(* ETH Oberon, Copyright 2001 ETH Zuerich Institut fuer Computersysteme, ETH Zentrum, CH-8092 Zuerich. Refer to the "General ETH Oberon System Source License" contract available at: http://www.oberon.ethz.ch/ *) MODULE Reals; (** portable, except where noted *) (** AUTHOR "bmoesli"; PURPOSE "Real number manipulation"; *) (** Implementation of the non-portable components of IEEE REAL and LONGREAL manipulation. The routines here are required to do conversion of reals to strings and back. Implemented by Bernd Moesli, Seminar for Applied Mathematics, Swiss Federal Institute of Technology Zürich. *) (** Simple port to ARM, without platform-dependent code by Timothée Martiel *) IMPORT SYSTEM, Machine; (* Bernd Moesli Seminar for Applied Mathematics Swiss Federal Institute of Technology Zurich Copyright 1993 Support module for IEEE floating-point numbers Please change constant definitions of H, L depending on byte ordering Use bm.TestReals.Do for testing the implementation. Expo, ExpoL return the shifted binary exponent (0 <= e < 256 (2048 resp.)) SetExpo, SetExpoL set the shifted binary exponent Real, RealL convert hexadecimals to reals Int, IntL convert reals to hexadecimals Ten returns 10^e (e <= 308, 308 < e delivers NaN) 1993.4.22 IEEE format only, 32-bits LONGINTs only 30.8.1993 mh: changed RealX to avoid compiler warnings; 7.11.1995 jt: dynamic endianess test 22.01.97 pjm: NaN stuff (using quiet NaNs only to avoid traps) 05.01.98 prk: NaN with INF support *) VAR DefaultFCR*: SET; tene: ARRAY 23 OF LONGREAL; (* e = 0..22: exact values of 10^e *) ten: ARRAY 27 OF LONGREAL; eq, gr: ARRAY 20 OF SET; H, L: INTEGER; (** Returns the shifted binary exponent (0 <= e < 256). *) PROCEDURE Expo* (x: REAL): LONGINT; BEGIN RETURN ASH(SYSTEM.VAL(LONGINT, x), -23) MOD 256 END Expo; (** Returns the shifted binary exponent (0 <= e < 2048). *) PROCEDURE ExpoL* (x: LONGREAL): LONGINT; VAR i: LONGINT; BEGIN SYSTEM.GET(ADDRESSOF(x) + H, i); RETURN ASH(i, -20) MOD 2048 END ExpoL; (** Sets the shifted binary exponent. *) PROCEDURE SetExpo* (e: LONGINT; VAR x: REAL); VAR i: LONGINT; BEGIN SYSTEM.GET(ADDRESSOF(x), i); i:= ASH(ASH(ASH(i, -31), 8) + e MOD 256, 23) + i MOD ASH(1, 23); SYSTEM.PUT(ADDRESSOF(x), i) END SetExpo; (** Sets the shifted binary exponent. *) PROCEDURE SetExpoL* (e: LONGINT; VAR x: LONGREAL); VAR i: LONGINT; BEGIN SYSTEM.GET(ADDRESSOF(x) + H, i); i:= ASH(ASH(ASH(i, -31), 11) + e MOD 2048, 20) + i MOD ASH(1, 20); SYSTEM.PUT(ADDRESSOF(x) + H, i) END SetExpoL; (** Convert hexadecimal to REAL. *) PROCEDURE Real* (h: LONGINT): REAL; VAR x: REAL; BEGIN SYSTEM.PUT(ADDRESSOF(x), h); RETURN x END Real; (** Convert hexadecimal to LONGREAL. h and l are the high and low parts.*) PROCEDURE RealL* (h, l: LONGINT): LONGREAL; VAR x: LONGREAL; BEGIN SYSTEM.PUT(ADDRESSOF(x) + H, h); SYSTEM.PUT(ADDRESSOF(x) + L, l); RETURN x END RealL; (** Convert REAL to hexadecimal. *) PROCEDURE Int* (x: REAL): LONGINT; VAR i: LONGINT; BEGIN SYSTEM.PUT(ADDRESSOF(i), x); RETURN i END Int; (** Convert LONGREAL to hexadecimal. h and l are the high and low parts. *) PROCEDURE IntL* (x: LONGREAL; VAR h, l: LONGINT); BEGIN SYSTEM.GET(ADDRESSOF(x) + H, h); SYSTEM.GET(ADDRESSOF(x) + L, l) END IntL; (** Returns 10^e (e <= 308, 308 < e delivers IEEE-code +INF). *) PROCEDURE Ten* (e: LONGINT): LONGREAL; VAR E: LONGINT; r: LONGREAL; BEGIN IF e < -307 THEN RETURN 0 ELSIF 308 < e THEN RETURN RealL(2146435072, 0) END; INC(e, 307); r:= ten[e DIV 23] * tene[e MOD 23]; IF e MOD 32 IN eq[e DIV 32] THEN RETURN r ELSE E:= ExpoL(r); SetExpoL(1023+52, r); IF e MOD 32 IN gr[e DIV 32] THEN r:= r-1 ELSE r:= r+1 END; SetExpoL(E, r); RETURN r END END Ten; (** Returns the NaN code (0 <= c < 8399608) or -1 if not NaN/Infinite. *) PROCEDURE NaNCode* (x: REAL): LONGINT; BEGIN IF ASH(SYSTEM.VAL(LONGINT, x), -23) MOD 256 = 255 THEN (* Infinite or NaN *) RETURN SYSTEM.VAL(LONGINT, x) MOD 800000H (* lowest 23 bits *) ELSE RETURN -1 END END NaNCode; (** Returns the NaN code (0 <= h < 1048576, MIN(LONGINT) <= l <= MAX(LONGINT)) or (-1,-1) if not NaN/Infinite. *) PROCEDURE NaNCodeL* (x: LONGREAL; VAR h, l: LONGINT); BEGIN SYSTEM.GET(ADDRESSOF(x) + H, h); SYSTEM.GET(ADDRESSOF(x) + L, l); IF ASH(h, -20) MOD 2048 = 2047 THEN (* Infinite or NaN *) h := h MOD 100000H (* lowest 20 bits *) ELSE h := -1; l := -1 END END NaNCodeL; (** Returns TRUE iff x is NaN/Infinite. *) PROCEDURE IsNaN* (x: REAL): BOOLEAN; BEGIN RETURN ASH(SYSTEM.VAL(LONGINT, x), -23) MOD 256 = 255 END IsNaN; (** Returns TRUE iff x is NaN/Infinite. *) PROCEDURE IsNaNL* (x: LONGREAL): BOOLEAN; VAR h: LONGINT; BEGIN SYSTEM.GET(ADDRESSOF(x) + H, h); RETURN ASH(h, -20) MOD 2048 = 2047 END IsNaNL; (** Returns NaN with specified code (0 <= l < 8399608). *) PROCEDURE NaN* (l: LONGINT): REAL; VAR x: REAL; BEGIN SYSTEM.PUT(ADDRESSOF(x), (l MOD 800000H) + 7F800000H); RETURN x END NaN; (** Returns NaN with specified code (0 <= h < 1048576, MIN(LONGINT) <= l <= MAX(LONGINT)). *) PROCEDURE NaNL* (h, l: LONGINT): LONGREAL; VAR x: LONGREAL; BEGIN h := (h MOD 100000H) + 7FF00000H; SYSTEM.PUT(ADDRESSOF(x) + H, h); SYSTEM.PUT(ADDRESSOF(x) + L, l); RETURN x END NaNL; (* PROCEDURE fcr(): SET; CODE {SYSTEM.i386, SYSTEM.FPU} PUSH 0 FSTCW [ESP] FWAIT POP EAX END fcr; *) (** Return state of the floating-point control register. *) PROCEDURE FCR*(): SET; END FCR; (** Set state of floating-point control register. Traps reset this to the default. Note that changing the rounding mode affects rounding of imprecise results as well as the ENTIER operation. *) PROCEDURE SetFCR*(s: SET); END SetFCR; (** Round x to an integer using the current rounding mode. *) PROCEDURE Round*(x: REAL): LONGINT; (** non-portable *) END Round; (** Round x to an integer using the current rounding mode. *) PROCEDURE RoundL*(x: LONGREAL): LONGINT; (** non-portable *) END RoundL; PROCEDURE RealX (hh, hl: HUGEINT; adr: ADDRESS); VAR h,l: LONGINT; BEGIN h := SHORT(hh); l := SHORT(hl); SYSTEM.PUT(adr + H, h); SYSTEM.PUT(adr + L, l); END RealX; PROCEDURE InitHL; VAR i: ADDRESS; dmy: INTEGER; littleEndian: BOOLEAN; BEGIN DefaultFCR := Machine.fcr; dmy := 1; i := ADDRESSOF(dmy); SYSTEM.GET(i, littleEndian); (* indirection via i avoids warning on SUN cc -O *) IF littleEndian THEN H := 4; L := 0 ELSE H := 0; L := 4 END END InitHL; BEGIN InitHL; RealX(03FF00000H, 0, ADDRESSOF(tene[0])); RealX(040240000H, 0, ADDRESSOF(tene[1])); (* 1 *) RealX(040590000H, 0, ADDRESSOF(tene[2])); (* 2 *) RealX(0408F4000H, 0, ADDRESSOF(tene[3])); (* 3 *) RealX(040C38800H, 0, ADDRESSOF(tene[4])); (* 4 *) RealX(040F86A00H, 0, ADDRESSOF(tene[5])); (* 5 *) RealX(0412E8480H, 0, ADDRESSOF(tene[6])); (* 6 *) RealX(0416312D0H, 0, ADDRESSOF(tene[7])); (* 7 *) RealX(04197D784H, 0, ADDRESSOF(tene[8])); (* 8 *) RealX(041CDCD65H, 0, ADDRESSOF(tene[9])); (* 9 *) RealX(04202A05FH, 020000000H, ADDRESSOF(tene[10])); (* 10 *) RealX(042374876H, 0E8000000H, ADDRESSOF(tene[11])); (* 11 *) RealX(0426D1A94H, 0A2000000H, ADDRESSOF(tene[12])); (* 12 *) RealX(042A2309CH, 0E5400000H, ADDRESSOF(tene[13])); (* 13 *) RealX(042D6BCC4H, 01E900000H, ADDRESSOF(tene[14])); (* 14 *) RealX(0430C6BF5H, 026340000H, ADDRESSOF(tene[15])); (* 15 *) RealX(04341C379H, 037E08000H, ADDRESSOF(tene[16])); (* 16 *) RealX(043763457H, 085D8A000H, ADDRESSOF(tene[17])); (* 17 *) RealX(043ABC16DH, 0674EC800H, ADDRESSOF(tene[18])); (* 18 *) RealX(043E158E4H, 060913D00H, ADDRESSOF(tene[19])); (* 19 *) RealX(04415AF1DH, 078B58C40H, ADDRESSOF(tene[20])); (* 20 *) RealX(0444B1AE4H, 0D6E2EF50H, ADDRESSOF(tene[21])); (* 21 *) RealX(04480F0CFH, 064DD592H, ADDRESSOF(tene[22])); (* 22 *) RealX(031FA18H, 02C40C60DH, ADDRESSOF(ten[0])); (* -307 *) RealX(04F7CAD2H, 03DE82D7BH, ADDRESSOF(ten[1])); (* -284 *) RealX(09BF7D22H, 08322BAF5H, ADDRESSOF(ten[2])); (* -261 *) RealX(0E84D669H, 05B193BF8H, ADDRESSOF(ten[3])); (* -238 *) RealX(0134B9408H, 0EEFEA839H, ADDRESSOF(ten[4])); (* -215 *) RealX(018123FF0H, 06EEA847AH, ADDRESSOF(ten[5])); (* -192 *) RealX(01CD82742H, 091C6065BH, ADDRESSOF(ten[6])); (* -169 *) RealX(0219FF779H, 0FD329CB9H, ADDRESSOF(ten[7])); (* -146 *) RealX(02665275EH, 0D8D8F36CH, ADDRESSOF(ten[8])); (* -123 *) RealX(02B2BFF2EH, 0E48E0530H, ADDRESSOF(ten[9])); (* -100 *) RealX(02FF286D8H, 0EC190DCH, ADDRESSOF(ten[10])); (* -77 *) RealX(034B8851AH, 0B548EA4H, ADDRESSOF(ten[11])); (* -54 *) RealX(0398039D6H, 065896880H, ADDRESSOF(ten[12])); (* -31 *) RealX(03E45798EH, 0E2308C3AH, ADDRESSOF(ten[13])); (* -8 *) RealX(0430C6BF5H, 026340000H, ADDRESSOF(ten[14])); (* 15 *) RealX(047D2CED3H, 02A16A1B1H, ADDRESSOF(ten[15])); (* 38 *) RealX(04C98E45EH, 01DF3B015H, ADDRESSOF(ten[16])); (* 61 *) RealX(0516078E1H, 011C3556DH, ADDRESSOF(ten[17])); (* 84 *) RealX(05625CCFEH, 03D35D80EH, ADDRESSOF(ten[18])); (* 107 *) RealX(05AECDA62H, 055B2D9EH, ADDRESSOF(ten[19])); (* 130 *) RealX(05FB317E5H, 0EF3AB327H, ADDRESSOF(ten[20])); (* 153 *) RealX(064794514H, 05230B378H, ADDRESSOF(ten[21])); (* 176 *) RealX(06940B8E0H, 0ACAC4EAFH, ADDRESSOF(ten[22])); (* 199 *) RealX(06E0621B1H, 0C28AC20CH, ADDRESSOF(ten[23])); (* 222 *) RealX(072CD4A7BH, 0EBFA31ABH, ADDRESSOF(ten[24])); (* 245 *) RealX(077936214H, 09CBD3226H, ADDRESSOF(ten[25])); (* 268 *) RealX(07C59A742H, 0461887F6H, ADDRESSOF(ten[26])); (* 291 *) eq[0]:= {0, 3, 4, 5, 9, 16, 23, 25, 26, 28, 31}; eq[1]:= {2, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31}; eq[2]:= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}; eq[3]:= {0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 14, 15, 16, 17, 18, 19, 20, 22, 27, 28, 29, 30, 31}; eq[4]:= {0, 6, 7, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; eq[5]:= {0, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; eq[6]:= {0, 1, 4, 5, 7, 8, 10, 14, 15, 16, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31}; eq[7]:= {0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 23, 24, 26, 28, 29, 30, 31}; eq[8]:= {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 16, 17, 18, 19, 20, 21, 24, 25, 26, 29}; eq[9]:= {1, 2, 4, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; eq[10]:= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}; eq[11]:= {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 27, 28, 29, 30}; eq[12]:= {0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 26, 27, 29, 30, 31}; eq[13]:= {0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 23, 24, 27, 28, 29, 30, 31}; eq[14]:= {0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; eq[15]:= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28}; eq[16]:= {1, 2, 4, 11, 13, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28, 29, 30, 31}; eq[17]:= {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 31}; eq[18]:= {0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23, 24, 26, 27, 28, 29}; eq[19]:= {2, 3, 4, 5, 6, 7}; gr[0]:= {24, 27, 29, 30}; gr[1]:= {0, 1, 3, 4, 7}; gr[2]:= {29, 30, 31}; gr[3]:= {4, 10, 12, 13, 21, 23, 24, 25, 26}; gr[4]:= {1, 2, 3, 4, 5, 8, 9, 16, 17}; gr[5]:= {2, 3, 4, 18}; gr[6]:= {2, 3, 6, 9, 11, 12, 13, 17, 19, 22, 27}; gr[7]:= {2}; gr[8]:= {7, 12, 13, 15, 22, 23, 27, 28, 30, 31}; gr[9]:= {0, 3, 5, 7, 8}; gr[10]:= {}; gr[11]:= {}; gr[12]:= {11, 13, 22, 24, 25, 28}; gr[13]:= {22, 25, 26}; gr[14]:= {4, 5}; gr[15]:= {10, 14, 27, 29, 30, 31}; gr[16]:= {0, 3, 5, 6, 7, 8, 9, 10, 12, 14, 15, 20, 21, 23}; gr[17]:= {0, 10, 12, 13, 16, 17, 22, 24, 30}; gr[18]:= {}; gr[19]:= {} END Reals.