockAdr: ADDRESS); BEGIN beginBlockAdr := initialMemBlock.beginBlockAdr; endBlockAdr := initialMemBlock.endBlockAdr; freeBlockAdr := beginBlockAdr; END GetStaticHeap; (* returns if an address is a currently allocated heap address *) PROCEDURE ValidHeapAddress*(p: ADDRESS): BOOLEAN; BEGIN RETURN (p >= memBlockHead.beginBlockAdr) & (p <= memBlockTail.endBlockAdr) OR (p>=401000H) & (p<=500000H) (*! guess until kernel size known *) END ValidHeapAddress; (** Jump from kernel to user mode. Every processor calls this during initialization. *) PROCEDURE JumpToUserLevel*(userRBP: ADDRESS); CODE {SYSTEM.AMD64, SYSTEM.Privileged} PUSH UserStackSel ; SS3 PUSH QWORD [RBP + userRBP] ; RSP3 PUSHFQ ; RFLAGS3 PUSH User64CodeSel ; CS3 CALL DWORD L1 ; PUSH L1 (RIP3) L1: ADD QWORD [RSP], BYTE 7 ; adjust RIP3 to L2 (L2-L1 should be 7) IRETQ ; switch to level 3 and continue at following instruction L2: POP RBP ; from level 3 stack (refer to AosActive.NewProcess) RET ; jump to body of first active object; cf. Objects.NewProcess END JumpToUserLevel; (* should ensure that a given address can be represented in the legacy 4GB address space replacement for unsafe: x := SYSTEM.VAL (LONGINT, y) with y of type ADDRESS -> better rewrite client code! this procedure should be redundant and removable in the end! *) PROCEDURE Ensure32BitAddress*(adr: ADDRESS): Address32; BEGIN (* TODO *) ASSERT (Is32BitAddress (adr), 9876); RETURN SYSTEM.VAL (Address32, adr) END Ensure32BitAddress; PROCEDURE Is32BitAddress*(adr: ADDRESS): BOOLEAN; BEGIN RETURN SYSTEM.VAL (Address32, adr) = adr; END Is32BitAddress; (** * Flush Data Cache for the specified virtual address range. If len is negative, flushes the whole cache. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be * left empty on Intel architecture. *) PROCEDURE FlushDCacheRange * (adr: ADDRESS; len: LONGINT); END FlushDCacheRange; (** * Invalidate Data Cache for the specified virtual address range. If len is negative, flushes the whole cache. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be * left empty on Intel architecture. *) PROCEDURE InvalidateDCacheRange * (adr: ADDRESS; len: LONGINT); END InvalidateDCacheRange; (** * Invalidate Instruction Cache for the specified virtual address range. If len is negative, flushes the whole cache. * This is used on some architecture to interact with DMA hardware (e.g. Ethernet and USB. It can be * left empty on Intel architecture. *) PROCEDURE InvalidateICacheRange * (adr: ADDRESS; len: LONGINT); END InvalidateICacheRange; (* Unexpected - Default interrupt handler *) PROCEDURE Unexpected(VAR state: State); VAR int: HUGEINT; isr, irr: CHAR; BEGIN int := state.INT; IF HandleSpurious & ((int >= IRQ0) & (int <= MaxIRQ) OR (int = MPSPU)) THEN (* unexpected IRQ, get more info *) IF (int >= IRQ8) & (int <= IRQ15) THEN Portout8 (IntB0, 0BX); Portin8(IntB0, isr); Portout8 (IntB0, 0AX); Portin8(IntB0, irr) ELSIF (int >= IRQ0) & (int <= IRQ7) THEN Portout8 (IntA0, 0BX); Portin8(IntA0, isr); Portout8 (IntA0, 0AX); Portin8(IntA0, irr) ELSE isr := 0X; irr := 0X END; IF TraceSpurious THEN Acquire (TraceOutput); Trace.String("INT"); Trace.Int(SHORT(int), 1); Trace.Hex(ORD(isr), -3); Trace.Hex(ORD(irr), -2); Trace.Ln; Release (TraceOutput); END ELSE Acquire (TraceOutput); Trace.StringLn ("Unexpected interrupt"); Trace.Memory(ADDRESSOF(state), SIZEOF(State)-4*8); (* exclude last 4 fields *) IF int = 3 THEN (* was a HALT or ASSERT *) (* It seems that no trap handler is installed (Traps not linked), so wait endlessly, while holding trace lock. This should quiten down the system, although other processors may possibly still run processes. *) LOOP END ELSE Release (TraceOutput); SetRAX(int); HALT(1801) (* unexpected interrupt *) END END END Unexpected; (* InEnableIRQ - Enable a hardware interrupt (caller must hold module lock). *) PROCEDURE -InEnableIRQ (int: HUGEINT); CODE {SYSTEM.AMD64} POP RBX CMP RBX, IRQ7 JG cont2 IN AL, IntA1 SUB RBX, IRQ0 BTR RAX, RBX OUT IntA1, AL JMP end cont2: IN AL, IntB1 SUB RBX, IRQ8 BTR RAX, RBX OUT IntB1, AL end: END InEnableIRQ; (* InDisableIRQ - Disable a hardware interrupt (caller must hold module lock). *) PROCEDURE -InDisableIRQ (int: HUGEINT); CODE {SYSTEM.AMD64} POP RBX CMP RBX, IRQ7 JG cont2 IN AL, IntA1 SUB RBX, IRQ0 BTS RAX, RBX OUT IntA1, AL JMP end cont2: IN AL, IntB1 SUB RBX, IRQ8 BTS RAX, RBX OUT IntB1, AL end: END InDisableIRQ; (** EnableIRQ - Enable a hardware interrupt (also done automatically by InstallHandler). *) PROCEDURE EnableIRQ* (int: HUGEINT); BEGIN (* ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2)); *) Acquire(Interrupts); (* protect interrupt mask register *) InEnableIRQ(int); Release(Interrupts) END EnableIRQ; (** DisableIRQ - Disable a hardware interrupt. *) PROCEDURE DisableIRQ* (int: HUGEINT); BEGIN ASSERT((int >= IRQ0) & (int <= IRQ15) & (int # IRQ2)); Acquire(Interrupts); (* protect interrupt mask register *) InDisableIRQ(int); Release(Interrupts) END DisableIRQ; (** InstallHandler - Install interrupt handler & enable IRQ if necessary. On entry to h interrupts are disabled and may be enabled with Sti. After handling the interrupt the state of interrupts are restored. The acknowledgement of a hardware interrupt is done automatically. IRQs are mapped from IRQ0 to MaxIRQ. *) PROCEDURE InstallHandler* (h: Handler; int: LONGINT); VAR (* n: HandlerList; *) i: LONGINT; unexpected: Handler; BEGIN ASSERT(default.valid); (* initialized *) ASSERT(int # IRQ2); (* IRQ2 is used for cascading and remapped to IRQ9 *) Acquire(Interrupts); (* FieldInterrupt may traverse list while it is being modified *) i := 0; unexpected := Unexpected; IF intHandler[int, 0].handler # unexpected THEN WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO INC(i) END; IF i < MaxNumHandlers - 1 THEN intHandler[int, i].valid := TRUE; intHandler[int, i].handler := h; ELSE Acquire(TraceOutput); Trace.String("Machine.InstallHandler: handler could not be installed for interrupt "); Trace.Int(int, 0); Trace.String(" - too many handlers per interrupt number"); Trace.Ln; Release(TraceOutput) END ELSE intHandler[int, 0].handler := h; IF (int >= IRQ0) & (int <= IRQ15) THEN InEnableIRQ(int) END END; Release(Interrupts) END InstallHandler; (** RemoveHandler - Uninstall interrupt handler & disable IRQ if necessary *) PROCEDURE RemoveHandler* (h: Handler; int: LONGINT); VAR (* p, c: HandlerList; *) i, j, foundIndex: LONGINT; BEGIN ASSERT(default.valid); (* initialized *) Acquire(Interrupts); (* find h *) i := 0; foundIndex := -1; WHILE (i < MaxNumHandlers - 1) & intHandler[int, i].valid DO IF intHandler[int, i].handler = h THEN foundIndex := i END; INC(i) END; IF foundIndex # -1 THEN (* h found -> copy interrupt handlers higher than foundIndex *) FOR j := foundIndex TO i - 2 DO intHandler[int, j] := intHandler[int, j + 1] END END; IF ~intHandler[int, 0].valid THEN (* handler h was the only interrupt handler for interrupt int -> install the default handler *) intHandler[int, 0] := default; IF (int >= IRQ0) & (int <= IRQ15) THEN DisableIRQ(int) END END; Release(Interrupts) END RemoveHandler; (* Get control registers. *) PROCEDURE GetCR0to4(VAR cr: ARRAY OF HUGEINT); CODE {SYSTEM.AMD64, SYSTEM.Privileged} MOV RDI, [RBP + cr] MOV RAX, CR0 XOR RBX, RBX ; CR1 is not documented MOV RCX, CR2 MOV RDX, CR3 MOV [RDI + 0], RAX MOV [RDI + 8], RBX MOV [RDI + 16], RCX MOV [RDI + 24], RDX MOV RAX, CR4 ; Pentium only MOV [RDI + 32], RAX END GetCR0to4; (* GetDR0to7 - Get debug registers. *) PROCEDURE GetDR0to7(VAR dr: ARRAY OF HUGEINT); CODE {SYSTEM.AMD64, SYSTEM.Privileged} MOV RDI, [RBP + dr] MOV RAX, DR0 MOV RBX, DR1 MOV RCX, DR2 MOV RDX, DR3 MOV [RDI + 0], RAX MOV [RDI + 8], RBX MOV [RDI + 16], RCX MOV [RDI + 24], RDX XOR RAX, RAX ; DR4 is not documented XOR RBX, RBX ; DR5 is not documented MOV RCX, DR6 MOV RDX, DR7 MOV [RDI + 32], RAX MOV [RDI + 40], RBX MOV [RDI + 48], RCX MOV [RDI + 56], RDX END GetDR0to7; (* CLTS - Clear task-switched flag. *) PROCEDURE -CLTS; CODE {SYSTEM.AMD64, SYSTEM.Privileged} CLTS END CLTS; (* GetFPU - Store floating-point environment (28 bytes) and mask all floating-point exceptions. *) PROCEDURE -GetFPU(adr: ADDRESS); CODE {SYSTEM.AMD64, SYSTEM.FPU} POP RBX FNSTENV [RBX] ; also masks all exceptions FWAIT END GetFPU; (* CR2 - Get page fault address. *) PROCEDURE -CR2* (): ADDRESS; CODE {SYSTEM.AMD64, SYSTEM.Privileged} MOV RAX, CR2 END CR2; (** GetExceptionState - Get exception state from interrupt state (and switch on interrupts). *) PROCEDURE GetExceptionState* (VAR int: State; VAR exc: ExceptionState); VAR id: LONGINT; level0: BOOLEAN; BEGIN (* save all state information while interrupts are still disabled *) exc.halt := -int.INT; id := ID (); IF int.INT = PF THEN exc.pf := CR2 () ELSE exc.pf := 0 END; GetCR0to4(exc.CR); GetDR0to7(exc.DR); CLTS; (* ignore task switch flag *) IF int.INT = MF THEN GetFPU(ADDRESSOF(exc.FPU[0])); int.PC := SYSTEM.VAL (ADDRESS, exc.FPU[3]); (* modify PC according to FPU info *) (* set halt code according to FPU info *) IF 2 IN exc.FPU[1] THEN exc.halt := -32 (* division by 0 *) ELSIF 3 IN exc.FPU[1] THEN exc.halt := -33 (* overflow *) ELSIF 0 IN exc.FPU[1] THEN exc.halt := -34 (* operation invalid *) ELSIF 6 IN exc.FPU[1] THEN exc.halt := -35 (* stack fault *) ELSIF 1 IN exc.FPU[1] THEN exc.halt := -36 (* denormalized *) ELSIF 4 IN exc.FPU[1] THEN exc.halt := -37 (* underflow *) ELSIF 5 IN exc.FPU[1] THEN exc.halt := -38 (* precision loss *) ELSE (* {exc.halt = -16} *) END ELSE Fill32(ADDRESSOF(exc.FPU[0]), LEN(exc.FPU)*SIZEOF(SET), 0) END; SetupFPU; level0 := (int.CS MOD 4 = KernelLevel); IF int.INT = BP THEN (* breakpoint (HALT) *) IF level0 THEN exc.halt := int.SP (* get halt code *) (* if HALT(MAX(INTEGER)), leave halt code on stack when returning, but not serious problem.*) ELSE SYSTEM.GET (int.SP, exc.halt); (* get halt code from outer stack *) IF exc.halt >= MAX(INTEGER) THEN INC (int.SP, AddressSize) END (* pop halt code from outer stack *) END; IF exc.halt < MAX(INTEGER) THEN DEC (int.PC) END; (* point to the INT 3 instruction (assume 0CCX, not 0CDX 3X) *) ELSIF int.INT = OVF THEN (* overflow *) DEC (int.PC) (* point to the INTO instruction (assume 0CEX, not 0CDX 4X) *) ELSIF int.INT = PF THEN (* page fault *) IF int.PC = 0 THEN (* reset PC to return address of indirect CALL to 0 *) IF level0 THEN int.PC := int.SP (* ret adr *) ELSE SYSTEM.GET (int.SP, int.PC) END END END; (* get segment registers *) IF level0 THEN (* from same level, no ESP, SS etc. on stack *) exc.SP := ADDRESSOF(int.SP) (* stack was here when interrupt happened *) ELSE (* from outer level *) exc.SP := int.SP END END GetExceptionState; (* FieldInterrupt and FieldIRQ *) (* At entry to a Handler procedure the stack is as follows: -- if (VMBit IN .RFLAGS) -- 176 -- .SS 168 -- .RSP ; or haltcode -- (VMBit IN .RFLAGS) OR (CS MOD 4 < .CS MOD 4) -- 160 -- .RFLAGS 152 -- .CS 144 -- .RIP ; rest popped by IRETD 136 -- .ERR/RBP ; pushed by processor or glue code, popped by POP RBP 128 -- .INT <-- .RSP0 ; pushed by glue code, popped by POP RBP 120 -- .RAX 112 -- .RCX 104 -- .RDX 96 -- .RBX 88 -- .RSP0 80 -- .RBP/ERR ; exchanged by glue code 72 -- .RSI 64 -- .RDI 56 -- .R8 48 -- .R9 40 -- .R10 32 -- .R11 24 -- .R12 16 -- .R13 08 -- .R14 00 48 .R15 <--- state: State -- 40 ptr -- 32 object pointer for DELEGATE -- 24 TAG(state) -- 16 ADR(state) -- 08 RIP' (RET to FieldInterrupt) -- 00 RBP' <-- RBP -- -- locals <-- RSP *) PROCEDURE {NOPAF} FieldInterrupt; CONST SizeOfHandlerRec = SIZEOF(HandlerRec); CODE {SYSTEM.AMD64, SYSTEM.Privileged} entry: ; fake PUSHAD (not available in 64-bit mode) PUSH RAX PUSH RCX PUSH RDX PUSH RBX ; (error code) LEA RAX, [RSP - 4 * 8] ; (RSP minus the four pushed 64-bit registers) PUSH RAX ; original value of RSP PUSH RBP PUSH RSI PUSH RDI PUSH R8 PUSH R9 PUSH R10 PUSH R11 PUSH R12 PUSH R13 PUSH R14 PUSH R15 LEA RBP, [RSP + 136] MOV RBX, [RSP + 128] ; RBX = int number IMUL RBX, RBX, MaxNumHandlers IMUL RBX, RBX, SizeOfHandlerRec ; todo: replace LEA by MOV when compiler supports this LEA RAX, intHandler ADD RAX, RBX ; address of intHandler[int, 0] ; todo: replace LEA by MOV when compiler supports this LEA RDX, stateTag loop: ; call all handlers for the interrupt MOV RCX, RSP PUSH RAX ; save ptr for table PUSH QWORD [RAX + 12] ; delegate PUSH RDX ; TAG(state) PUSH RCX ; ADR(state) CALL QWORD [RAX + 4] ; call handler ADD RSP, 24 CLI ; handler may have re-enabled interrupts POP RAX ADD RAX, SizeOfHandlerRec MOV RBX, [RAX] CMP RBX, 0 JNE loop ; fake POPAD (not available in 64-bit mode) POP R15 POP R14 POP R13 POP R12 POP R11 POP R10 POP R9 POP R8 POP RDI POP RSI POP RBP ADD RSP, 8 ;POP RSP POP RBX POP RDX POP RCX POP RAX ; now EBP = error code POP RBP ; now EBP = INT POP RBP ; now EBP = caller RBP IRETQ END FieldInterrupt; PROCEDURE {NOPAF} FieldIRQ; CONST SizeOfHandlerRec = SIZEOF(HandlerRec); CODE {SYSTEM.AMD64} entry: ; fake PUSHAD (not available in 64-bit mode) PUSH RAX PUSH RCX PUSH RDX PUSH RBX ; (error code) LEA RAX, [RSP - 4 * 8] ; (RSP minus the four pushed 64-bit registers) PUSH RAX ; original value of RSP PUSH RBP PUSH RSI PUSH RDI PUSH R8 PUSH R9 PUSH R10 PUSH R11 PUSH R12 PUSH R13 PUSH R14 PUSH R15 LEA RBP, [RSP + 136] ;; PUSH 32[ESP] ; int number ;; CALL traceInterruptIn MOV RBX, [RSP + 128] ; RBX = int number IMUL RBX, RBX, MaxNumHandlers IMUL RBX, RBX, SizeOfHandlerRec ; todo: replace LEA by MOV when compiler supports this LEA RAX, intHandler ADD RAX, RBX ; address of intHandler[int, 0] ; todo: replace LEA by MOV when compiler supports this LEA RDX, stateTag loop: ; call all handlers for the interrupt MOV RCX, RSP PUSH RAX ; save ptr for linked list PUSH QWORD [RAX + 12] ; delegate PUSH RDX ; TAG(state) PUSH RCX ; ADR(state) CALL QWORD [RAX + 4] ; call handler ADD RSP, 24 CLI ; handler may have re-enabled interrupts POP RAX ADD RAX, SizeOfHandlerRec MOV RBX, [RAX] CMP RBX, 0 JNE loop ;; PUSH 32[ESP] ; int number ;; CALL traceInterruptOut ; ack interrupt MOV AL, 20H ; undoc PC ed. 2 p. 1018 CMP BYTE [RSP + 128], IRQ8 JB irq0 OUT IntB0, AL ; 2nd controller irq0: OUT IntA0, AL ; 1st controller ; fake POPAD (not available in 64-bit mode) POP R15 POP R14 POP R13 POP R12 POP R11 POP R10 POP R9 POP R8 POP RDI POP RSI POP RBP ADD RSP, 8 ;POP RSP POP RBX POP RDX POP RCX POP RAX ; now RBP = error code POP RBP ; now RBP = INT POP RBP ; now RBP = caller RBP IRETQ END FieldIRQ; (* LoadIDT - Load interrupt descriptor table *) PROCEDURE LoadIDT(base: ADDRESS; size: SIZE); CODE {SYSTEM.AMD64, SYSTEM.Privileged} ; LIDT needs 10 bytes: 2 for the 16-bit limit and 8 for the 64-bit base address ; Assumption: size in front of base -> promote size value to upper 48 bits of size SHL QWORD [RBP + size], 64-16 LIDT [RBP + size + (64-16) / 8] END LoadIDT; (** Init - Initialize interrupt handling. Called once during initialization. Uses NEW. *) (* The glue code is: entry0: ; entry point for interrupts without error code PUSH 0 ; fake error code entry1: ; entry point for interrupts with error code XCHG [ESP], EBP ; exchange error code and caller EBP PUSH int ; interrupt number JMP FieldInterrupt:entry *) PROCEDURE InitInterrupts*; VAR a: ADDRESS; o, i: LONGINT; p: PROCEDURE; mask: SET; BEGIN stateTag := SYSTEM.TYPECODE(State); (* initialise 8259 interrupt controller chips *) Portout8 (IntA0, 11X); Portout8 (IntA1, CHR(IRQ0)); Portout8 (IntA1, 4X); Portout8 (IntA1, 1X); Portout8 (IntA1, 0FFX); Portout8 (IntB0, 11X); Portout8 (IntB1, CHR(IRQ8)); Portout8 (IntB1, 2X); Portout8 (IntB1, 1X); Portout8 (IntB1, 0FFX); (* enable interrupts from second interrupt controller, chained to line 2 of controller 1 *) Portin8(IntA1, SYSTEM.VAL (CHAR, mask)); EXCL(mask, IRQ2-IRQ0); Portout8 (IntA1, SYSTEM.VAL (CHAR, mask)); (* NEW(default); default.next := NIL; default.handler := Unexpected; *) (* newrec (SYSTEM.VAL (ANY, default), SYSTEM.TYPECODE (HandlerList)); *) (* default.next := NIL; default.handler := Unexpected; *) default.valid := TRUE; default.handler := Unexpected; FOR i := 0 TO IDTSize-1 DO (* set up glue code *) intHandler[i, 0] := default; o := 0; (* PUSH error code, int num & regs *) glue[i][o] := 6AX; INC (o); glue[i][o] := 0X; INC (o); (* PUSH 0 ; {o = 2} *) glue[i][o] := 48X; INC(o); glue[i][o] := 87X; INC(o); glue[i][o] := 2CX; INC(o); glue[i][o] := 24X; INC(o); (* XCHG [RSP], RBP *) glue[i][o] := 6AX; INC (o); glue[i][o] := CHR(i); INC (o); (* PUSH i *) IF (i >= IRQ0) & (i <= IRQ15) THEN p := FieldIRQ ELSE p := FieldInterrupt END; a := SYSTEM.VAL(ADDRESS, p) - (ADDRESSOF(glue[i][o])+5); (* a must be a 32-bit offset to be used with the followingjump instruction, ensured since both the glue code array and the interrupt functions are inside this module *) glue[i][o] := 0E9X; INC (o); (* JMP FieldInterrupt.entry *) SYSTEM.PUT32 (ADDRESSOF(glue[i][o]), a); (* set up IDT entry *) IF (i > 31) OR ~(i IN {8, 10..14, 17}) THEN a := ADDRESSOF(glue[i][0]) (* include PUSH 0 *) ELSE a := ADDRESSOF(glue[i][2]) (* skip PUSH 0, processor supplies error code *) END; idt[i].offsetBits0to15 := INTEGER(a MOD 10000H); (* IRQ0 must be at level 0 because time slicing in Objects needs to set interrupted process' ESP *) (* all irq's are handled at level 0, because of priority experiment in Objects.FieldIRQ *) IF TRUE (* (i < IRQ0) OR (i > IRQ15) OR (i = IRQ0) OR (i = IRQ0 + 1)*) THEN idt[i].selector := Kernel64CodeSel; (* gdt[1] -> non-conformant segment => level 0 *) idt[i].gateType := SYSTEM.VAL(INTEGER, 0EE00H) (* present, DPL 3, system, 64-bit interrupt gate *) ELSE (* {IRQ0..IRQ15} - {IRQ0 + 1} *) idt[i].selector := User64CodeSel; (* gdt[3] -> conformant segment => level 0 or 3 *) idt[i].gateType := SYSTEM.VAL(INTEGER, 08E00H) (* present, DPL 0, system, 64-bit interrupt gate *) END; idt[i].offsetBits16to31 := INTEGER(a DIV 10000H); idt[i].offsetBits32to63 := INTEGER(a DIV 100000000H); idt[i].reserved := 0; END END InitInterrupts; (** Start - Start handling interrupts. Every processor calls this once during initialization. *) PROCEDURE Start*; BEGIN ASSERT(default.valid); (* initialized *) LoadIDT(ADDRESSOF(idt[0]), SIZEOF(IDT)-1); Sti END Start; (* Return current instruction pointer *) PROCEDURE CurrentPC* (): ADDRESS; CODE {SYSTEM.AMD64} MOV RAX, [RBP + 8] END CurrentPC; PROCEDURE -SetRAX(n: SIZE); CODE{SYSTEM.AMD64} NOP POP RAX END SetRAX; PROCEDURE Portin8*(port: LONGINT; VAR val: CHAR); CODE{SYSTEM.AMD64} MOV EDX,[RBP+port] IN AL, DX MOV RCX, [RBP+val] MOV [RCX], AL END Portin8; PROCEDURE Portin16*(port: LONGINT; VAR val: INTEGER); CODE{SYSTEM.AMD64} MOV EDX,[RBP+port] IN AX, DX MOV RCX, [RBP+val] MOV [RCX], AX END Portin16; PROCEDURE Portin32*(port: LONGINT; VAR val: LONGINT); CODE{SYSTEM.AMD64} MOV EDX,[RBP+port] IN EAX, DX MOV RCX, [RBP+val] MOV [RCX], EAX END Portin32; PROCEDURE Portout8*(port: LONGINT; val: CHAR); CODE{SYSTEM.AMD64} MOV AL,[RBP+val] MOV EDX,[RBP+port] OUT DX,AL END Portout8; PROCEDURE Portout16*(port: LONGINT; val: INTEGER); CODE{SYSTEM.AMD64} MOV AX,[RBP+val] MOV EDX,[RBP+port] OUT DX,AX END Portout16; PROCEDURE Portout32*(port: LONGINT; val: LONGINT); CODE{SYSTEM.AMD64} MOV EAX,[RBP+val] MOV EDX,[RBP+port] OUT DX,EAX END Portout32; PROCEDURE -Cli*; CODE{SYSTEM.AMD64} CLI END Cli; PROCEDURE -Sti*; CODE{SYSTEM.AMD64} STI END Sti; (* Save minimal FPU state (for synchronous process switches). *) (* saving FPU state takes 108 bytes memory space, no alignment required *) PROCEDURE -FPUSaveMin* (VAR state: SSEState); CODE {SYSTEM.AMD64, SYSTEM.FPU} POP RAX FNSTCW [RAX] ; control word is at state[0] FWAIT END FPUSaveMin; (* Restore minimal FPU state. *) PROCEDURE -FPURestoreMin* (VAR state: SSEState); CODE {SYSTEM.AMD64, SYSTEM.FPU} POP RAX FLDCW [RAX] ; control word is at state[0] END FPURestoreMin; (* Save full FPU state (for asynchronous process switches). *) PROCEDURE -FPUSaveFull* (VAR state: SSEState); CODE {SYSTEM.AMD64, SYSTEM.FPU} POP RAX FSAVE [RAX] END FPUSaveFull; (* Restore full FPU state. *) PROCEDURE -FPURestoreFull* (VAR state: SSEState); CODE {SYSTEM.AMD64, SYSTEM.FPU} POP RAX FRSTOR [RAX] END FPURestoreFull; (* stateAdr must be the address of a 16-byte aligned memory area of at least 512 bytes *) PROCEDURE -SSESaveFull* (stateAdr: ADDRESS); CODE {SYSTEM.AMD64, SYSTEM.FPU} POP RAX FXSAVE [RAX] FWAIT FNINIT END SSESaveFull; PROCEDURE -SSERestoreFull* (stateAdr: ADDRESS); CODE {SYSTEM.AMD64, SYSTEM.FPU} POP RAX FXRSTOR [RAX] END SSERestoreFull; PROCEDURE -SSESaveMin* (stateAdr: ADDRESS); CODE {SYSTEM.AMD64, SYSTEM.FPU} POP RAX FNSTCW [RAX] FWAIT STMXCSR [RAX + 24] END SSESaveMin; PROCEDURE -SSERestoreMin* (stateAdr: ADDRESS); CODE {SYSTEM.AMD64, SYSTEM.FPU} POP RAX FLDCW [RAX] LDMXCSR [RAX + 24] END SSERestoreMin; (* Helper functions for SwitchTo. *) PROCEDURE -PushState* (CONST state: State); CODE {SYSTEM.AMD64} POP RAX ; ADR (state) POP RBX ; TYPECODE (state), ignored PUSH QWORD [RAX + 176] ; SS PUSH QWORD [RAX + 168] ; SP PUSH QWORD [RAX + 160] ; FLAGS PUSH QWORD [RAX + 152] ; CS PUSH QWORD [RAX + 144] ; PC PUSH QWORD [RAX + 120] ; RAX PUSH QWORD [RAX + 112] ; RCX PUSH QWORD [RAX + 104] ; RDX PUSH QWORD [RAX + 96] ; RBX PUSH DWORD 0; ignored PUSH QWORD [RAX + 136] ; RBP PUSH QWORD [RAX + 72] ; RSI PUSH QWORD [RAX + 64] ; RDI PUSH QWORD [RAX + 56] ; R8 PUSH QWORD [RAX + 48] ; R9 PUSH QWORD [RAX + 40] ; R10 PUSH QWORD [RAX + 32] ; R11 PUSH QWORD [RAX + 24] ; R12 PUSH QWORD [RAX + 16] ; R13 PUSH QWORD [RAX + 8] ; R14 PUSH QWORD [RAX + 0] ; R15 END PushState; PROCEDURE -JumpState*; CODE {SYSTEM.AMD64} POP R15 POP R14 POP R13 POP R12 POP R11 POP R10 POP R9 POP R8 POP RDI POP RSI POP RBP POP RBX; ignored POP RBX POP RDX POP RCX POP RAX IRETQ END JumpState; PROCEDURE -CallLocalIPC*; CODE {SYSTEM.AMD64} INT MPIPCLocal END CallLocalIPC; PROCEDURE -HLT*; CODE {SYSTEM.AMD64, SYSTEM.Privileged} STI ; (* required according to ACPI 2.0 spec section 8.2.2 *) HLT END HLT; (* Kernel mode upcall to perform global processor halt. *) PROCEDURE KernelCallHLT*; CODE {SYSTEM.AMD64} MOV EAX, 2 INT MPKC END KernelCallHLT; (* Parse processor entry in MP config table. *) PROCEDURE CPUID1*(): LONGINT; CODE {SYSTEM.AMD64} MOV EAX, 1 CPUID MOV EAX, EBX END CPUID1; (** -- Atomic operations -- *) (** Atomic INC(x). *) PROCEDURE -AtomicInc*(VAR x: LONGINT); CODE {SYSTEM.AMD64} POP RAX LOCK INC DWORD [RAX] END AtomicInc; (** Atomic DEC(x). *) PROCEDURE -AtomicDec*(VAR x: LONGINT); CODE {SYSTEM.AMD64} POP RAX LOCK DEC DWORD [RAX] END AtomicDec; (** Atomic EXCL. *) PROCEDURE AtomicExcl* (VAR s: SET; bit: LONGINT); CODE {SYSTEM.AMD64} MOV EAX, [RBP + bit] MOV RBX, [RBP + s] LOCK BTR [RBX], EAX END AtomicExcl; (** Atomic INC(x, y). *) PROCEDURE -AtomicAdd*(VAR x: LONGINT; y: LONGINT); CODE {SYSTEM.AMD64} POP EBX POP RAX LOCK ADD DWORD [RAX], EBX END AtomicAdd; (** Atomic test-and-set. Set x = TRUE and return old value of x. *) PROCEDURE -AtomicTestSet*(VAR x: BOOLEAN): BOOLEAN; CODE {SYSTEM.AMD64} POP RBX MOV AL, 1 XCHG [RBX], AL END AtomicTestSet; (* Atomic compare-and-swap. Set x = new if x = old and return old value of x *) PROCEDURE -AtomicCAS* (VAR x: LONGINT; old, new: LONGINT): LONGINT; CODE {SYSTEM.AMD64} POP EBX ; new POP EAX ; old POP RCX ; address of x LOCK CMPXCHG [RCX], EBX ; atomicly compare x with old and set it to new if equal END AtomicCAS; PROCEDURE CopyState* (CONST from: State; VAR to: State); BEGIN to.R15 := from.R15; to.R14 := from.R14; to.R13 := from.R13; to.R12 := from.R12; to.R11 := from.R11; to.R10 := from.R10; to.R9 := from.R9; to.R8 := from.R8; to.RDI := from.RDI; to.RSI := from.RSI; to.RBX := from.RBX; to.RDX := from.RDX; to.RCX := from.RCX; to.RAX := from.RAX; to.BP := from.BP; to.PC := from.PC; to.CS := from.CS; to.SP := from.SP; to.SS := from.SS; to.FLAGS := from.FLAGS; END CopyState; (* function returning the number of processors that are available to Aos *) PROCEDURE NumberOfProcessors*( ): LONGINT; BEGIN RETURN numberOfProcessors END NumberOfProcessors; (*! non portable code, for native Aos only *) PROCEDURE SetNumberOfProcessors*(num: LONGINT); BEGIN numberOfProcessors := num; END SetNumberOfProcessors; (* function for changing byte order *) PROCEDURE ChangeByteOrder* (n: LONGINT): LONGINT; CODE {SYSTEM.AMD64} MOV EAX, [RBP + n] ; load n in eax BSWAP EAX ; swap byte order END ChangeByteOrder; (* Write a value to the APIC. *) PROCEDURE ApicPut(ofs: SIZE; val: SET); BEGIN IF TraceApic THEN Acquire(TraceOutput); Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" := "); Trace.Hex(SYSTEM.VAL (LONGINT, val), 9); Trace.Ln; Release(TraceOutput); END; SYSTEM.PUT(localAPIC+ofs, SYSTEM.VAL (LONGINT, val)) END ApicPut; (* Read a value from the APIC. *) PROCEDURE ApicGet(ofs: SIZE): SET; VAR val: SET; BEGIN SYSTEM.GET(localAPIC+ofs, SYSTEM.VAL (LONGINT, val)); IF TraceApic THEN Acquire(TraceOutput); Trace.String(" ("); Trace.Hex(ofs, SIZEOF(SIZE)*2); Trace.String(" = "); Trace.Hex(SYSTEM.VAL(LONGINT, val), 9); Trace.StringLn (")"); Release(TraceOutput); END; RETURN val END ApicGet; (* Handle interprocessor interrupt. During upcall interrupts are off and processor is at kernel level. *) PROCEDURE HandleIPC(VAR state: State); VAR id: LONGINT; BEGIN id := ID(); IF ~TraceProcessor OR (id IN allProcessors) THEN IF FrontBarrier IN ipcFlags THEN AtomicExcl(ipcFrontBarrier, id); WHILE ipcFrontBarrier # {} DO SpinHint END (* wait for all *) END; ipcHandler(id, state, ipcMessage); (* interrupts off and at kernel level *) IF BackBarrier IN ipcFlags THEN AtomicExcl(ipcBackBarrier, id); WHILE ipcBackBarrier # {} DO SpinHint END (* wait for all *) END; AtomicExcl(ipcBusy, id) (* ack - after this point we do not access shared variables for this broadcast *) END; IF state.INT = MPIPC THEN ApicPut(0B0H, {}) (* EOI (not needed for NMI or local call, see 7.4.10.6) *) END END HandleIPC; (* Handle MP error interrupt. *) PROCEDURE HandleError(VAR state: State); VAR esr: SET; (* int: LONGINT; *) BEGIN (* int := state.INT; *) esr := ApicGet(280H); ApicPut(0B0H, {}); (* EOI *) HALT(2302) (* SMP error *) END HandleError; (* Interprocessor broadcasting. Lock level SMP. *) PROCEDURE LocalBroadcast(h: BroadcastHandler; msg: Message; flags: SET); BEGIN IF Self IN flags THEN ipcBusy := allProcessors ELSE ipcBusy := allProcessors - {ID()} END; ipcFrontBarrier := ipcBusy; ipcBackBarrier := ipcBusy; ipcHandler := h; ipcMessage := msg; ipcFlags := flags; IF numProcessors > 1 THEN (* ICR: Fixed, Physical, Edge, All Excl. Self, INT IPC *) ApicPut(300H, {18..19} + SYSTEM.VAL (SET, MPIPC)); (*REPEAT UNTIL ~(12 IN ApicGet(300H))*) (* wait for send to finish *) END; IF Self IN flags THEN CallLocalIPC END; (* "send" to self also *) WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack before we release locks *) ipcHandler := NIL; ipcMessage := NIL (* no race, because we have IPC lock *) END LocalBroadcast; (** Broadcast an operation to all processors. *) PROCEDURE Broadcast* (h: BroadcastHandler; msg: Message; flags: SET); BEGIN Acquire(Processors); LocalBroadcast(h, msg, flags); Release(Processors) END Broadcast; (* Start all halted processors. *) (* Lock level Processors. *) PROCEDURE StartAll*; BEGIN Acquire(Processors); (* wait for any pending Stops to finish, and disallow further Stops *) ASSERT(stopped & (ipcBusy = {})); ipcBusy := allProcessors - {ID()}; stopped := FALSE; WHILE ipcBusy # {} DO SpinHint END; (* wait for all to ack *) Release(Processors) END StartAll; PROCEDURE HandleFlushTLB(id: LONGINT; CONST state: State; msg: Message); CODE {SYSTEM.AMD64, SYSTEM.Privileged} MOV EAX, CR3 MOV CR3, EAX END HandleFlushTLB; (** Flush the TLBs on all processors (multiprocessor-safe). *) PROCEDURE GlobalFlushTLB; BEGIN Acquire(Processors); LocalBroadcast(HandleFlushTLB, NIL, {Self, FrontBarrier, BackBarrier}); Release(Processors) END GlobalFlushTLB; PROCEDURE HandleFlushCache(id: LONGINT; CONST state: State; msg: Message); CODE {SYSTEM.AMD64, SYSTEM.Privileged} WBINVD ; write back and invalidate internal cache and initiate write back and invalidation of external caches END HandleFlushCache; (** Flush the caches on all processors (multiprocessor-safe). *) PROCEDURE GlobalFlushCache; BEGIN Acquire(Processors); LocalBroadcast(HandleFlushCache, NIL, {Self, FrontBarrier, BackBarrier}); Release(Processors) END GlobalFlushCache; (* Activate the garbage collector in single-processor mode. Lock level ALL. *) PROCEDURE HandleKernelCall(VAR state: State); BEGIN (* level 0 *) IF IFBit IN state.FLAGS THEN Sti (* re-enable interrupts *) END; CASE state.RAX OF (* see KernelCall* *) |2: (* HLT *) IF IFBit IN state.FLAGS THEN HLT END END END HandleKernelCall; (* (** Activate the garbage collector immediately (multiprocessor-safe). *) PROCEDURE GlobalGC*; BEGIN Acquire(Processors); gcBarrier := allProcessors; LocalBroadcast(HandleGC, NIL, {Self, BackBarrier}); Release(Processors); END GlobalGC; *) PROCEDURE HandleGetTimestamp(id: LONGINT; CONST state: State; msg: Message); BEGIN time[id] := GetTimer() END HandleGetTimestamp; (** Get timestamp on all processors (for testing). *) PROCEDURE GlobalGetTimestamp; VAR t: TimeArray; i: LONGINT; mean, var, n: HUGEINT; BEGIN Acquire(Processors); LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier}); LocalBroadcast(HandleGetTimestamp, NIL, {Self, FrontBarrier}); t := time; Release(Processors); Acquire (TraceOutput); FOR i := 0 TO numProcessors-1 DO Trace.HIntHex(t[i], 17) END; IF numProcessors > 1 THEN mean := 0; n := numProcessors; FOR i := 0 TO numProcessors-1 DO INC (mean, t[i]) END; mean := mean DIV n; var := 0; FOR i := 0 TO numProcessors-1 DO n := t[i] - mean; INC (var, n * n) END; var := var DIV (numProcessors - 1); Trace.String(" mean="); Trace.HIntHex(mean, 16); Trace.String(" var="); Trace.HIntHex(var, 16); Trace.String(" var="); Trace.Int(SHORT (var), 1); Trace.String(" diff:"); FOR i := 0 TO numProcessors-1 DO Trace.Int(SHORT (t[i] - mean), 1); Trace.Char(" ") END END; Release (TraceOutput); END GlobalGetTimestamp; PROCEDURE ParseProcessor(adr: ADDRESS); VAR id, idx, signature, family, feat, ver, log: LONGINT; flags: SET; string : ARRAY 8 OF CHAR; BEGIN SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, flags)); id := ASH(SYSTEM.VAL (LONGINT, flags * {8..15}), -8); ver := ASH(SYSTEM.VAL (LONGINT, flags * {16..23}), -16); SYSTEM.GET (adr+4, signature); family := ASH(signature, -8) MOD 10H; SYSTEM.GET (adr+8, feat); idx := -1; IF (family # 0) & (signature MOD 1000H # 0FFFH) & (24 IN flags) & (id < LEN(idMap)) & (idMap[id] = -1) THEN IF 25 IN flags THEN idx := 0 (* boot processor *) ELSIF numProcessors < maxProcessors THEN idx := numProcessors; INC(numProcessors) ELSE (* skip *) END END; IF idx # -1 THEN apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx)) END; Trace.String(" Processor "); Trace.Int(id, 1); Trace.String(", APIC"); Trace.Hex(ver, -3); Trace.String(", ver "); Trace.Int(family, 1); Trace.Char("."); Trace.Int(ASH(signature, -4) MOD 10H, 1); Trace.Char("."); Trace.Int(signature MOD 10H, 1); Trace.String(", features "); Trace.Hex(feat, 9); Trace.String(", ID "); Trace.Int(idx, 1); IF (threadsPerCore > 1) THEN Trace.String(" ("); Trace.Int(threadsPerCore, 0); Trace.String(" threads)"); END; Trace.Ln; IF (threadsPerCore > 1) THEN GetConfig("DisableHyperthreading", string); IF (string = "1") THEN Trace.String("Machine: Hyperthreading disabled."); Trace.Ln; RETURN; END; log := (LSH(CPUID1(), -16) MOD 256); WHILE log > 1 DO INC(id); DEC(log); IF numProcessors < maxProcessors THEN idx := numProcessors; INC(numProcessors); apicVer[idx] := ver; idMap[id] := SHORT(SHORT(idx)) END END END END ParseProcessor; (* Parse MP configuration table. *) PROCEDURE ParseMPConfig; VAR adr, x: ADDRESS; i: LONGINT; entries: INTEGER; ch: CHAR; s: SET; str: ARRAY 8 OF CHAR; BEGIN localAPIC := 0; numProcessors := 1; allProcessors := {0}; FOR i := 0 TO LEN(idMap)-1 DO idMap[i] := -1 END; (* all unassigned *) FOR i := 0 TO MaxCPU-1 DO started[i] := FALSE END; adr := configMP; GetConfig("MaxProcs", str); i := 0; maxProcessors := StrToInt(i, str); IF maxProcessors = 0 THEN maxProcessors := MaxCPU END; IF (maxProcessors > 0) & (adr # NilAdr) THEN (* MP config table present, possible multi-processor *) Trace.String("Machine: Intel MP Spec "); Trace.Int(ORD(revMP) DIV 10H + 1, 1); Trace.Char("."); Trace.Int(ORD(revMP) MOD 10H, 1); Trace.Ln; IF TraceVerbose THEN IF ODD(ASH(ORD(featureMP[1]), -7)) THEN Trace.StringLn (" PIC mode"); (* to do: enable SymIO *) ELSE Trace.StringLn (" Virtual wire mode"); END END; IF featureMP[0] # 0X THEN (* pre-defined configuration *) Trace.String(" Default config "); Trace.Int(ORD(featureMP[0]), 1); Trace.Ln; localAPIC := 0FEE00000H; apicVer[0] := 0; apicVer[1] := 0 ELSE (* configuration defined in table *) MapPhysical(adr, 68*1024, adr); (* 64K + 4K header *) SYSTEM.GET (adr, i); ASSERT(i = 504D4350H); (* check signature *) SYSTEM.GET (adr+4, i); (* length *) ASSERT(ChecksumMP(adr, i MOD 10000H) = 0); IF TraceVerbose THEN Trace.String(" ID: "); FOR x := adr+8 TO adr+27 DO SYSTEM.GET (x, ch); Trace.Char(ch); IF x = adr+15 THEN Trace.Char(" ") END END; Trace.Ln END; localAPIC := 0; SYSTEM.GET(adr+36, SYSTEM.VAL (LONGINT, localAPIC)); IF TraceVerbose THEN Trace.String(" Local APIC:"); Trace.Address (localAPIC); Trace.Ln END; SYSTEM.GET (adr+34, entries); INC(adr, 44); (* skip header *) WHILE entries > 0 DO SYSTEM.GET (adr, ch); (* type *) CASE ORD(ch) OF 0: (* processor *) ParseProcessor(adr); INC(adr, 20) |1: (* bus *) IF TraceVerbose THEN SYSTEM.GET (adr+1, ch); Trace.String(" Bus "); Trace.Int(ORD(ch), 1); Trace.String(": "); FOR x := adr+2 TO adr+7 DO SYSTEM.GET (x, ch); Trace.Char(ch) END; Trace.Ln END; INC(adr, 8) |2: (* IO APIC *) IF TraceVerbose THEN SYSTEM.GET (adr+1, ch); Trace.String(" IO APIC ID:"); Trace.Hex(ORD(ch), -3); SYSTEM.GET (adr+2, ch); Trace.String(", version "); Trace.Int(ORD(ch), 1); SYSTEM.GET(adr, SYSTEM.VAL (LONGINT, s)); IF ~(24 IN s) THEN Trace.String(" (disabled)") END; Trace.Ln END; INC(adr, 8) |3: (* IO interrupt assignment *) INC(adr, 8) |4: (* Local interrupt assignment *) INC(adr, 8) END; (* CASE *) DEC(entries) END END END; IF localAPIC = 0 THEN (* single processor *) Trace.StringLn ("Machine: Single-processor"); apicVer[0] := 0 END; started[0] := TRUE; FOR i := 0 TO MaxCPU-1 DO revIDmap[i] := -1 END; FOR i := 0 TO LEN(idMap)-1 DO x := idMap[i]; IF x # -1 THEN ASSERT(revIDmap[x] = -1); (* no duplicate APIC ids *) revIDmap[x] := SHORT(SHORT(i)) END END; (* timer configuration *) GetConfig("TimerRate", str); i := 0; timerRate := StrToInt(i, str); IF timerRate = 0 THEN timerRate := 1000 END; IF TraceProcessor THEN GetConfig("TraceProc", str); i := 0; traceProcessor := StrToInt(i, str) # 0 END END ParseMPConfig; (* Return the current average measured bus clock speed in Hz. *) PROCEDURE GetBusClockRate(): LONGINT; VAR timer: LONGINT; t: LONGINT; BEGIN t := ticks; REPEAT UNTIL ticks # t; (* wait for edge *) timer := ticks + ClockRateDelay; ApicPut(380H, SYSTEM.VAL (SET, MAX(LONGINT))); (* initial count *) REPEAT UNTIL timer - ticks <= 0; t := MAX(LONGINT) - SYSTEM.VAL (LONGINT, ApicGet(390H)); (* current count *) IF t <= MAX(LONGINT) DIV 1000 THEN RETURN 1000 * t DIV ClockRateDelay ELSE RETURN t DIV ClockRateDelay * 1000 END END GetBusClockRate; (* Initialize APIC timer for timeslicing. *) PROCEDURE InitMPTimer; VAR rate: LONGINT; BEGIN IF timerRate > 0 THEN ApicPut(3E0H, {0,1,3}); (* divide by 1 *) ApicPut(320H, {16} + SYSTEM.VAL (SET, MPTMR)); (* masked, one-shot *) rate := GetBusClockRate(); busHz0[ID()] := rate; rate := (rate+500000) DIV 1000000 * 1000000; (* round to nearest MHz *) busHz1[ID()] := rate; ApicPut(320H, {17} + SYSTEM.VAL (SET, MPTMR)); (* unmasked, periodic *) ApicPut(380H, SYSTEM.VAL (SET, rate DIV timerRate)) (* initial count *) END END InitMPTimer; (* Handle multiprocessor timer interrupt. *) PROCEDURE HandleMPTimer(VAR state: State); BEGIN (* {interrupts off} *) timer(ID(), state); ApicPut(0B0H, {}); (* EOI *) Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *) Timeslice(state) (* fixme: check recursive interrupt *) END HandleMPTimer; (* Handle uniprocessor timer interrupt. *) PROCEDURE HandleUPTimer(VAR state: State); BEGIN (* {interrupts off} *) timer(0, state); Sti; (* enable interrupts before acquiring locks below - to avoid deadlock with StopAll. *) Timeslice(state) END HandleUPTimer; PROCEDURE DummyEvent(id: LONGINT; CONST state: State); END DummyEvent; (** Install a processor timer event handler. *) PROCEDURE InstallEventHandler* (h: EventHandler); BEGIN IF h # NIL THEN timer := h ELSE timer := DummyEvent END END InstallEventHandler; (* Initialize APIC for current processor. *) PROCEDURE InitAPIC; BEGIN (* enable APIC, set focus checking & set spurious interrupt handler *) ASSERT(MPSPU MOD 16 = 15); (* low 4 bits set, p. 7-29 *) ApicPut(0F0H, {8} + SYSTEM.VAL (SET, MPSPU)); (* set error interrupt handler *) ApicPut(370H, SYSTEM.VAL (SET, MPERR)); InitMPTimer END InitAPIC; (* Start processor activity. *) PROCEDURE StartMP; VAR id: LONGINT; state: State; BEGIN (* running at kernel level with interrupts on *) InitAPIC; id := ID(); (* timeslicing is disabled, as we are running at kernel level *) Acquire (TraceOutput); Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" running"); Release (TraceOutput); IF TraceProcessor & traceProcessor & (id = numProcessors-1) THEN DEC(numProcessors) (* exclude from rest of activity *) ELSE INCL(allProcessors, id) END; (* synchronize with boot processor - end of mutual exclusion *) started[id] := TRUE; IF TraceProcessor & ~(id IN allProcessors) THEN Acquire (TraceOutput); Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn (" tracing"); Release (TraceOutput); LOOP IF traceProcessorProc # NIL THEN traceProcessorProc(id, state) END; SpinHint END END; (* wait until woken up *) WHILE stopped DO SpinHint END; (* now fully functional, including storage allocation *) AtomicExcl(ipcBusy, id); (* ack *) Acquire (TraceOutput); Trace.String (" P"); Trace.Int(id, 1); Trace.StringLn(" scheduling"); Release (TraceOutput); ASSERT(id = ID()); (* still running on same processor *) start; END StartMP; (* Subsequent processors start executing here. *) PROCEDURE EnterMP; (* no local variables allowed, because stack is switched. *) BEGIN (* running at kernel level with interrupts off *) InitProcessor; InitMemory; (* switch stack *) Start; StartMP END EnterMP; (* Start another processor. *) PROCEDURE StartProcessor(phys: ADDRESS; apicid: LONGINT; startup: BOOLEAN); VAR j, k: LONGINT; s: SET; timer: LONGINT; BEGIN (* clear APIC errors *) ApicPut(280H, {}); s := ApicGet(280H); (* assert INIT *) ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *) ApicPut(300H, {8, 10, 14, 15}); (* set Dest, INIT, Phys, Assert, Level *) timer := ticks + 5; (* > 200us *) REPEAT UNTIL timer - ticks <= 0; (* deassert INIT *) ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *) ApicPut(300H, {8, 10, 15}); (* set Dest, INIT, Deassert, Phys, Level *) IF startup THEN (* send STARTUP if required *) j := 0; k := 2; WHILE j # k DO ApicPut(280H, {}); ApicPut(310H, SYSTEM.VAL (SET, ASH(apicid, 24))); (* set destination *) (* set Dest, Startup, Deassert, Phys, Edge *) ApicPut(300H, {9, 10} + SYSTEM.VAL (SET, phys DIV 4096 MOD 256)); timer := ticks + 10; (* ~10ms *) REPEAT UNTIL timer - ticks <= 0; IF ~(12 IN ApicGet(300H)) THEN (* idle *) IF ApicGet(280H) * {0..3, 5..7} = {} THEN k := j (* ESR success, exit *) ELSE INC(j) (* retry *) END ELSE INC(j) (* retry *) END END END END StartProcessor; (* Boot other processors, one at a time. *) PROCEDURE BootMP; VAR phys, page0Adr: ADDRESS; i: LONGINT; timer: LONGINT; BEGIN stopped := TRUE; ipcBusy := {}; (* other processors can be woken with StartAll *) InitBootPage(EnterMP, phys); MapPhysical(0, 4096, page0Adr); (* map in BIOS data area *) Acquire(TraceOutput); Trace.String("Machine: Booting processors... "); Trace.Ln; Release(TraceOutput); FOR i := 1 TO numProcessors-1 DO (* set up booting for old processor types that reset on INIT & don't understand STARTUP *) SYSTEM.PUT (page0Adr + 467H, ASH(phys, 16-4)); PutNVByte(15, 0AX); (* shutdown status byte *) (* attempt to start another processor *) Acquire(TraceOutput); Trace.String(" P0 starting P"); Trace.Int(i, 1); Trace.Ln; Release(TraceOutput); StartProcessor(phys, revIDmap[i], apicVer[i] >= 10H); (* try booting processor i *) (* wait for CPU to become active *) timer := ticks + 5000; (* ~5s timeout *) REPEAT SpinHint UNTIL started[i] OR (timer - ticks <= 0); (* end of mutual exclusion *) Acquire(TraceOutput); IF started[i] THEN Trace.String(" P0 recognized P"); Trace.Int(i, 1); ELSE Trace.String(" P0 timeout on P"); Trace.Int(i, 1); END; Trace.Ln; Release(TraceOutput); END; SYSTEM.PUT (page0Adr + 467H, SYSTEM.VAL (LONGINT, 0)); UnmapPhysical(page0Adr, 4096); PutNVByte(15, 0X) (* restore shutdown status *) END BootMP; (* Timer interrupt handler. *) PROCEDURE TimerInterruptHandler(VAR state: State); BEGIN INC(ticks); DEC(eventCount); IF eventCount = 0 THEN eventCount := eventMax; event(state) END END TimerInterruptHandler; PROCEDURE Dummy(VAR state: State); END Dummy; PROCEDURE InitTicks; CONST Div = (2*TimerClock + Second) DIV (2*Second); (* timer clock divisor *) BEGIN eventCount := 0; eventMax := 0; event := Dummy; (* initialize timer hardware *) ASSERT(Div <= 65535); Portout8(43H, 34X); Wait; (* mode 2, rate generator *) Portout8(40H, CHR(Div MOD 100H)); Wait; Portout8(40H, CHR(ASH(Div, -8))); InstallHandler(TimerInterruptHandler, IRQ0) END InitTicks; (* Set timer upcall. The handler procedure will be called at a rate of Second/divisor Hz. *) PROCEDURE InstallTickHandler(handler: Handler; divisor: LONGINT); BEGIN eventMax := divisor; event := handler; eventCount := eventMax END InstallTickHandler; (* Initialize processors *) PROCEDURE InitProcessors*; BEGIN traceProcessor := FALSE; traceProcessorProc := NIL; ASSERT(Second = 1000); (* use of Machine.ticks *) InitTicks; timer := DummyEvent; ParseMPConfig; InstallHandler(HandleIPC, MPIPCLocal); IF localAPIC # 0 THEN (* APIC present *) InitAPICArea(localAPIC, 4096); InitAPICIDAdr(localAPIC+20H, idMap); ASSERT(MPSPU MOD 16 = 15); (* use default handler (see 7.4.11.1) *) InstallHandler(HandleError, MPERR); InstallHandler(HandleMPTimer, MPTMR); InstallHandler(HandleIPC, MPIPC); InitAPIC; IF numProcessors > 1 THEN BootMP END ELSE IF timerRate > 0 THEN InstallTickHandler(HandleUPTimer, Second DIV timerRate) END END; InstallHandler(HandleKernelCall, MPKC); END InitProcessors; (* Send and print character *) PROCEDURE TraceChar (c: CHAR); VAR status: SHORTINT; (* Scroll the screen by one line. *) PROCEDURE Scroll; VAR adr: ADDRESS; off: SIZE; BEGIN adr := traceBase + TraceLen; SYSTEM.MOVE (adr, adr - TraceLen, TraceSize - TraceLen); adr := traceBase + TraceSize - TraceLen; FOR off := 0 TO TraceLen - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (adr + off, 100H * 7H + 32) END END Scroll; BEGIN IF TraceV24 IN traceMode THEN REPEAT (* wait until port is ready to accept a character *) Portin8 (tracePort + 5, SYSTEM.VAL(CHAR,status)) UNTIL ODD (status DIV 20H); (* THR empty *) Portout8 (tracePort, c); END; IF TraceScreen IN traceMode THEN IF c = 9X THEN c := 20X END; IF c = 0DX THEN (* CR *) DEC (tracePos, tracePos MOD TraceLen) ELSIF c = 0AX THEN (* LF *) IF tracePos < TraceSize THEN INC (tracePos, TraceLen) (* down to next line *) ELSE Scroll END ELSE IF tracePos >= TraceSize THEN Scroll; DEC (tracePos, TraceLen) END; SYSTEM.PUT16 (traceBase + tracePos, 100H * traceColor + ORD (c)); INC (tracePos, SIZEOF(INTEGER)) END END END TraceChar; (* Change color *) PROCEDURE TraceColor (c: SHORTINT); BEGIN traceColor := c; END TraceColor; (* Initialise tracing. *) PROCEDURE InitTrace; CONST MaxPorts = 8; VAR i, p, bps: LONGINT; off: SIZE; s, name: ARRAY 32 OF CHAR; baselist: ARRAY MaxPorts OF LONGINT; BEGIN GetConfig ("TraceMode", s); p := 0; traceMode := SYSTEM.VAL (SET, StrToInt (p, s)); IF TraceScreen IN traceMode THEN GetConfig ("TraceMem", s); p := 0; traceBase := SYSTEM.VAL (ADDRESS, StrToInt (p, s)); IF traceBase = 0 THEN traceBase := 0B8000H END; (* default screen buffer *) FOR off := 0 TO TraceSize - SIZEOF(INTEGER) BY SIZEOF(INTEGER) DO SYSTEM.PUT16 (traceBase + off, 100H * 7H + 32) END; tracePos := 0; Portout8(3D4H, 0EX); Portout8(3D5H, CHR((TraceWidth*TraceHeight) DIV 100H)); Portout8(3D4H, 0FX); Portout8(3D5H, CHR((TraceWidth*TraceHeight) MOD 100H)) END; IF TraceV24 IN traceMode THEN FOR i := 0 TO MaxPorts - 1 DO COPY ("COMx", name); name[3] := CHR (ORD ("1") + i); GetConfig (name, s); p := 0; baselist[i] := StrToInt (p, s); END; IF baselist[0] = 0 THEN baselist[0] := 3F8H END; (* COM1 port default values *) IF baselist[1] = 0 THEN baselist[1] := 2F8H END; (* COM2 port default values *) GetConfig("TracePort", s); p := 0; p := StrToInt(p, s); DEC(p); IF (p >= 0) & (p < MaxPorts) THEN tracePort := baselist[p] ELSE tracePort := baselist[0] END; ASSERT(tracePort > 0); GetConfig("TraceBPS", s); p := 0; bps := StrToInt(p, s); IF bps <= 0 THEN bps := 38400 END; Portout8 (tracePort + 3, 80X); (* Set the Divisor Latch Bit - DLAB = 1 *) bps := 115200 DIV bps; (* compiler DIV/PORTOUT bug workaround *) Portout8 (tracePort + 1, CHR (bps DIV 100H)); (* Set the Divisor Latch MSB *) Portout8 (tracePort, CHR (bps MOD 100H)); (* Set the Divisor Latch LSB *) Portout8 (tracePort + 3, 3X); (* 8N1 *) Portout8 (tracePort + 4, 3X); (* Set DTR, RTS on in the MCR *) Portout8 (tracePort + 1, 0X); (* Disable receive interrupts *) END; traceColor := 7; Trace.Char := TraceChar; Trace.Color := TraceColor; END InitTrace; (* The following procedure is linked as the first block in the bootfile *) PROCEDURE {NOPAF, FIXED(0100000H)} FirstAddress; BEGIN CODE{SYSTEM.AMD64} ; save arguments passed by bootloader MOV bootFlag, RAX MOV initRegs0,RSI MOV initRegs1, RCX MOV fbadr, RDI MOV fbInfoPtr, RDX END; Init; END FirstAddress; (* (* The following procedure is linked as the first block in the bootfile *) PROCEDURE {NOPAF, FIXED(0100000H)} FirstAddress; CODE{SYSTEM.AMD64} ; relocate the bootfile from 0x1000 to target address 0x100000 PUSH RAX PUSH RSI PUSH RDI MOV RSI,1000H MOV RDI,100000H MOV RCX, LastAddress SUB RCX, RDI ; CLD ; REP MOVSB ADD RSI, RCX ADD RDI, RCX STD REP MOVSB POP RDI POP RSI POP RAX ; continue in relocated bootfile JMP DWORD 100000H - 1000H + Skip Skip: ; save arguments passed by bootloader MOV bootFlag, RAX MOV initRegs0,RSI MOV initRegs1, RDI END FirstAddress; *) (* empty section allocated at end of bootfile *) PROCEDURE {NOPAF} LastAddress; CODE {SYSTEM.AMD64} END LastAddress; PROCEDURE Init*; VAR i: LONGINT; BEGIN initRegs[0] := initRegs0; initRegs[1] := initRegs1; (* registers 6 and 7 get converted to 32 bit, cf. PCB.Assigne SYSTEM.GETREG(6, initRegs[0]); SYSTEM.GETREG(7, initRegs[1]); (* initRegs0 & initRegs1 *) *) SYSTEM.PUT16(0472H, 01234H); (* soft boot flag, for when we reboot *) ReadBootTable(bootFlag); InitTrace; Trace.String("Machine: "); Trace.Blue;Trace.StringLn (Version); Trace.Default; CheckMemory; SearchMP; AllocateDMA; (* must be called after SearchMP, as lowTop is modified *) version := Version; InitBoot; InitProcessor; InitLocks; NmaxUserStacks := MaxUserStacks; ASSERT(ASH(1, PSlog2) = PS); Trace.String("Machine: Enabling MMU... "); InitSegments; (* enable flat segments *) InitPages; (* create page tables *) InitMemory; (* switch on segmentation, paging and switch stack *) Trace.Green; Trace.StringLn("Ok"); Trace.Default; (* allocate empty memory block with enough space for at least one free block *) memBlockHead := SYSTEM.VAL (MemoryBlock, ADDRESSOF (initialMemBlock)); memBlockTail := memBlockHead; initialMemBlock.beginBlockAdr := SYSTEM.VAL (ADDRESS, LastAddress); initialMemBlock.endBlockAdr := initialMemBlock.beginBlockAdr + StaticBlockSize; initialMemBlock.size := initialMemBlock.endBlockAdr - initialMemBlock.beginBlockAdr; FOR i := 0 TO IDTSize - 1 DO FOR j := 0 TO MaxNumHandlers - 1 DO intHandler[i, j].valid := FALSE; intHandler[i, j].handler := NIL END END; default.valid := FALSE; (* initialized later *) END Init; (* Init code called from OBL. EAX = boot table offset. ESI, EDI=initRegs. 2k stack is available. No trap handling. *) BEGIN END Machine. (* 03.03.1998 pjm First version 30.06.1999 pjm ProcessorID moved to AosProcessor *) (** Notes This module defines an interface to the boot environment of the system. The facilities provided here are only intended for the lowest levels of the system, and should never be directly imported by user modules (exceptions are noted below). They are highly specific to the system hardware and firmware architecture. Typically a machine has some type of firmware that performs initial testing and setup of the system. The firmware initiates the operating system bootstrap loader, which loads the boot file. This module is the first module in the statically linked boot file that gets control. There are two more-or-less general procedures in this module: GetConfig and StrToInt. GetConfig is used to query low-level system settings, e.g., the location of the boot file system. StrToInt is a utility procedure that parses numeric strings. Config strings: ExtMemSize Specifies size of extended memory (above 1MB) in MB. This value is not checked for validity. Setting it false may cause the system to fail, possible after running for some time. The memory size is usually detected automatically, but if the detection does not work for some reason, or if you want to limit the amount of memory detected, this string can be set. For example, if the machine has 64MB of memory, this value can be set as ExtMemSize="63". *)